碳同素异构体碳—碳键弛豫动力学的计量拉曼谱研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
碳材料是当今科学领域中一种极具研究意义的材料。随着科学研究的飞速发展,碳同素异构体的新型原子结构不断被发现、研究和应用,如富勒烯、碳纳米管、豆荚状富勒烯(CNB)和单/多层石墨烯。这些碳同素异构体的奇特物理性能引发了大量的科学研究工作。令人感到吃惊的是,几乎所有的碳同素异构体的拉曼光谱都只有少数几个十分显著的峰。然而这些谱峰的位置、形状和峰值的大小以及振幅的强弱,都携带着大量的碳材料内部原子和电子结构信息,是研究碳材料各种器件性能的重要依据。本文采用最近发展的键弛豫理论和局域键平均近似方法,对碳同素异构体中几种典型结构的拉曼光谱图进行了理论分析和计算研究,为碳材料电子器件特别是纳米元器件的设计和应用,提供了理论依据和指导。本论文的主要研究内容如下:
     (1)介绍了键弛豫理论和局域键平均近似方法。从化学键的形成、断裂、弛豫和振动的角度出发,建立了键参数与力、热、尺寸之间的函数关系式。
     (2)研究了碳同素异构体(石墨、金刚石、石墨烯、单壁碳纳米管)拉曼光谱的压强效应。从原子化学键的角度,将碳同素异构体的拉曼光谱随着压强增加而发生蓝移的现象,用统一的模型进行分析。同时定量了碳同素异构体的体模量、压缩系数和能量密度。
     (3)研究了碳同素异构体(石墨、金刚石、石墨烯、单壁碳纳米管、富勒烯、CNB)拉曼光谱的温度效应。用统一的理论模型分析并解释了温度增加时碳同素异构体拉曼光谱的红移现象。同时定量了碳同素异构体的德拜温度和模式结合能。
     (4)建立了单/多层石墨烯拉曼频移与键参数(配位数、键长、键能和约化质量)的函数关系式。澄清了石墨烯层数增加时,拉曼光谱D模和2D模发生红移而G模发生蓝移的起因:D模和2D模受到最近邻所有碳原子的影响而G模仅仅由成键原子控制。得到了石墨烯层数与其有效配位数一一对应的函数表达式。
     (5)研究了单层石墨烯拉曼光谱的应变效应:拉力作用使得碳-碳键键长伸长、键能减弱,从而造成拉曼声子软化;拉伸的方向与碳-碳键之间角度的变化改变了石墨烯碳-碳键的几何对称性,从而导致了声子振动频率产生劈裂。
     总之,本论文基于键弛豫理论和局域键平均近似方法对碳同素异构体拉曼光谱的压强、温度、尺寸及应变效应进行了研究。揭示了这些效应产生的内在物理机制;建立了统一描述这些效应的理论模型;定量了碳同素异构体的重要物理性能参量;系统地研究了碳同素异构体碳-碳键的弛豫过程。
&arbon material is the one that has significant meaning in toda’s scientificresearch.With the rapid development of scientific research, the new structure of thecarbon allotropes are discovered, studied and applied continuously, for instance,fullerenes(C60), carbon nanotubes(CNT), carbon nanobuds(CNBs) andsingle/multilayer graphene. These carbon allotropes peculiar physical performanceattracted a tremendous amount of scientific work. The surprising is that almost all ofthe Raman spectrum of the carbon allotropes are only a few significant peaks. Thesespectral peak contains a lot of informations about atomic and electronic structure ofcarbon materials in the shape size, the amplitude spectral peak intensity, and the peakposition, even though these spectrums looks like be simple. These informations arethe important basis and dependence of the property study of various carbon materialdevices. The Raman spectra of some typical structures of carbon allotropes areanalysed and calculated based on the bond order–length–strength (BOLS) correlationtheory and the local bond average (LBA) approach. This work will provide theoreticalfoundation and direction for the design and application of carbon electron deviceespecially the device of nanoscale. This major content of the paper are as following:(1) Introduce the BOLS theory and LBA approach.)rom the chemical bond’sformation, fracture, relaxation and vibration, an function relation between the atomicbonds parameters and mechanics, thermology and size are set up.(2) C-allotropes pressure effect of Raman spectra has been studied. Atomisticorigin of the mechanically stiffened of C-allotropes Raman spectra in unified model.At the same time, quantitate the information of the bond length, bond energy, bindingenergy density, and the compressibility of the C-C bond in each phase.(3) C-allotropes temperature effect of Raman spectra has been studied. Atomisticorigin of the thermally softened of carbon allotropes Raman optical phonons inuniform modeling. At the same time, quantitative the information of the modecohesive energy and Debye temperature.(4) We have formulated the number-of-layer resolved Raman shifts of graphene. Itis found that the primary D mode and the secondary2D mode are dominated by theinteraction between a specific atom and its nearest neighbors while the G mode by thedimer interaction, and therefore red shift happens to the D/2D phonons and blue shiftto the G mode upon the number-of-layer is reduced. We obtain the relationship between the layer-graphene and effective coordination number.
     (5) The strain effect of monolayer graphene Raman spectra has been studied. Theelongation and weakening of the C-C bond originates the phonon softening and themismatch between the uniaxial strain and the C3vbond geometry results in the phononband splitting.
     Above all, Raman phonon relaxation dynamics in carbon allotropes includinggraphene, carbon nanotube, C60, carbon nanobud, graphite, and diamond has beenstudied in terms of the bond order-length-strength (BOLS) correlation and the theoryof BOLS theory and LBA approach. Reveals the physical origin, Established auniform theoretical model, Quantify the C-allotropes important parameters andsystematically studied the relaxation process of the C-C bonds.
引文
[1] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V.Grigorieva, A. A. Firsov. Electric Field Effect in Atomically Thin Carbon Films [J]. Science,2004,306(5696):666-669.
    [2] D. L. Rousseau, R. P. Bauman, S. P. S. Porto. Normal mode determination in crystals [J].Journal of Raman Spectroscopy,1981,10(1):253-290.
    [3] M. Cardona, P. Y. Yu. Fundamentals of semiconductors springer [J]. Springer,1996,30(2)5432-5440.
    [4] E. B. Wilson, J. C. Decius, P. C. Cross. Molecular vibrations [J]. New York;Dover,1980,12(3)3673-3682.
    [5] O. Dubay, G. Kresse. Accurate density functional calculations for the phonon dispersionrelations of graphite layer and carbon nanotubes [J]. Physical Review B,2003,67(3):035401.
    [6] R. Al-Jishi, G. Dresselhaus. Lattice-dynamical model for graphite [J]. Physical Review B,1982,26(8):4514-4522.
    [7] A. Grüneis, R. Saito, T. Kimura, L. G. Can ado, M. A. Pimenta, A. Jorio, A. G. Souza Filho, G.Dresselhaus, M. S. Dresselhaus. Determination of two-dimensional phonon dispersionrelation of graphite by Raman spectroscopy [J]. Physical Review B,2002,65(15):155405-155410.
    [8] C. Mapelli, C. Castiglioni, G. Zerbi, K. Müllen. Common force field for graphite andpolycyclic aromatic hydrocarbons [J]. Physical Review B,1999,60(18):12710-12725.
    [9] J. Maultzsch, S. Reich, U. Schlecht, C. Thomsen. High-Energy Phonon Branches of anIndividual Metallic Carbon Nanotube [J]. Physical Review Letters,2003,91(8):087402-087411.
    [10] F. Tuinstra, J. L. Koenig. Raman Spectrum of Graphite [J]. The Journal of Chemical Physics,1970,53(3):1126-1130.
    [11] R. J. Nemanich, G. Lucovsky, S. A. Solin. Infrared active optical vibrations of graphite [J].Solid State Communications,1977,23(2):117-120.
    [12] R. Nicklow, N. Wakabayashi, H. G. Smith. Lattice Dynamics of Pyrolytic Graphite [J].Physical Review B,1972,5(12):4951-4962.
    [13] O. L. Blakslee, D. G. Proctor, E. J. Seldin, G. B. Spence, T. Weng. Elastic Constants ofCompression-Annealed Pyrolytic Graphite [J]. Journal of Applied Physics,1970,41(8):3373-3382.
    [14] E. J. Seldin, C. W. Nezbeda. Elastic Constants and Electron-Microscope Observations ofNeutron-Irradiated Compression-Annealed Pyrolytic and Single-Crystal Graphite [J]. Journalof Applied Physics,1970,41(8):3389-3400.
    [15] J. A. Young, J. U. Koppel. Phonon Spectrum of Graphite [J]. The Journal of ChemicalPhysics,1965,42(1):357-364.
    [16] M. Hanfland, H. Beister, K. Syassen. Graphite under pressure: Equation of state andfirst-order Raman modes [J]. Physical Review B,1989,39(17):12598-12603.
    [17] R. W. Lynch, H. G. Drickamer. Effect of High Pressure on the Lattice Parameters of Diamond,Graphite, and Hexagonal Boron Nitride [J]. The Journal of Chemical Physics,1966,44(1):181-184.
    [18] I. Calizo, F. Miao, W. Bao, C. N. Lau, A. A. Balandin. Variable temperature Ramanmicroscopy as a nanometrology tool for graphene layers and graphene-based devices [J].Applied Physics Letters,2007,91(7):071913-071916.
    [19] A. Jayaraman. Diamond anvil cell and high-pressure physical investigations [J]. Reviews ofModern Physics,1983,55(1):65-108.
    [20] J. R. Chelikowsky, S. G. Louie. First-principles linear combination of atomic orbitals methodfor the cohesive and structural properties of solids: Application to diamond [J]. PhysicalReview B,1984,29(6):3470-3481.
    [21] M. T. Yin. Si-III (BC-8) crystal phase of Si and C: Structural properties, phase stabilities, andphase transitions [J]. Physical Review B,1984,30(4):1773-1776.
    [22] R. Biswas, R. M. Martin, R. J. Needs, O. H. Nielsen. Complex tetrahedral structures ofsilicon and carbon under pressure [J]. Physical Review B,1984,30(6):3210-3213.
    [23] H. Boppart, J. van Straaten, I. F. Silvera. Raman spectra of diamond at high pressures [J].Physical Review B,1985,32(2):1423-1425.
    [24] M. S. Liu, L. A. Bursill, S. Prawer, R. Beserman. Temperature dependence of the first-orderRaman phonon line of diamond [J]. Physical Review B,2000,61(5):3391-3395.
    [25] S. A. Solin, A. K. Ramdas. Raman Spectrum of Diamond [J]. Physical Review B,1970,1(4):1687-1698.
    [26] E. Anastassakis, H. C. Hwang, C. H. Perry. Temperature Dependence of theLong-Wavelength Optical Phonons in Diamond [J]. Physical Review B,1971,4(8):2493-2497.
    [27] W. J. Borer, S. S. Mitra, K. V. Namjoshi. Line shape and temperature dependence of the firstorder Raman spectrum of diamond [J]. Solid State Communications,1971,9(16):1377-1381.
    [28] H. Herchen, M. A. Cappelli. First-order Raman spectrum of diamond at high temperatures [J].Physical Review B,1991,43(14):11740-11744.
    [29] E. S. Zouboulis, M. Grimsditch. Raman scattering in diamond up to1900K [J]. PhysicalReview B,1991,43(15):12490-12493.
    [30] J. B. Cui, K. Amtmann, J. Ristein, L. Ley. Noncontact temperature measurements of diamondby Raman scattering spectroscopy [J]. Journal of Applied Physics,1998,83(12):7929-7933.
    [31] P. G. Klemens. Anharmonic Decay of Optical Phonons [J]. Physical Review,1966,148(2):845-848.
    [32] A. Debernardi, S. Baroni, E. Molinari. Anharmonic Phonon Lifetimes in Semiconductorsfrom Density-Functional Perturbation Theory [J]. Physical Review Letters,1995,75(9):1819-1822.
    [33] T. R. Hart, R. L. Aggarwal, B. Lax. Temperature Dependence of Raman Scattering in Silicon[J]. Physical Review B,1970,1(2):638-642.
    [34] M. Balkanski, R. F. Wallis, E. Haro. Anharmonic effects in light scattering due to opticalphonons in silicon [J]. Physical Review B,1983,28(4):1928-1934.
    [35] J. Menéndez, M. Cardona. Temperature dependence of the first-order Raman scattering byphonons in6i,*e, and α-Sn: Anharmonic effects [J]. Physical Review B,1984,29(4):2051-2059.
    [36] J. R. Shealy, G. W. Wicks. Investigation by Raman scattering of the properties of III-Vcompound semiconductors at high temperature [J]. Applied Physics Letters,1987,50(17):1173-1175.
    [37] M. S. Liu, L. A. Bursill, S. Prawer, K. W. Nugent, Y. Z. Tong, G. Y. Zhang. Temperaturedependence of Raman scattering in single crystal GaN films [J]. Applied Physics Letters,1999,74(21):3125-3127.
    [38] R. Saito, G. Dresselhaus, M. Dresselhaus. Physical Properties of Carbon Nanotubes [J].Imperial College Press London,1998.
    [39] A. Merlen, N. Bendiab, P. Toulemonde, A. Aouizerat, A. San Miguel, J. L. Sauvajol, G.Montagnac, H. Cardon, P. Petit. Resonant Raman spectroscopy of single-wall carbonnanotubes under pressure [J]. Physical Review B,2005,72(3):035409-035415.
    [40] T. L. Schindler, Y. K. Vohra. A micro-Raman investigation of high-pressure quenchedgraphite [J]. Journal of Physics: Condensed Matter,1995,7(47):L637.
    [41] Shohei Chiashi, Yoichi Murakami, Yuhei Miyauchi, S. Maruyama. Temperature Dependenceof Raman Scattering from Single-Walled Carbon Nanotubes:Undefined Radial BreathingMode Peaks at High Temperatures [J]. Journal of Applied Physics,2008,47(4):2010-2015.
    [42] P. V. Huong, R. Cavagnat, P. M. Ajayan, O. Stephan. Temperature-dependent vibrationalspectra of carbon nanotubes [J]. Physical Review B,1995,51(15):10048-10051.
    [43] F. Huang, K. T. Yue, P. Tan, S.-L. Zhang, Z. Shi, X. Zhou, Z. Gu. Temperature dependence ofthe Raman spectra of carbon nanotubes [J]. Journal of Applied Physics,1998,84(7):4022-4024.
    [44] H. D. Li, K. T. Yue, Z. L. Lian, Y. Zhan, L. X. Zhou, S. L. Zhang, Z. J. Shi, Z. N. Gu, B. B.Liu, R. S. Yang, H. B. Yang, G. T. Zou, Y. Zhang, S. Iijima. Temperature dependence of theRaman spectra of single-wall carbon nanotubes [J]. Applied Physics Letters,2000,76(15):2053-2055.
    [45] A. K. Geim, K. S. Novoselov. The rise of graphene [J]. Nat Mater,2007,6(3):183-191.
    [46] B. Tang, G. X. Hu, H. Y. Gao. Raman Spectroscopic Characterization of Graphene [J].Applied Spectroscopy Reviews,2010,45(5):369-407.
    [47] L. M. Malard, M. A. Pimenta, G. Dresselhaus, M. S. Dresselhaus. Raman spectroscopy ingraphene [J]. Physics Reports-Review Section of Physics Letters,2009,473(5-6):51-87.
    [48] Y. H. Wu, T. Yu, Z. X. Shen. Two-dimensional carbon nanostructures: Fundamental properties,synthesis, characterization, and potential applications [J]. Journal of Applied Physics,2010,108(7):071301-38.
    [49] Y. F. Hao, Y. Y. Wang, L. Wang, Z. H. Ni, Z. Q. Wang, R. Wang, C. K. Koo, Z. X. Shen, J. T.L. Thong. Probing Layer Number and Stacking Order of Few-Layer Graphene by RamanSpectroscopy [J]. Small,2010,6(2):195-200.
    [50] H. Wang, Y. Wang, X. Cao, M. Feng, G. Lan. Vibrational properties of graphene and graphenelayers [J]. Journal of Raman spectrosc.,2009,40(12):1791-1796.
    [51] A. Gupta, G. Chen, P. Joshi, S. Tadigadapa, P. C. Eklund. Raman Scattering fromHigh-Frequency Phonons in Supported n-Graphene Layer Films [J]. Nano Letter,2006,6(12):2667-2673.
    [52] D. Graf, F. Molitor, K. Ensslin, C. Stampfer, A. Jungen, C. Hierold, L. Wirtz. Spatiallyresolved raman spectroscopy of single-and few-layer graphene [J]. Nano Lett.,2007,7(2):238-242.
    [53] T. Yu, Z. H. Ni, C. L. Du, Y. M. You, Y. Y. Wang, Z. X. Shen. Raman mapping investigationof graphene on transparent flexible substrate: The strain effect [J]. Journal of PhysicalChemistry C,2008,112(33):12602-12605.
    [54] M. Huang, H. Yan, T. F. Heinz, J. Hone. Probing Strain-Induced Electronic Structure Changein Graphene by Raman Spectroscopy [J]. Nano Letters,2010,10(10):4074-4079.
    [55] T. M. G. Mohiuddin, A. Lombardo, R. R. Nair, A. Bonetti, G. Savini, R. Jalil, N. Bonini, D. M.Basko, C. Galiotis, N. Marzari, K. S. Novoselov, A. K. Geim, A. C. Ferrari. Uniaxial strain ingraphene by Raman spectroscopy: G peak splitting, Gruneisen parameters, and sampleorientation [J]. Physical Review B,2009,79(20):205433.
    [56] I. Calizo, S. Ghosh, W. Bao, F. Miao, C. Ning Lau, A. A. Balandin. Raman nanometrology ofgraphene: Temperature and substrate effects [J]. Solid State Communications,2009,149(27-28):1132-1135.
    [57] Y. M. You, Z. H. Ni, T. Yu, Z. X. Shen. Edge chirality determination of graphene by Ramanspectroscopy [J]. Applied Physics Letters,2008,93(16):163112-163116.
    [58] B. Krauss, P. t. Nemes-Incze, V. Skakalova, L. s. P. Biro, K. v. Klitzing, J. H. Smet. RamanScattering at Pure Graphene Zigzag Edges [J]. Nano Letters,2010,87(10):3425-3430.$...*pta,7.-.5ssin,+.5.*ti rre, P. C. Eklund. Probing Graphene Edges via RamanScattering [J]. Acs Nano,2008,3(1):45-52.
    [60] E. H. Martins Ferreira, M. V. O. Moutinho, F. Stavale, M. M. Lucchese, R. B. Capaz, C. A.Achete, A. Jorio. Evolution of the Raman spectra from single-, few-, and many-layergraphene with increasing disorder [J]. Physical Review B,2010,82(12):125429.
    [61] S. p. Berciaud, S. Ryu, L. E. Brus, T. F. Heinz. Probing the Intrinsic Properties of ExfoliatedGraphene: Raman Spectroscopy of Free-Standing Monolayers [J]. Nano Letters,2008,9(1):346-352.
    [62] Z. Q. Luo, T. Yu, K. J. Kim, Z. H. Ni, Y. M. You, S. Lim, Z. X. Shen, S. Z. Wang, J. Y. Lin.Thickness-Dependent Reversible Hydrogenation of Graphene Layers [J]. Acs Nano,2009,3(7):1781-1788.
    [63] L. G. Cancado, M. A. Pimenta, B. R. A. Neves, M. S. S. Dantas, A. Jorio. Influence of theatomic structure on the Raman spectra of graphite edges [J]. Physical Review Letters,2004,93(24):247401-247408.
    [64] M. A. Pimenta, G. Dresselhaus, M. S. Dresselhaus, L. G. Cancado, A. Jorio, R. Saito.Studying disorder in graphite-based systems by Raman spectroscopy [J]. Physical ChemistryChemical Physics,2007,9(11):1276-1290.
    [65] M. S. Dresselhaus, A. Jorio, R. Saito. Characterizing Graphene, Graphite, and CarbonNanotubes by Raman Spectroscopy[M] Annual Review of Condensed Matter Physics,2010,51(1):89-108.
    [66] M. Y. Huang, H. G. Yan, C. Y. Chen, D. H. Song, T. F. Heinz, J. Hone. Phonon softening andcrystallographic orientation of strained graphene studied by Raman spectroscopy [J].Proceedings of the National Academy of Sciences of the United States of America,2009,106(18):7304-7308.
    [67] Z. H. Ni, T. Yu, Y. H. Lu, Y. Y. Wang, Y. P. Feng, Z. X. Shen. Uniaxial Strain on Graphene:Raman Spectroscopy Study and Band-Gap Opening [J]. Acs Nano,2008,2(11):2301-2305.
    [68] K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J.-H. Ahn, P. Kim, J.-Y. Choi,B. H. Hong. Large-scale pattern growth of graphene films for stretchable transparentelectrodes [J]. Nature,2009,457(7230):706-710.
    [69] V. M. Pereira, A. H. Castro Neto.6train (ngineering of*raphene’s (lectronic6tr ct re-.Physical Review Letters,2009,103(4):046801-04686.
    [70] M. Hytch, F. Houdellier, F. Hue, E. Snoeck. Nanoscale holographic interferometry for strainmeasurements in electronic devices [J]. Nature,2008,453(7198):1086-1089.
    [71] A. Ourmazd. Nanoelectronics: The strain of it all [J]. Nat Nano,2008,3(7):381-382.
    [72] G. Gui, J. Li, J. Zhong. Band structure engineering of graphene by strain: First-principlescalculations [J]. Physical Review B,2008,78(7):075435-075440.
    [73] S. M. Sharma, S. Karmakar, S. K. Sikka, P. V. Teredesai, A. K. Sood, A. Govindaraj, C. N. R.Rao. Pressure-induced phase transformation and structural resilience of single-wall carbonnanotube bundles [J]. Physical Review B,2001,63(20):205417-205423.
    [74] U. D. Venkateswaran, A. M. Rao, E. Richter, M. Menon, A. Rinzler, R. E. Smalley, P. C.Eklund. Probing the single-wall carbon nanotube bundle: Raman scattering under highpressure [J]. Physical Review B,1999,59(16):10928-10934.
    [75] S. Lebedkin, K. Arnold, O. Kiowski, F. Hennrich, M. M. Kappes. Raman study ofindividually dispersed single-walled carbon nanotubes under pressure [J]. Physical Review B,2006,73(9):094109-094114.
    [76] J. R. Wood, Q. Zhao, M. D. Frogley, E. R. Meurs, A. D. Prins, T. Peijs, D. J. Dunstan, H. D.Wagner. Carbon nanotubes: From molecular to macroscopic sensors [J]. Physical Review B,2000,62(11):7571-7575.
    [77] I. Loa. Raman spectroscopy on carbon nanotubes at high pressure [J]. Journal of RamanSpectroscopy,2003,34(7-8):611-627.
    [78] C. Liu, Y. Y. Fan, M. Liu, H. T. Cong, H. M. Cheng, M. S. Dresselhaus. Hydrogen Storage inSingle-Walled Carbon Nanotubes at Room Temperature [J]. Science,1999,286(5442):1127-1129.
    [79] B. Weinstein, R. Zallen. in Light Scattering in Solids [J]. Springer,1984,4.
    [80] K. Nakada, M. Fujita, G. Dresselhaus, M. S. Dresselhaus. Edge state in graphene ribbons:Nanometer size effect and edge shape dependence [J]. Physical Review B,1996,54(24):17954-17961.
    [81] L. Brey, H. A. Fertig. Electronic states of graphene nanoribbons studied with the Diracequation [J]. Physical Review B,2006,73(23):235411-235414.
    [82] Y.-W. Son, M. L. Cohen, S. G. Louie. Energy Gaps in Graphene Nanoribbons [J]. PhysicalReview Letters,2006,97(21):216803.
    [83] C. Ribeiro, E. J. H. Lee, T. R. Giraldi, R. Aguiar, E. Longo, E. R. Leite. In situ orientedcrystal growth in a ceramic nanostructured system [J]. Journal of Applied Physics,2005,97(2):024313-024317.
    [84] L. Zhang, Z. Jia, L. Huang, S.2’%rien,=.<./ow-Temperature Raman Spectroscopy ofIndividual Single-Wall Carbon Nanotubes and Single-Layer Graphene [J]. The Journal ofPhysical Chemistry C,2008,112(36):13893-13900.
    [85] H. W. Kroto, J. R. Heath, S. C. O'Brien, R. F. Curl, S. R. E. C60: Buckminsterfullerene [J].Nature,1985,318(6042):162-163.
    [86] S. Iijima. Helical microtubules of graphitic carbon [J]. Nature,1991,354(6348):56-58.
    [87] A. Jorio, R. Saito, J. H. Hafner, C. M. Lieber, M. Hunter, T. McClure, G. Dresselhaus, M. S.Dresselhaus. Structural (n, m) Determination of Isolated Single-Wall Carbon Nanotubes byResonant Raman Scattering [J]. Physical Review Letters,2001,86(6):1118.
    [88] V. M. Goldschmidt. Crystal structure and chemical correlation [J]. Berichte Der Deutsc henChemischen Gesellschaft,1927,60:1263-1296.
    [89] L. Pauling. Atomic radii and interatomic distances in metals [J]. Journal of AmericanChemistry Society,1947,69(3):542-553.
    [90] P. J. Feibelman. Relaxation of hcp(0001) surfaces: A chemical view [J]. Physical Review B,1996,53(20):13740-13746.
    [91] C. Q. Sun. Size dependence of nanostructures: Impact of bond order deficiency [J]. Prog.Solid State Chemistry,2007,35(1):1-159.
    [92] C. Q. Sun. Thermo-mechanical behavior of low-dimensional systems: The local bond averageapproach [J]. Progress in Material Science,2009,54(2):179-307.
    [93] C. Q. Sun, H. L. Bai, B. K. Tay, S. Li, E. Y. Jiang. Dimension, Strength, and Chemical andThermal Stability of a Single C C Bond in Carbon Nanotubes [J]. Journal of PhysicalChemistry B,2003,107(31):7544-7546.
    [94] X. Zhang, J.-l. Kuo, M. Gu, P. Bai, C. Q. Sun. Graphene nanoribbon band-gap expansion:Broken-bond-induced edge strain and quantum entrapment [J]. Nanoscale,2010,2(10):2160-2163.
    [95] X. J. Liu, J. W. Li, Z. F. Zhou, L. W. Yang, Z. S. Ma, G. F. Xie, Y. Pan, C. Q. Sun.Size-induced elastic stiffening of ZnO nanostructures: Skin-depth energy pinning [J]. AppliedPhysics Letters,2009,94:131902.
    [96] C. Q. Sun, Y. Wang, B. K. Tay, S. Li, H. Huang, Y. B. Zhang. Correlation between the meltingpoint of a nanosolid and the cohesive energy of a surface atom [J]. Journal of PhysicalChemistry B,2002,106(41):10701-10705.
    [97] C. Q. Sun, H. L. Bai, B. K. Tay, S. Li, E. Y. Jiang. Dimens ion, strength, and chemic al andthermal stability of a single碳-碳bond in carbon nanotubes [J]. Journal of PhysicalChemistry B,2003,107(31):7544-7546.
    [98] F. Scarpa, S. Adhikari, R. Chowdhury. The transverse elasticity of bilayer graphene [J].Physics Letters A,2010,374(19-20):2053-2057.
    [99] F. Scarpa, S. Adhikari, A. J. Gil, C. Remillat. The bending of single layer graphene sheets: thelattice versus continuum approach [J]. Nanotechnology,2010,21(12):125702.
    [100] P. Bennich, C. Puglia, P. A. Bruhwiler, A. Nilsson, A. J. Maxwell, A. Sandell, N. Martensson,P. Rudolf. Photoemission study of K on graphite [J]. Physical Review B,1999,59(12):8292-8304.
    [101] C. Q. Sun, S. Y. Fu, Y. G. Nie. Dominance of Broken Bonds and Unpaired Nonbondingpi-Electrons in the Band Gap Expansion and Edge States Generation in GrapheneNanoribbons [J]. Journal of Physical Chemistry C,2008,112(48):18927-18934.
    [102] R. A. Street. Hydrogenated amorphous silicon[M]. Cambridge University Press,1991.
    [103] C. S. Yannoni, P. P. Bernier, D. S. Bethune, G. Meijer, J. R. Salem. NMR determinatin of thebond lengths in C60[J]. Journal of the American Chemical Society,1991,113(8):3190-3192.
    [104] K. V. Emtsev, F. Speck, T. Seyller, L. Ley, J. D. Riley. Interaction, growth, and ordering ofepitaxial graphene on SiC{0001} surfaces: A comparative photoelectron spectroscopy study[J]. Physical Review B,2008,77(15):155303-155308.
    [105] W. Cheng, S.-F. Ren. Calculations on the size effects of Raman intensities of siliconquantum dots [J]. Physical Review B,2002,65(20):205305-205311.
    [106] W. G. Han, C. T. Zhang. A theory of nonlinear stretch vibrations of hydrogen-bonds [J].Journal of Physics-Condensed Matter,1991,3(1):27-35.
    [107] C. Q. Sun, L. K. Pan, C. M. Li, S. Li. Size-induced acoustic hardening and optic softeningof phonons in InP, CeO2, SnO2, CdS, Ag, and Si nanostructures [J]. Physical Review B,2005,72(13):134301-134309.
    [108] L. K. Pan, C. Q. Sun, C. M. Li. Elucidating Si-Si dimmer vibration from the size-dependentRaman shift of nanosolid Si [J]. Journal of Physical Chemistry B,2004,108(11):3404-3406.
    [109] M. X. Gu, Y. C. Zhou, C. Q. Sun. Local bond average for the thermally induced latticeexpansion [J]. Journal of Physical Chemistry B,2008,112(27):7992-7995.
    [110] D. Gunlycke, D. A. Areshkin, C. T. White. Semiconducting graphene nanostrips with edgedisorder [J]. Applied Physics Letters,2007,90:142104.
    [111] M. X. Gu, C. Q. Sun, Z. Chen, T. C. A. Yeung, S. Li, C. M. Tan, V. Nosik. Size, temperature,and bond nature dependence of elasticity and its derivatives on extensibility, Debyetemperature, and heat capacity of nanostructures [J]. Physical Review B,2007,75(12):125403.
    [112] M. X. Gu, L. K. Pan, T. C. A. Yeung, B. K. Tay, C. Q. Sun. Atomistic origin of the thermallydriven softening of Raman optical phonons in group III nitrides [J]. Journal of PhysicalChemistry C,2007,111(36):13606-13610.
    [113] M. X. Gu, L. K. Pan, B. K. Tay, C. Q. Sun. Atomistic origin and temperature dependence ofRaman optical redshift in nanostructures: a broken bond rule [J]. Journal of RamanSpectroscopy,2007,38(6):780-788.
    [114] W. T. Zheng, C. Q. Sun. Underneath the fascinations of carbon nanotubes and graphenenanoribbons [J]. Energy&Environ Sci,2011,4(3):627-655.
    [115] X. Zhang, Y. G. Nie, W. T. Zheng, J. L. Kuo, C. Q. Sun. Discriminative generation andhydrogen modulation of the Dirac-Fermi polarons at graphene edges and atomic vacancies [J].Carbon,2011,49(11):3615-3621.
    [116].. Girit, J. C. Meyer, R. Erni, M. D. Rossell, C. Kisielowski, L. Yang, C. H. Park, M. F.Crommie, M. L. Cohen, S. G. Louie, A. Zettl. Graphene at the Edge: Stability and Dynamics[J]. Science,2009,323(5922):1705-1708.
    [117] K. S. Novoselov, Z. Jiang, Y. Zhang, S. V. Morozov, H. L. Stormer, U. Zeitler, J. C. Maan, G.S. Boebinger, P. Kim, A. K. Geim. Room-temperature quantum hall effect in graphene [J].Science,2007,315(5817):1379-1379.
    [118] J. E. Proctor, E. Gregoryanz, K. S. Novoselov, M. Lotya, J. N. Coleman, M. P. Halsall.High-pressure Raman spectroscopy of graphene [J]. Physical Review B,2009,80(7):073408-073412.
    [119] Z. Zhou, L. Ci, L. Song, X. Yan, D. Liu, H. Yuan, Y. Gao, J. Wang, L. Liu, W. Zhou, S. Xie,Y. Du, Y. Mo. The intrinsic temperature effect of Raman spectra of double-walled carbonnanotubes [J]. Chemical Physics Letters,2004,396(4-6):372-376.
    [120] L. Song, W. Ma, Y. Ren, W. Zhou, S. Xie, P. Tan, L. Sun. Temperature dependence ofRaman spectra in single-walled carbon nanotube rings [J]. Applied Physics Letters,2008,92(12):121905-121908.
    [121] A. C. Ferrari, J. Robertson. Resonant Raman spectroscopy of disordered, amorphous, anddiamondlike carbon [J]. Physical Review B,2001,64(7):075414.
    [122] X. X. Yang, J. W. Li, Z. F. Zhou, Y. Wang, W. T. Zheng, C. Q. Sun. Frequency response ofgraphene phonons to heating and compression [J]. Applied Physics Letters,2011,99(13):133108-3.
    [123] Y. Wang, X. X. Yang, J. W. Li, Z. F. Zhou, W. T. Zheng, C. Q. Sun. Number-of-layerdiscriminated graphene phonon softening and stiffening [J]. Applied Physics Lettetts,2011,99(16):163109-163114.
    [124] J. W. Li, S. Z. Ma, X. J. Liu, Z. F. Zhou, C. Q. Sun. ZnO Meso-Mechano-Thermo PhysicalChemistry [J]. Chemical Reviews,2012,112(5):2833-2852.
    [125] M. Gu, Y. Zhou, L. Pan, Z. Sun, S. Wang, C. Q. Sun. Temperature dependence of the elasticand vibronic behavior of Si, Ge, and diamond crystals [J]. Journal of Applied Physics,2007,102(8):083524-4.
    [126] X. X. Yang, Z. F. Zhou, Y. Wang, R. Jiang, W. T. Zheng, C. Q. Sun. Raman spectroscopydetermination of the Debye temperature and atomic cohesive energy of CdS, CdSe, Bi[sub2]Se[sub3], and Sb[sub2]Te[sub3] nanostructures [J]. Journal of Applied Physics,2012,112(8):083508-6.
    [127] C. Q. Sun. Size dependence of nanostructures: Impact of bond order deficiency [J]. Progressin Solid State Chemistry,2007,35(1):1-159.
    [128] C. KITTEL. Introduction to Solid State Physics [J]. Introduction to Solid State Physics,2005, John Wiley&Sons,Inc.
    [129] Y. He, J. F. Liu, W. Chen, Y. Wang, H. Wang, Y. W. Zeng, G. Q. Zhang, L. N. Wang, J. Liu, T.D. Hu, H. Hahn, H. Gleiter, J. Z. Jiang. High-pressure behavior of Sn O2nanocrystals [J].Physical Review B,2005,72(21):212102-212106.
    [130] E. Hernandez, C. Goze, P. Bernier, A. Rubio. Elastic properties of C and BxCyNz compositenanotubes [J]. Physical Review Letters,1998,80(20):4502-4505.
    [131] M. F. Yu, O. Lourie, M. J. Dyer, K. Moloni, T. F. Kelly, R. S. Ruoff. Strength and breakingmechanism of multiwalled carbon nanotubes under tensile load [J]. Science,2000,287(5453):637-640.
    [132] M. F. Yu, B. S. Files, S. Arepalli, R. S. Ruoff. Tensile loading of ropes of single wall carbonnanotubes and their mechanical properties [J]. Physical Review Letters,2000,84(24):5552-5555.
    [133] H. J. Dai, J. H. Hafner, A. G. Rinzler, D. T. Colbert, R. E. Smalley. Nanotubes as nanoprobesin scanning probe microscopy [J]. Nature,1996,384(6605):147-150.
    [134] J. P. Salvetat, A. J. Kulik, J. M. Bonard, G. A. D. Briggs, T. Stockli, K. Metenier, S.Bonnamy, F. Beguin, N. A. Burnham, L. Forro. Elastic modulus of ordered and disorderedmultiwalled carbon nanotubes [J]. Advanced Materials,1999,11(2):161-165.
    [135] J. P. Salvetat, G. A. D. Briggs, J. M. Bonard, R. R. Bacsa, A. J. Kulik, T. Stockli, N. A.Burnham, L. Forro. Elastic and shear moduli of single-walled carbon nanotube ropes [J].Physical Review Letters,1999,82(5):944-947.
    [136] B. I. Yakobson, C. J. Brabec, J. Bernholc. Nanomechanics of carbon tubes: Instabilitiesbeyond linear response [J]. Physical Review Letters,1996,76(14):2511-2514.
    [137] C. Lee, X. D. Wei, J. W. Kysar, J. Hone. Measurement of the elastic properties and intrins icstrength of monolayer graphene [J]. Science,2008,321(5887):385-388.
    [138] A. K. Gupta, T. J. Russin, H. R. Gutierrez, P. C. Eklund. Probing Graphene Edges viaRaman Scattering [J]. ACS Nano,2008,3(1):45-52.
    [139] C. Thomsen, S. Reich. Double Resonant Raman Scattering in Graphite [J]. Physical ReviewLetters,2000,85(24):5214-5217.
    [140] S. Reich, C. Thomsen, P. Ordejon. Elastic properties of carbon nanotubes under hydrostaticpressure [J]. Physical Review B,2002,65(15):153407-153411.
    [141] D. L. Farber, J. Badro, C. M. Aracne, D. M. Teter, M. Hanfland, B. Canny, B. Couzinet.Experimental Evidence for a High-Pressure Isostructural Phase Transition in Osmium [J].Physical Review Letters,2004,93(-9):095502-095506.
    [142] C. Q. Sun, Y. Sun, Y. G. Nie, Y. Wang, J. S. Pan, G. Ouyang, L. K. Pan, Z. Sun.Coordination-Resolved C C Bond Length and the C1s Binding Energy of Carbon Allotropesand the Effective Atomic Coordination of the Few-Layer Graphene [J]. Journal of PhysicalChemistry C,2009,113(37):16464-16467.
    [143] J. B. Cui, K. Amtmann, J. Ristein, L. Ley. Noncontact temperature measurements ofdiamond by Raman scattering spectroscopy [J]. Journal of Applied Physics,1998,83(12):7929-7933.
    [144] M. Matus, H. Kuzmany. Raman spectra of single-crystal C<sub>60</sub> [J].Applied Physics A: Materials Science&Processing,1993,56(3):241-248.
    [145] M. He, E. Rikkinen, Z. Zhu, Y. Tian, A. S. Anis imov, H. Jiang, A. G. Nasibulin, E. I.Kauppinen, M. Niemela, A. O. I. Krause. Temperature Dependent Raman Spectra of CarbonNanobuds [J]. Journal of Physics Chemistry C2010,114(32):13540-13545.
    [146] I. Calizo, A. A. Balandin, W. Bao, F. Miao, C. N. Lau. Temperature Dependence of theRaman Spectra of Graphene and Graphene Multilayers [J]. Nano Letters,2007,7(9):2645-2649.
    [147] Z. Zhou, X. Dou, L. Ci, L. Song, D. Liu, Y. Gao, J. Wang, L. Liu, W. Zhou, S. Xie, D. Wan.Temperature Dependence of the Raman Spectra of Individual Carbon Nanotubes [J]. Journalof Physical Chemistry B,2006,110(3):1206-1209.
    [148] N. J. Everall, J. Lumsdon, D. J. Christopher. The effect of laser-induced heating upon thevibrational raman spectra of graphites and carbon fibres [J]. Carbon,1991,29(2):133-137.
    [149] F. C. Marques, R. G. Lacerda, A. Champi, V. Stolojan, D. C. Cox, S. R. P. Silva. Thermalexpansion coefficient of hydrogenated amorphous carbon [J]. Applied Physics Letters,2003,83(15):3099-3101.
    [150] R. Kalish. Ion-implantation in diamond and diamond films: doping, damage effects and theirapplications [J]. Applied Surface Science,1997,117:558-569.
    [151] W. R. Panero, R. Jeanloz. X-ray diffraction patterns from samples in the laser-heateddiamond anvil cell [J]. Journal of Applied Physics,2002,91(5):2769-2778.
    [152] A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D.Jiang, K. S. Novoselov, S. Roth, A. K. Geim. Raman Spectrum of Graphene and GrapheneLayers [J]. Physical Review Letters,2006,97(18):187401.
    [153] J. W. Jiang, H. Tang, B. S. Wang, Z. B. Su. Raman and infrared properties and layerdependence of the phonon dispersions in multilayered graphene [J]. Physical Review B,2008,77(23):235421-235426.
    [154] I. Calizo, I. Bejenari, M. Rahman, G. Liu, A. A. Balandin. Ultraviolet Raman microscopy ofsingle and multilayer graphene [J]. Journal of Applied Physics,2009,106(4):043509-043517.
    [155] M. S. Dresselhaus, A. Jorio, R. Saito. Characterizing Graphene, Graphite, and CarbonNanotubes by Raman Spectroscopy [J]. Annual Review of Condensed Matter Physics,2010,1(1):89-108.
    [156] B. Krauss, P. Nemes Incze, V. Skakalova, L. P. Biro, K. V. Klitzing, J. H. Smet. RamanScattering at Pure Graphene Zigzag Edges [J]. Nano Letters,2010,10(11):4544-4548.
    [157] Y. You, Z. Ni, T. Yu, Z. Shen. Edge chirality determination of graphene by Ramanspectroscopy [J]. Applied Physics Letters,2008,93(16):163112-163115.
    [158] D. Graf, F. Molitor, K. Ensslin, C. Stampfer, A. Jungen, C. Hierold, L. Wirtz. SpatiallyResolved Raman Spectroscopy of Single-and Few-Layer Graphene [J]. Nano Letters,2007,7(2):238-242.
    [159] A. Gupta, G. Chen, P. Joshi, S. Tadigadapa, P. C. Eklund. Raman scattering fromhigh-frequency phonons in supported n-graphene layer films [J]. Nano Letters,2006,6(12):2667-2673.
    [160] K. Kisoda, S. Kamoi, N. Hasuike, H. Harima, K. Morita, S. Tanaka, A. Hashimoto.Few-layer epitaxial graphene grown on vicinal6H-SiC studied by deep ultraviolet Ramanspectroscopy [J]. Applied Physics Letters,2010,97(3):033108.
    [161] X. Zhang, W. T. Zheng, J.L. Kuo, C. Q. Sun. Discriminative generation and hydrogenmodulation of the Dirac-Fermi polarons at graphene edges and atomic vacancies [J]. Carbon,2011,49:3615-3621.
    [162] C. Q. Sun, Y. Sun, Y. G. Nie, Y. Wang, J. S. Pan, G. Ouyang, L. K. Pan, Z. Sun.Coordination-Resolved C-C Bond Length and the C1s Binding Energy of CarbonAllotropes and the Effective Atomic Coordination of the Few-Layer Graphene [J]. Journal ofPhysical Chemistry C,2009,113(37):16464-16467.
    [163] C. Q. Sun. Thermo-mechanical behavior of low-dimensional systems: The local bondaverage approach [J]. Progress in Materials Science,2009,54(2):179-307.
    [164] X. X. Yang, J. W. Li, Z. F. Zhou, Y. Wang, W. T. Zheng, C. Q. Sun. Frequency response ofgraphene phonons to heating and compression [J]. Applied Physics Letters,2011,99(13):133108-133112.
    [165] C. Thomsen, S. Reich. Double Resonant Raman Scattering in Graphite [J]. Physical ReviewLetters,2000,85(24):5214-5217.
    [166] T. M. G. Mohiuddin, A. Lombardo, R. R. Nair, A. Bonetti, G. Savini, R. Jalil, N. Bonini, D.M. Basko, C. Galiotis, N. Marzari, K. S. Novoselov, A. K. Geim, A. C. Ferrari. Uniaxialstrain in graphene by Raman spectroscopy: G peak splitting, Grüneisen parameters, andsample orientation [J]. Physical Review B,2009,79(20):205433-205439.
    [167] F. Ding, H. Ji, Y. Chen, A. Herklotz, K. Dorr, Y. Mei, A. Rastelli, O. G. Schmidt. StretchableGraphene: A Close Look at Fundamental Parameters through Biax ial Straining [J]. NanoLetters,2010,10(9):3453-3458.
    [168] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S.V. Dubonos, A. A. Firsov. Two-dimensional gas of massless Dirac fermions in graphene [J].Nature,2005,438(7065):197-200.
    [169] A. C. Ferrari. Raman spectroscopy of graphene and graphite: Disorder, electron–phononcoupling, doping and nonadiabatic effects [J]. Solid State Communications,2007,143(1–2):47-57.
    [170] S. Pisana, M. Lazzeri, C. Casiraghi, K. S. Novoselov, A. K. Geim, A. C. Ferrari, F. Mauri.Breakdown of the adiabatic Born-Oppenheimer approximation in graphene [J]. Nat Mater,2007,6(3):198-201.
    [171] DasA, PisanaS, ChakrabortyB, PiscanecS, S. K. Saha, U. V. Waghmare, K. S. Novoselov, H.R. Krishnamurthy, A. K. Geim, A. C. Ferrari, A. K. Sood. Monitoring dopants by Ramanscattering in an electrochemically top-gated graphene transistor [J]. Nat Nano,2008,3(4):210-215.
    [172] L. G. Can ado, M. A. Pimenta, B. R. A. Neves, M. S. S. Dantas, A. Jorio. Influence of theAtomic Structure on the Raman Spectra of Graphite Edges [J]. Physical Review Letters,2004,93(24):247401.
    [173] C. Casiraghi, A. Hartschuh, H. Qian, S. Piscanec, C. Georgi, A. Fasoli, K. S. Novoselov, D.M. Basko, A. C. Ferrari. Raman Spectroscopy of Graphene Edges [J]. Nano Letters,2009,9(4):1433-1441.
    [174] A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, C. N. Lau. SuperiorThermal Conductivity of Single-Layer Graphene [J]. Nano Letters,2008,8(3):902-907.
    [175] N. Bonini, M. Lazzeri, N. Marzari, F. Mauri. Phonon Anharmonicities in Graphite andGraphene [J]. Physical Review Letters,2007,99(17):176802.
    [176] T. Yu, Z. Ni, C. Du, Y. You, Y. Wang, Z. Shen. Raman Mapping Investigation of Grapheneon Transparent Flexible Substrate: The Strain Effect [J]. The Journal of Physical Chemistry C,2008,112(33):12602-12605.
    [177] D. Yoon, Y.-W. Son, H. Cheong. Strain-Dependent Splitting of the Double-ResonanceRaman Scattering Band in Graphene [J]. Physical Review Letters,2011,106(15):155502.
    [178] M. Mohr, J. Maultzsch, C. Thomsen. Splitting of the Raman two-dimensional band ofgraphene subjected to strain [J]. Physical Review B,2010,82(20):201409.
    [179] W. T. Zheng, C. Q. Sun. Underneath the fascinations of carbon nanotubes and graphenenanoribbons [J]. Energy&Environmental Science,2011,4(3):627-655.
    [180] E. W. Wong, P. E. Sheehan, C. M. Lieber. Nanobeam Mechanics: Elasticity, Strength, andToughness of Nanorods and Nanotubes [J]. Science,1997,277(5334):1971-1975.
    [181] M. R. Falvo, G. J. Clary, R. M. Taylor, V. Chi, F. P. Brooks Jr, S. Washburn, R. Superfine.Bending and buckling of carbon nanotubes under large strain [J]. Nature,1997,389(6651):582-584.
    [182] C. Q. Sun, H. L. Bai, B. K. Tay, S. Li, E. Y. Jiang. Dimension, Strength, and Chemical andThermal Stability of a Single C-C Bond in Carbon Nanotubes [J]. The Journal of PhysicalChemistry B,2003,107(31):7544-7546.
    [183] A. Bai, F. Seiji, Y. Kiyoshi, Y. Masamichi. Surface Superstructure of Carbon Nanotubes onHighly Oriented Pyrolytic Graphite Annealed at Elevated Temperatures [J]. Journal ofApplied Physics,1998,37(6B):3809-3811.
    [184] T. Balasubramanian, J. N. Andersen, L. Wallden. Surface-bulk core-level splitting ingraphite [J]. Physical Review B,2001,64(20):205420-205423.
    [185] K. Kim, H. Lee, J. H. Choi, Y. S. Youn, J. Choi, H. Lee, T. H. Kang, M. C. Jung, H. J. Shin,H. J. Lee, S. Kim, B. Kim. Scanning Photoemission Microscopy of Graphene Sheets on SiO2[J]. Advanced Materials,2008,20(19):3589-3591.
    [186] C. Q. Sun, Y. Sun, Y. G. Nie, Y. Wang, J. S. Pan, G. Ouyang, L. K. Pan, Z. Sun.Coordination-Resolved C-C Bond Length and the C1s Binding Energy of CarbonAllotropes and the Effective Atomic Coordination of the Few-Layer Graphene [J]. TheJournal of Physical Chemistry C,2009,113(37):16464-16467.
    [187] X. Zhang, J. L. Kuo, M. Gu, P. Bai, C. Q. Sun. Graphene nanoribbon band-gap expansion:Broken-bond-induced edge strain and quantum trap depression [J]. Nanoscale,2010,2:2160-2163.
    [188] C.. Girit, J. C. Meyer, R. Erni, M. D. Rossell, C. Kisielowski, L. Yang, C. H. Park, M. F.Crommie, M. L. Cohen, S. G. Louie, A. Zettl. Graphene at the Edge: Stability and Dynamics[J]. Science,2009,323(5922):1705-1708.
    [189] F. Ding, H. Ji, Y. Chen, A. Herklotz, K. Dorr, Y. Mei, A. Rastelli, O. G. Schmidt. StretchableGraphene: A Close Look at Fundamental Parameters through Biaxial Straining [J]. NanoLetters,2010,10(9):3453-3458.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700