17-4PH钢表面纳米化与脉冲等离子体稀土渗氮研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文对17-4PH钢的表面纳米化工艺,脉冲等离子渗氮工艺进行了研究。通过喷丸、激光表面淬火及喷丸与激光表面淬火复合处理技术,对17-4PH的表面纳米化工艺进行了研究。试验结果表明,激光表面淬火可以在材料表面层获得亚微米级晶粒,喷丸及喷丸+激光的复合处理工艺可以实现材料表面纳米化。通过有无喷丸表面等离子体稀土渗氮试验,得出了渗氮对材料表面硬度及喷丸对渗氮效果的影响规律。
     不同工艺下的喷丸试验结果表明,选用直径较大的丸粒,采用较大的压强,适当的延长喷丸时间,可以进一步细化表面层的晶粒,获得厚度较大的纳米化表层。XRD结果表明,喷丸可以实现17-4PH钢表面纳米化,最表层约20μm范围内的平均晶粒尺寸为89nm。TEM观察发现,距表面75μm处的亚晶尺寸小于100nm。
     激光表面淬火研究表明,降低扫描速度,增加功率可以在材料表层获得厚度更大的淬火层;选用适当的功率,增大扫描速度可以提高淬火层的晶粒细化程度;直接激光表面淬火可以在材料表层365μm范围内获得尺寸约1-2μm的晶粒,两次激光淬火可以在材料表层480μm范围内获得亚微米级晶粒;结合喷丸和激光表面淬火工艺特点,利用喷丸与激光表面淬火的复合处理技术,在材料表层获得了230μm厚的从纳米过渡到亚微米级的梯度晶粒。
     17-4PH在460°C脉冲等离子体稀土渗氮表明,渗氮12h可以在表层获得90μm的渗层,表面硬度约为HV1200。喷丸表面在稀土渗氮前期具有催渗作用,随渗氮时间的延长,催渗作用减弱,渗氮后期阻碍了渗氮。与未喷丸相比,喷丸渗氮显著提高了渗氮表层的显微硬度,可达HV1350。
In this thesis, technologies of surface nanocrystallizaition and plasma nitriding of steel 17-4PH have been studied. Shot penning, laser surface quenching and combination of these two technologies have been adopted to study the technology of surface nanocrystallization of steel 17-4PH. The results show that the submicron grain can be obtained by laser surface quenching, and surface nanocrystalization could be achieved by both shot peening and combination of shot peening and laser surface quenching. Pulse plasma RE nitriding carried out with and without shot peening have also been investigated to clarity the effect of nitriding on the surface micro-hardness and the influence of shot peening for nitriding.
     Results of shot peening with different technologies indicate that: the biger particles selected and the intensity of pressure enlarged, the grain would be even more refined and the layer thickness with refined grain can be deepen. Results from XRD shows that surface nanocrystallization of 17-4PH has been realized by shot peening, the average grain size of the surface layer of about 20μm depth can be 89nm.Results of TEM indicates that the depth of nanocrystal layer reaches 75μm.
     According to experimental results of laser surface quenching, a deeper quenching layer can be got by bringing down the scanning velocity or increasing the power; while more refined grain in the quenching layer can be obtained by increase the scanning velocity or reduce the power. A layer of 365μm with grain of 1-2μm has been got by direct laser surface quenching, as well as a layer of 480μm with submicron-size grain by twice laser surface quenching. Base on the features of shot peening and laser surface quenching, by the combination of these two technologies, a layer of 230μm with grains of nano-size gradually changing to submicron-size has been achieved.
     Study on plasma nitriding of steel 17-4PH shows that a nitrided layer of 90μm has been got after nitriding at 460℃for 12 hours and the surface micro-hardness is about 1200HV. It has been also found that pre-shot peening will accelerate the process of nitriding at the initial stage, and this effect will weaken with time, and then will delay the nitriding in the late stage. While nitriding after shot peening will increase surface micro-hardness to about 1350HV compared to nitriding without shot peening.
引文
1 Ke. LU, Jian. LU. Surface Nanocrystallization (SNC) of Metallic Materials-Presentation of the Concept behind a New Approach. J. Mater. Sci. Technol. 15(3): 193-197
    2 Z.B. Wang, N.R. Tao, et al. Diffusion of Chromium in Nanocrystalline Iron Produced by Means of SMAT. Acta Materialia. 2003, 51: 4319-4329
    3刘刚,雍兴平,卢柯.金属材料表面纳米化的研究现状.中国表面工程. 2001, 3: 1-5
    4刘刚,周蕾.工程金属材料的表面纳米化技术(一).纳米科技. 2006, 3(1): 56-60
    5朱琳,樊新民.强烈塑性变形法制备金属纳米晶体材料有色金属. 2005, 57(4): 35-38
    6张淑兰,陈怀宁,林泉洪,刘刚.工业纯钛焊接接头的表面纳米化及其机制有色金属. 2005, 55(4): 5-8
    7耀星.我国金属材料表面纳米化技术及全同金属纳米团簇研究取得突破性进展.粉末冶金工业. 2004, 14: 32
    8刘刚,周蕾.工程金属材料的表面纳米化技术(二).纳米科技. 2006, 3(2): 51-56
    9 Xingping. YONG, Gang. LIU, Ke. LU, etalCharacterization and Properties of Nanostructured Surface Layer in a Low Carbon Steel Subjected to Surface Mechanical Attrition. Mater Sci Techn. 2003, 19(1): 1.
    10王吉孝.焊接接头表面纳米化及抗应力腐蚀性能的研究.贵州大学硕士学位论文. 2006: 56-64
    11 Nairong. TAO, Weiping. TONG, Zhenbo. WANG, etal. Mechanical and Wear Properties of Nanostructured Surface Layer in Iron Induced by Surface Mechanical Attrition Treatment. J. Mater. Sci. Techn. 2003, 19(6): 563
    12孙彩云,武晓雷,洪友士.表面纳米化Zr的拉伸性能.材料热处理学报. 2005, 26(3): 73-75
    13 Liu. G, Wang. S.C, Pan. D, etal. Low carbon steel with nanostructured surface layer induce by high energy shot peening. Scripta Mater. 2001, 44(8): 1791-1795
    14李东,陈怀宁,刘刚. SS400钢焊接接头表层组织纳米均一化及硬度均一化处理.金属学报. 2001, 37(9): 980-984
    15熊天英,刘志文,李智超.超音速微粒轰击金属表面纳米化新技术.材料导报. 2003, 17(3): 69-71
    16韩同伟. 316L不锈钢表面纳米化后的低周疲劳性能研究.贵州大学硕士论. 2006: 31-43
    17石东燕. 316L不锈钢表面纳米化后疲劳性能初步探讨.贵州大学硕士论文. 2006: 31-41
    18李东,陈怀宁,刘刚. SS400钢对接接头表面纳米化及其对疲劳强度的影响.焊接学报. 23(2):18-22
    19李瑛,王福会.表面纳米化对金属材料电化学腐蚀行为的影响.腐蚀与防护. 2003, 24(1): 6-9
    20 Wang. X.Y, Li. D.Y. Mechanical electrochemical and tribological properties of nano-crystalline surface of 304 stainless steel. Wear, 2003, 255: 836-845
    21石继红,武保林,刘刚. 316L不锈钢表面纳米化后腐蚀性能研究.材料工程, 2005: 42-46
    22 Wang. Z.B, Tao. N.R, eta1. Effect of surface nanocrys-tallization on friction and wear properties in low carbonsteel. Mater Sci Eng A, 2003, 325 (1/2): 144 -149
    23王镇波,雍兴平,陶乃镕,等.表面纳米化对低碳钢摩擦磨损性能的影响.金属学报. 2001, 3(12): 251-1254
    24严伟林,方亮,孙琨,等.表面纳米化对高锰钢磨料磨损性能的影响.西安交通大学学报. 2007, 41(5): 611-615
    25 W.P. Tong, N.R. Tao, Z.B. Wang, J. Lu, K. Lu. Nitriding Iron at Lower Temperatures. SCIENCE. 2003, 299: 686-688
    26 Z.B. Wang, J. Lu, K. Lu. Chromizing behaviors of a low carbon steel processed by means of surface mechanical attrition treatment. Acta Materialia. 2005, 53: 2081 -2089
    27冯淦,石连捷,吕坚等.低碳钢超声喷丸表面纳米化的研究.金属学报. 2000, 36(3): 300-303
    28温爱玲,陈春焕,郑榕有等.高能喷丸表面纳米化对工业纯钛组织性能的影响.表面技术. 2003, 3: 16-18
    29胡兰青,李茂林,土科,等.铝合金表面纳米化处理及显微结构特征.中国有色金属学报. 2004, 14(12): 2016-2020
    30张洪旺,刘刚.表面机械研磨诱导AIS1304不锈钢表层纳米化组织与性能.金属学报. 2003, 39 (4): 342-346
    31雍兴平,刘刚,卢柯,吕坚.低碳钢表面纳米化处理及结构特征,金属学报38(2): 157-160
    32 Xinmin. FAN, Lin. ZHU, Jiewen. HUANG. Surface nanocrystallization of Ti6A14V induced by circulation rolling plastic deformation. Transactions of nonferrous metals society of china. 2004, 14( s1): 190-192
    33 Xinmin. Fan, Bosen. Zhou, Lin. Zhu, etal. Surface Nanocrystallization of Low Carbon Steel Induced by Circulation Rolling Plastic Deformation. Materials Science Forum. 2005, 475-479: 133-135
    34刘江南.金属表面工程学.兵器工业出版社. 1995: 153-157
    35 T.L. Chen, Y.H. Guan, H.G. Wang, etal. A study on austenite transformation during laser heating. Journal of Materials Processing Technology. 1997, 63: 546-549
    36 T. Miokovic, V. Schulze, O. Vohringer, etal. Prediction of phase transformations during laser surface hardening of AISI4140 including the effects of inhomogeneous austenite formation. Materials Science and Engineering A. 2006, 435–436: 547–555
    37李同道,王勇,赫庆坤,等. 45钢多次激光相变硬化组织与性能研究.中国表面工程, 2007, 4: 33-36
    38梁军,卢艳君.离子渗氮技术的研究和工艺.机械设计与制造. 2001, 2(1): 73-74
    39高仰之,刘英棋.离子渗氮技术的进展.机械工人. 2003(7): 9-11
    40田绍洁.极具竞争力的离子渗氮设备.机械工人. 2005(2): 22-23
    41卑多慧,吕坚,顾剑锋等.表面纳米化预处理对低碳钢气体渗氮行为的影响.材料热处理学报. 2002, 23(1): 19-24
    42 Jisen Wang, Guosong Zhang, Jinquan. Low temperature nitriding of iron by alternating current pretreatment. Surface and Coating Technology. 2006, 200: 6666-6670
    43 X. Y. Wang, D. Y. Li. Mechanical and electrochemical behavior of nanocrystalline surface of 304 stainless steel. Electrochimica Acta. 2002, 47: 3939-3947
    44 J.L. Liu, M. Umemoto, Y. Todaka, K. Tsuchiya. Formation of a nanocrystalline surface layer on steels by air blast shot peening. J Mater Sci. 2007, 42: 7716–7720
    45胡国雄.金属材料表面自纳米化工艺、表征及机理研究.重庆大学硕士学位论. 2007: 50-54
    46 N.R. Tao, Z.B. Wang, et al. An investigation of surface nanocrvstallization mechanism in Fe induced by surface mechanical attrition treatment. Acta Materialia. 2002, 50: 4603-4616
    47 Y.H. ZHAO, H.W. SHENG, K. LU. Microstructure Evolution And Thermal Properties In Nanocrystalline Fe During Mechanical Attrition. Acta Materiaha. 2001, 49: 365-375
    48刘宗昌.金属固态相变教程.冶金工业出版社. 2003:1-34
    49 Murty. H.N. Modelinng Grain Growth Durinn lsothermxl Heating. Phil. Mag. 1969,20:855
    50张永晖,彭大暑,张辉.快速再结晶退火过程金属晶粒度的计算.热加工工艺. 2001, 2: 23-24
    51 Semiatin. S.L, Sukonik. I.M, Seetharaman. W. Analysis of Static recrystalization During continuous, Rapid Heat Treatment. Src.Metall.Mater. 1994, 30(7): 951-955
    52 J. Blucher, K. Bang, B.C. Giessen. Preparation of the metastable interstitial copper nitride, Cu4N, by d. c. plasma ion nitriding. Materials Science and Engineering A. 1989, 117: L1-L3

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700