SiC磨削残余应力及其对弯曲强度的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
磨削是SiC陶瓷主要的机械加工方式,磨削过程在陶瓷表面产生大量的残余应力,对SiC陶瓷的性能产生很大的影响。本文通过有限元模拟计算和X射线衍射测量的方法分析了不同磨削条件下磨削过程引入的残余应力。并且,采用抛光和热处理对磨削后的试样进行处理,比较不同处理方法对磨削残余应力和弯曲强度的影响。
     采用有限元模拟计算和X射线衍射的方法来分析磨削过程中的残余应力。通过移动加载和移动热源模型来模拟磨削过程,分别计算出磨削过程中产生的机械残余应力和热残余应力。计算结果表明,在湿磨情况下,由于冷却液的冷却作用,热残余应力几乎可以忽略,试样表面主要是机械残余压应力且随磨削深度的增加而减小。计算结果得到X射线衍射测量结果的证实。
     不同的处理手段对材料的残余应力和特征强度的影响有较大的不同。退火、抛光等处理手段能有效的减小磨削后试样中的残余应力数值,其中800℃退火后残余应力值最小。同时,韦伯模量的计算表明:退火、抛光过程能引起材料内部裂纹的变化,韦伯模量越小,裂纹平均尺寸越大,材料的弯曲强度越小,而磨削后的残余压应力会提高材料的弯曲强度,残余应力和韦伯模量的双重作用使得未作任何处理的磨削试样的特征强度值最大;韦伯模量值较大的800℃退火特征强度次之;抛光过程残余应力对材料的强度没有贡献,但由于其韦伯模量大于1000℃退火,故特征强度第三,1000℃退火特征强度最小。
     通过分析磨削表面状态发现,在XPS分析中,磨削后试样表面Si-O键峰比例占31.3%,与表面暴露于空气中的SiC材料的Si-O键峰比例相近,说明磨削过程中未发生明显的氧化。退火处理对于试样的表面形貌和粗糙度的影响不大;抛光处理能极大的改善试样的表面质量,降低粗糙度。通过试样的断口形貌分析,试样断面呈现脆性断裂方式包括穿晶断裂及部分沿晶断裂。
Grinding is the main mechanical machine method, Homever there will introduce many residual stress in the materials, Which will greatly effect the performance of the materials. Here we will analyze the residual stress introduced by grinding in different feed speeds through finity element calculation and X ray diffraction measurement. The heat treatment and polishing method were adopted to treat the specimens in order to compare and analyze the residual stress and flexural strength with different treatments.
     The residual stress introduced by grinding process is analysised by finity element and X-ray diffraction methods. Using the locomotive loading and locomotive heat source calculate the mechanical and thermic residual stress separately. The result shows that the thermic residual stress can be ignored in waterish grinding because of the cooling effect of the refrigerant, the main residual stress in the material surface is the compress residual stress, which is reduce with the feed speeds slow down. And that is proved by the X-ray diffraction methods.
     The different treatments to the material cause the different effect to the material performances. Anneal in different temperature and polishing process can reduce the residual stress effectively, After 800 degree Anneal the residual stress is the lowest. The result of the weibull modulus calculation shows that anneal and polishing process can change the crack size inside the material. the weibull modulus stand for the crack average size, the bigger of the crack average size, the lower of the flexural strength. While the compress residual stress can improve the strength, and residual stress and weibull modulus work together make the specimens which just ground without treatment have the biggest strength; the 800 degree anneal specimens second; the polishing specimens third and the 1000 degree anneal lowest.
     Analysis the surface situation of the ground specimens and judge the break-out way. The XPS measurement shows that the Si-O chemical bond is 31.3% in grind surface, Which is similar with the SiC material exposed in the air. This means that in the grinding process there is little oxidation occurrence. The anneal treatment have little effect to the specimens surface shape and roughness; while the polishing process can improve the surface greatly and reduce roughness. The main failure way of the specimens in the three point flexural process is brittle fracture including inter-granular and intra-granular fractured patterns.
引文
1 http://www.discoverychannel.com.cn/space/observing_space/telescopes/index.shtml
    2郝寅雷,赵文兴,翁志成.新型反射镜材料——碳化硅.宇航材料工艺. 2001, (4):11~14
    3 I. A. Palusinski, I. Ghozeil. Developing SiC for Optical System Applications. SPIE. 2004,5524:14~20
    4 M. Ohmukai. Observations of SiC Mirror Damage Induced by an Argon Excimer Laser. J. Appl. Phys. 1992, (31):696~699
    5 J. S. Goela, M. A. Pickering and L. M. Cohen. Fabrication of CVD SiC Thin Shells for X ray Optics Applications. SPIE. 1999, 3766:81~84
    6黄清伟,高积强,金志浩.反映烧结碳化硅材料研究进展.兵器材料科学与工程. 1999,22(1):49~53
    7 H. Kaneda. Optical Performance of the ASTRO~F Telescope at Cryogenic Temperatures. SPIE. 2003, 4850:230~241
    8 H. Zhou, C. R. Zhang and Y. B. Cao. Lightweight C/SiC Mirrors for Space Application. SPIE. 2006, 6148:1~6
    9韩容第.难加工材料切削加工.北京:机械工业出版社, 1996:210-222
    10部淳一郎,韩一昆译.振动切削.北京:机械工业出版社, 1985/06:93-124
    11韩荣第,王扬,张文生.现代机械加工新技术.电子工业出版社, 2003/04:73-74
    12辛志杰,马东,袁艺,祝锡晶.超声珩磨装置的设计.山西机械. 1999/S1
    13史兴宽,康仁科,卢海鹏.内圆超声振动磨削装置的设计.磨床与磨削. 1997 (1):52~54
    14向道辉.纳米氧化锆陶瓷的超声磨削机理研究.上海交通大学博士学位论文[D], 2004
    15张春河,林彬等. ELID超精密镜面磨削过程中磨削力变化规律的一些实验研究.超精密加工技术学术交流会论文集, 1997:40~45
    16潘立,谢伟东.陶瓷材料磨削加工的技术研究与发展现状.机械. 2003年第30卷第6期
    17 Zhang Bi, T D. Howes. Material-Removal mechanisms in Grinding Ceramics.Annals of the CIRP, 1994, 43 (1) : 305-308
    18 K. Kitajima, G. Q. Cai, KumagaiN. Study on Mechanism of Ceramics grinding. Annals of the CIRP, 1992, 41(1):367-371
    19邓朝晖,张璧,孙宗禹.陶瓷磨削的材料去除机理.金刚石与磨料磨具工程, 2002, 2 (128):47-50.
    20 W. G.arnecke. Basics of Parameter Selection in Grinding of Advanced Ceramics. Annals of the C IRP, 1995, 44 (1):283-290.
    21 B. Zhu, C. Guo, Sunderland J E, et al. Energy Partition to the Work-piece for Grinding of Ceramics. Annals of the C IRP, 1995, 44(1):267-271.
    22 K. Subramanian, S. Ramanath, Y. O. Matsuda. Precision Production grinding of Fine ceramics. Industrial Diamond Review, 1990, 50 (540):254-162
    23 D. W. Richerson. Modern Ceramics Engineering, Properties, Processing and Use in Design. Ed, Marced Dekker, Ine. New rork, EUA, 1992.
    24 H. H. K. Xu, S. Iahanmir, L k. Ives. Material Removal and Damage Formation Mechanisms in Grinding Silicon Nitride. J Mater Res, 1996, 11:1717-1724
    25 H. H. K. Xu, S. Jahamir. Micro structure and Material Removal in Scratching of Alumina, J Mater Sci, 1995, 30:2235-2247
    26于思远,林滨,林彬.国内外先进陶瓷材料加工技术的进展.金刚石与磨料磨具工程, 2001. 4 (124):36-39
    27 T. G. Bifano, T. A. Dow. Scattergood R. O. Ductile Regime Grinding: A New Technology for Machining Brittle Materials. A. SM. E. J. of Eng for Ind, 1991 (113):184-189.
    28 K. Inoue, Y. Sakai, K. Ono, Super High Speed Grinding for Ceramics with V trified Diamond Wheel. Int J Japan Soc PreEng, 1994, 28 (4):45-48.
    29 J. A. Kovch, P. J. Blau, S. Malkin, etal. A Feasibility Investigation of High Speed, Low Damage Grinding Process for Advanced Ceramics. 5th International Grinding Conference, 1993, (1):113-117.
    30 Z. W. Zhong, V. C. enkatesh Semi-Ductile Grinding and Polishing of Ophthalic A spherics and Spherics. Annals of the CIRP, 1995, 44 (1):339-342
    31柯宏发,张耀辉,赵燕.陶瓷半延展性磨削试验研究.金刚石与磨料磨具工程, 1998, 1(103):25-28.
    32 E. Macherauch, H. Wohlfahrt, U. Wolfstieg. Zurzweckm ?βigen definitionvon eigenspannungen. H?rterei-Techn. Mitt,1973,28:201-211.
    33张定铨.理化检验-物理分册, X射线应力测定基本知识.2007年第43卷第4期
    34裴光文,钟维烈,岳书彬,单晶、多晶和非晶物质的X射线衍射,山东:山东大学出版社, 1989
    35 D.拉达伊.译者熊第京,郑朝云,史耀武.焊接热效应温度场、残余应力、变形.北京:机械工业出版社, 1版(1997), ISBM7-111-05540-3
    36 D. J. Wails. ReseduaI Stresses in Machined Ceramic Surfaces. Am. Ceram. Soc, 1986, 69(1), 44~47
    37田欣利,徐燕申,林彬,于爱兵.陶瓷精密加工表面完整性的研究进展,中国机械工程, 1998,第9卷,第6期, 63-66
    38孙庆平等. ZrO2相变多晶体塑性变形局部化行为的实验研究,中国科学, 1994, No.4.
    39董海张,弘韬.测定工程陶瓷已加工表面残余应力的几种方法,磨床与磨削, 2000, (第1期), 72~74
    40田欣利.陶瓷磨削表面完整性理论与实验研究,天津大学博士论文, 1996
    41田欣利,张纾,徐燕申,林彬.工程陶瓷磨削过程对表面残余应力的影响研究.中国机械工程. 2000,(11)
    42王西彬,李相真.结构陶瓷磨削表面的残余应力金刚石磨料与工程1997-05-03
    43 E. Welle, S.Immelmann, W. Reimers. X-ray Residual Stress Analysis on Machined and Tempered HPSN-Ceramics Materials Science and Engineering. A238 (1997) 287–292
    44 H. T. Yang, L. Gao, R. Z. Yuan. etal. Effect of Residual Stress on the Flexural Strength of Ground Al2O3/TiCN Ceramics. Materials Chemistry and Physics 80 (2003) 305–308
    45 W. H. Tuan, J. C. Kuo. Contribution of Residual Stress to the Strength of Abrasive Ground Alumina. Journal of the European Ceramic Society 19 (1999) 1593-1597
    46 H. Wu, S. G. Roberts, B. Derby. Residual Stress and Subsurface Damage in Machined Alumina and Alumina/Silicon Carbide Nano-composite Ceramics. Acta Mater. 49 (2001) 507–517
    47王西彬,立相真.结构陶瓷磨削表面的残余应力.金刚石与磨料磨具工程,1997, (6):18-21
    48刘伟香,邓朝晖.工程陶瓷磨削表面残余应力的测试。现代制造工程,2005,(2):99-102
    49诸兴华等.磨削原理,机械工业出版社, 1988年06月:45-46
    50范敏霞等.用有限元法进行低温磨削钛合金温度场的研究金刚石与磨料磨具工程2002/04
    51 K. Xue, L. S. Niu, H. J. Shi. Structural Relaxation of Amorphous Silicon Carbide Thin Films in Thermal Annealing, Thin Solid Films. 2008, 516:3855~3861
    52 Y. S. Zheng, etal. Relationship between Flexural Strength and Surface Roughness for Hot-Pressed Si3N4 Self-Reinforced Ceramics. Journal oF the European Ceramic Society. 2002, 20:1345~1353
    53 B. Zhang, T. D. Howes, Surface Evaluation of Ground Ceramics, Annals of the CIRP. 1995, 44:263~266

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700