ZnO一维纳米材料的制备及其性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
氧化锌(ZnO)是一种重要的宽禁带半导体材料,室温下的带隙宽度为3.37eV,激子束缚能高达60 meV。近年来伴随着纳米材料的发展,ZnO一维纳米材料在紫外光电器件方面的巨大应用潜力引起了越来越多人的关注。本文针对ZnO纳米结构的研究热点,利用化学气相沉积(CVD)法制备ZnO一维纳米材料,研究实验参数对ZnO纳米结构形貌的影响,并对ZnO一维纳米阵列结构的生长机理、光学特性、压电效应和润湿性能进行了研究,具体研究内容如下:
     (1)研究了不同的氧流量和生长温度对ZnO纳米结构形貌的影响,并利用SEM、TEM、EDS等测试手段,分析了ZnO一维纳米阵列的生长机理,确定适合ZnO一维纳米棒阵列生长的制备参数,初步实现CVD法制备ZnO一维纳米阵列的可控生长;并在室温下获得ZnO一维纳米阵列强的紫外发光。
     (2)在Si(100)衬底上制备了微纳跨尺度结构的ZnO纳米薄膜,并对其光学特性进行了研究。结果表明:样品在室温下观察到强的紫外发射峰,没有观察到与杂质或缺陷相关的深能级发射。室温下的紫外发光归结为自由激子发射和自由载流子到施主(受主)的跃迁(EB=124.6 meV)及其声子伴线所形成的低能带尾的叠加。
     (3)运用原子力显微镜在接触模式下表征了结构疏密程度不同的ZnO纳米棒阵列结构的压电性能。研究结果表明随着纳米棒阵列之间的间距增加,输出的电压信号随之增加。并且对稀疏样品的压电原理和压电效率做出了分析和表征。
     (4)用接触角测量仪表征了不同表面形貌的ZnO薄膜表面的润湿性能。结果表明通过改变其表面形貌可以实现ZnO表面的润湿状态由疏水向超疏水转化,最后得到的致密的微纳复合结构ZnO表面的接触角高达168.2°。
Zinc oxide(ZnO) is an important wide band gap(Eg=3.37 eV) semiconductor material.Recently,one dimensional ZnO nanomaterials have attracted more and more attention due to potential applications in ultraviolet(UV) optoelectronic devices.In this thesis we synthesized one dimensional ZnO nanosturctures by a simple chemical vapor deposition method,and the influence of different prepared parameters on the surface morphology of ZnO film were studied.Besides that,the growth mechanisms, optic properties,piezoelectricity and wettability of ZnO nanorod arrays were also investigated.The details are listed below:
     Studied the influence of the temperature and oxygen pressure changed on the morphology of ZnO nanostructure.The results indicate that with the change of temperature and oxygen pressure,the morphology of ZnO nanostructure will change regularly.Base on this,we got the best prepared parameters for ZnO nanorod arrays.Growth mechanism of well-aligned ZnO nanorod was researched by taking SEM,TEM and EDS as test and analysis methods.Photoluminescence PL spectra of this well-aligned ZnO nanorod is consist of strong ultraviolet(UV) luminescence peak at 3.27 eV and visible luminescence at 2.47 eV.
     Micro-nano multi-scale ZnO nanostructures were synthesized by chemical vapor deposition method on Si(100) substrate.PL spectra at room temperature showed an intense near-band-gap ultraviolet(UV) emission peak,but no deep level emission related impurities or defects.Room temperature UV emission resulted from two optical transition,one related to the ZnO free excition and the other related to the free-to-bound(FB) transition of the free cawier.
     The piezoelectricity properties of ZnO nanorod arrays with different density were investigated by atomic force microscope tip in contact mode.The results show that Piezo response signal can be stronger with distance between ZnO nanorods increased.The piezoelectricity principles of ZnO nanorods with low density were also studied.
     The wettability of ZnO films with different surface morphology were investigated by contact angle apparatus.The results indicate that the contact angle on the surface of ZnO film can be changed by changing the surface morphology.
引文
[1]张德恒,王卿璞.新型半导体激光器—ZnO紫外激光器[J].物理,1999,30(12):741-744
    [2]Z K Tang,GKL Wong,P Yu,et al.Room-temperature ultraviolet laser emission from self-assembled ZnO microcrystallite thin films[J].Appl.Phys.Lett.,1998,72(27):3270-3272
    [3]P Yu,Z K Tang,G.KL Wong,et al.Ultraviolet spontaneous and stimulated emission from ZnO mietrocrystallite thin films at room temperature[J].Solid State Communications,1997,103(8),459-463
    [4]Y Liu,C r Coda,S Liang,et al.Ultraviolet detectors based on epitaxial ZnO films growth by MOCVD[J].J.Elec.Mater.,2000,29(1):60-63
    [5]S Liang,H Sheng,A Zuckzz,et al.ZnO Schottky ultraviolet photode-tectors.[J].J.Crystal Growth,2001,225:110
    [6]H Ohta,K Kawamura,M Hirano,et al.Current injection emission from a transparent p-n junction composed of p-SrCu2O2/n-ZnO[J].Appl.Phys.Lett.,2000,77(4):475
    [7]T Aoki,Y Hatanaka,D C Look,et al.ZnO diode fabricated by exci-mer-laser doping[J].Appl.Phys.Lett.,2000,76(22):3257-3259
    [8]D M Bagnall,Y F Chen,Z Zhu,et al.High temperature excitonic stimulated emission from ZnO epitaxial layers[J].Appl.Phys.Lett.,1998,73(8):1038
    [9]M S Arnold,P Avouris,Z W Pan,et al.Field-effect transistors based on single semiconducting oxide nanobelts[J].J.Phys.Chem.B,2003,107:659-663
    [10]H Y Bae,G M Choi.Electrical and reducing gas sensing properties of ZnO and ZnO-CuO thin films fabricated by spin coating method[J].Sensor&Actuators,1999,B55(1):47
    [11]K B Sundaram,A Khan.Characterization and optimization of zinc oxide films by r.f.magnetron sputtering[J].Thin Solid Films,1997,295:87
    [12]A Khan,M E Kordesch,et al.Synthesis of novel zinc oxide microphone-like microstructures[J].Mater.Lett.,2008,62(2):230-234
    [13]Z L Wang.Zinc oxide nanostructures:growth,properties and applications[J].Journal of Physics Condensed Matter,2004,16:829
    [14]X D Gao,X M Li,W D Yu.Flowerlike ZnO nanostructures via hexamethylenetetramine assisted thermolysis of zinc-ethylenediamine complex[J].J.Phys.Chem.B,2005,109(3):1155-1161
    [15]Q Ahsanulhap,A Umar,Y B Hahn.Growth of aligned ZnO nanorods and nanopencils on ZnO/Si in aqueous solution:growth mechanism and structural and optical properties[J].Nanotechnology,2007,18(11):115603-1-7
    [16]S Y Bae,H W Seo,H C Choi,et al.Heterostructures of ZnO nanorod with various one-dimensional nanostructure.[J].J.Phys.Chem B,2004,108(33):12318
    [17]张旭东,邢英杰,奚中和等.类单晶氧化锌纳米棒的制备与表征[J].真空科学与技术学报,2004,24(1):16
    [18]W Lee,M C Jeong,J M MYoung.Catalyst-free growth of ZnO nanowires by metal-organic chemical vapor deposition(MOCVD) and thermal evaporation[J].Acta.Matedalia,2004,52(13):3949-3957
    [19]H W Kim,N H Kim,J H Shim,et al.Nanorods and their structural characterization[J].J.Mater.Sci.-Mater.El,2005,16(1):13-15
    [20]Y Ishikawa,Y Shimizu,T Sasaki,et al.Preparation of zinc oxide nanorods using pulsed laser ablation in water media at high temperature.Journal of Colloid and Interface Science.2006,300:612-615
    [21]T Q Jia,M Baba,M Huang,et al.Femtosecondlaser-induced ZnSe nanowires on the surface of a ZnSe wafer in water[J].Solid State Communications.2007,141:635-638
    [22]J H Choy,E S Jang,J H Won,etal.Soft Solution Route to Directly Grown ZnO Nanorod Arrays on Si Wafer:Room Temperature Ultraviolet Laser[J].Adv.Mater.2003,15:1911-1914
    [23]Y H Tong,Y C Liu,C L Shao,et al.Structural and optical properties of ZnO nanotower bundles[J].Appl.Phys.Lett.2006,88:123111.
    [24]Y Tak,K Yong.Controlled growth of well-aligned ZnO nanorod array using a novel solution method.J.Phys.Chem.B,2005,109(41):19263
    [25]J Wu,S Liu.Catalyst-free growth and characterization of ZnO nanorods.J.Phys.Chem.B,2002,106(37):9546
    [26]Z W Pan,Z R Wang.Nanobelts of Semiconducting Oxides[J],Science,2001,291:1947
    [27]R S Wagner,W C Ellis.Vapor-liquid-solid mechanism of single crystal growth[J].Appl.Phys.Lett.,1964,4:89-90
    [28]Y Wu,P Yang.Direct observation of vapor-liquid-solid nanowire growth[J].J.Am.Chem.Soc.2001,123(13):3165-3166
    [29]D P Yu,Q Huang,Y Ding,et al.Amorphous silica nanowires:intensive blue light emitters[J].Appl.Phys.Lett.,1998,72(21):3076-3078
    [30]E F Kukovitsky,S G L VoV,N A Sainov.VLS-Growth of carbon nanotubes from the vapor[J].Chemical Physics Letters,2000,317:65-70
    [31]M H Huang,Y Y Wu,H Feick,et al.Catalytic growth of zinc oxide nanowires by vapor transport[J].Adv.Mater.,2001,13:113-116
    [32]M H Huang,S Mao,H Feick,et al.Room-Temperature Ultraviolet Nanowire Nanolasers[J].Science,2001,292:1897-1899
    [33]S Y Li,C Y Lee,T Y Tseng,et al.Copper-catalyzed ZnO nanowires on silicon(100) grown by vapor-liquid-solid process[J].Journal of crystal growth,2003,247:357-362
    [34]X Q Meng,D Z Shen,J Y Zhang,et al.The structural and optical properties of ZnO nanorod arrays[J].Solid State Communications,2005,04(15):14
    [35]B D Yao,Y F Chan,N Wang.Formation of ZnO nanostructures by a simple ways of thermal evaporation[J].Appl.Phys.Lett.,2002,81(4):757-759
    [36]Z W Pan,Z R Dai,Z L Wang.Nanobelts of semiconducting oxides[J].Science,2001,291(5510):1947-1949
    [37]X Y Kong,Y Ding,R Yang,et al.Single-crystal nanorings formed by epitaxial self-coiling of polar nanobelts[J].Science,2004,303(5662):1348-1351
    [38]P X Gao,Y Ding,W J Mai,et al.Conversion of zinc oxide nanobelts supedattice-structured nanohelices[J].Science,2005,309(5741):1700-1704
    [39]Z L Wang,J H Song.Piezoelectric Nanogenerators Based on Zinc Oxide Nanowire Arrays[J].Science,2006,312:242-245
    [40]Y W Wang,L D Zhang,G Z Wang,et al.Catalytic growth of semiconducting zinc oxide nanowires and their photoluminescence properties[J].Journal of crystal growth.2002,234:171-175
    [41]T Y Kim,J Y Kim,S H Lee,et al.Characterization of ZnO needle-shapednanostructures grown on NiO catalyst-coated Si substrates[J].Synthetic metals,2004,144:61-68
    [42]程和,李燕,王锦春等.ZnO纳米线的合成与生长机理[J].发光学报,2006,27(6):991-993
    [43]G Q Zhang,A Nakamura,T Aoki,et al.Au-assisted growth approach for vertically aligned ZnO nanowires on Si substrate[J].Appl.Phys.Lett.,2006,89:113112(1-3)
    [44]Y.Wu,P.Yang,Direct observation of vapor-liquid-solid nanowire growth[J].J.Am.Chem.Soc.2001,123(13):3165-3166
    [45]S W Kim,S Fujita.ZnO nanowires with high aspect ratios grown by metalorganic chemical vapor deposition using gold nanoparticles[J].Appl.Phys.Lett.2005,86:153119
    [46]Y J Li,F B Martin,R Anton,et al.Au-catalyzed Growth Processes and Luminescence Properties of ZnO Nanopillars on Si[J].Journal of Applied Physics,2006,99(5):054307-1-8
    [47]唐斌,邓宏,税正伟等.CVD法制备高质量ZnO纳米线及生长机理[J].人工晶体学报.2007,36(2):293-296
    [48]N Park,G B Han,J D Lee,et al.The Growth of ZnO Nano-wire by A Thermal Evaporation Method with Very Small Amount of Oxygen[J].Curr.Appl.Phys.,2006,6:176
    [49]T Y Kima,J Y Kimb,S H Lee,et al.Characterization of ZnO Needle-shaped Nanostructures Grown on NiO Catalyst-coated Si Substrates[J].Synthetic Met.,2004,144:61-68
    [50]R C Wang,C P Liu,J L Huang,et al.ZnO Hexagonal Arrays of Nanowires Grown on Nanorods[J].Appl.Phys.Lett,2005,86:255104
    [51]K Vanheusden,W L Warren,C H Sesger,et al.Mechanisms behind green photoluminescence in ZnO phosphor powders[J].J.Appl.Phys.1996,79:7983-7990
    [52]B D Yao,Y F Chan,N Wang.Formation of ZnO nanostructures by a simple way of thermal evaporation[J].Appl.Phys.Lett.,2002,81:757-759
    [53]张喜田,肖芝燕等.高质量纳米ZnO薄膜的光致发光特性研究[J].物理学报,2003,52(03):302-305
    [54]X Q Meng,D Z Shen,J Y zhang,et al.Photoluminescence properties of catalyst-free growth of needle-like ZnO nanowires[J].Nanotechnology,2005,16:609
    [55]X Q Meng,D X Zhao,D Z Shen,et al.ZnO nanorod arrays grown under different pressures and their photoluminescence properties[J].Journal of Crystal Growth,2007,122-123:766-769
    [56]W Y Liang,A D Yoffe.Transmission Spectra of ZnOSingle Crystals[J].Phys.Rev.Lett.,1968,2059-2062
    [57]S W Jung,W L Park,H D Cheong,et al.Time-resolved and time-integrated photoluminescence in ZnO epilayers grown on Al2O3(0001) by metalorganic vapor phase epitaxy[J].Appl.Phys.Lett.,2002,80(11):1924-1926
    [58]B D Bartolo,R Powell.Phonons and Resonances in Solids[M].Wdey:New York,1976,p56
    [59]K A Dhese,P Devine,D E Ashenford,et al.Photoluminescence and p-type conductivity in CdTe:N grown by molecular beam epitaxy[J].Journal of Applied Physics,76(9):5423-5428
    [60]Q X Zhao,M Willander.Optical recombination of ZnO nanowires grown on sapphire and Si substrates[J].Appl.Phys.Lett.2003,83:165
    [61]A Lafuma,D Quere.Superhydrophobic states[J].Nature Materials,2003,2:457-460
    [62]L Feng,S Li,Y Li,et al.Super-hydrophobic Surfaces:From Natural to Artificial[J].Advanced Materials,2002,14(2):1857-1860
    [63]Z -Z Gu,H Uetsuka,K Takahashi,et al.Structural Color and the Lotus Effect[J].Angew.Chem.Int.Ed.,2003,42(8):894-897
    [64]G S Watson,J A Watson.Natural nano-structures on insects—possible functions of ordered arrays characterized by atomic force microscopy[J].Applied Surface Science,2004,235:139-144
    [65]C Nenhuis,W Barthlott.Characterization and Distribution of Water-repellent,Self-cleaning Plant Surfaces[J].Annals of Botany,1997,79:667-677
    [66]W Barthlott,C Neinhuis.Purity of the sacred lotus,or escape from contamination in biological surfaces[J].Planta,1997,202:1-8
    [67]N A Patankar.Mimicking the Lotus Effect:Influence of Double Roughness Structures and Slender Pillars[J].Langmuir,2004,20:8209-8213
    [68]A Marmur.The Lotus Effect:Superhydrophobicity and Metastability[J].Langmuir,2004,20:3517-3519
    [69]T Young.Experiments and calculations relative to physical optics[C].The 1803 Bakerian Lecture[A].Phil.Trans.Roy.Soc.Lond,1804,94:1-16
    [70]A W Adamson,A P Gast.Physical chemistry of surfaces(6thed)[M].New York:John Wiley &Sons,1997
    [71]D(o|¨)ner.,T J McCarthy.Ultrahydrophobic surfaces.Effects of topography length scales on wettability[J].Langmuir,2000,16:7777-7782
    [72]N A.Patankar.On the Modeling of Hydrophobic Contact Angles on Rough Surfaces[J].Langmuir,2003,19:1249-1253
    [73]R N Wenzel.Resistance of solid surfaces to wetting by water[J].Ind.Eng.Chem.,1936,28(8):988-994
    [74]R.N Wenzel.Surface roughness and contact angle(letter)[J].Phys.Colloid Chem,1949,53:1466-1467
    [75]A B D Cassie,S Baxter.Wettability of porous surfaces[J].Trans.Faraday Soc,1944,40:546-551
    [76]A B D Cassie.Contact angles[J].Discuss.Faraday Soc.,1948,3:11-16
    [77]X D Wu,L J Zheng,D Wu.Fabrication of Superhydrophobic Surfaces from Microstructured ZnO-Based Surfaces via a Wet-Chemical Route[J].Langmuir,2005,21:2665-2667
    [78]Y H Yang,Z Y Li,B Wang,et al.Self-assembled ZnO agave-like nanowires and anomalous superhydrophobicity[J].J.Phys.:Condens.Matter.,2005,17:5441-5446

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700