几种无机纳米粒子/(氧化)石墨烯复合材料的制备及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
石墨烯,这一由单层碳原子紧密堆积成的二维蜂窝状晶格结构的碳质材料,自2004年发现以来,因具有优异的电学、热学、光学和力学性能,受到广大科研工作者的极大关注。近年来,石墨烯复合材料的研究已成为人们关注的焦点。本论文主要以氧化石墨为前驱体,通过静电吸引机制和金属离子结合制备出了多种金属氧化物和金属氢氧化物/(氧化)石墨烯复合材料。对这些复合物进行了相关的表征,并且研究了他们的光催化和电化学等性质。主要内容如下:
     1.利用氧化石墨在溶液中超声剥离容易形成带负电的氧化石墨烯这一特性,通过与锌金属离子结合,在水-乙醇介质中采用快速沉淀法成功将ZnO纳米粒子与氧化石墨烯复合,获得了ZnO/氧化石墨烯纳米复合物(GO-ZnO)。在对亚甲基蓝的光催化降解实验中,发现GO-ZnO纳米复合物光催化降解效果良好,降解量达92%。
     2.以氧化石墨为前驱体,在乙二醇介质中采用溶剂热法一步成功合成了石墨烯负载氧化锌纳米复合物。在ZnO纳米晶原位成核生长的同时,反应体系中的溶剂乙二醇同时充当还原剂,在高温条件下将氧化石墨烯还原,去除其表面的大量含氧基团,从而形成氧化锌-石墨烯纳米复合物。在研究复合物的光致发光性质的过程中,发现ZnO纳米粒子的激发在复合物中存在淬灭现象,这表明处于激发态的ZnO与石墨烯之间有电荷传递作用。
     3.采用溶剂热法,在甲醇介质中成功将四氧化三钴纳米粒子沉积在石墨烯片层,获得Co3O4/石墨烯纳米复合材料(G-Co3O4)。发现调节氨水用量和钴离子浓度,对复合物形貌有很大影响。利用循环伏安法考察了该复合物的电容性能,结果显示G-Co3O4纳米复合物比电容有很大提高,比电容值为178 F·g-1。
     4.以正己醇为溶剂,采用溶剂热法一步成功将Co3O4空心球负载于还原的氧化石墨烯片层上,得到了Co3O4/RGO复合物。反应过程中,硝酸钴热分解而生成Co3O4纳米晶,然后以气-液两相的气泡为中心聚集形成Co3O4空心球。经研究复合物的电化学性质,发现Co3O4/RGO复合物比电容有很大提高,比电容值高达346 F·g-1,且循环稳定性较好。
     5.在水介质中,以氧化石墨为前驱体,水合肼为还原剂,采用水热法制备了Co(OH)2/石墨烯复合物和Ni(OH)2/石墨烯复合物。同时采用循环伏安法初步考察了复合物的电化学性质,结果显示Co(OH)2/石墨烯复合物比电容有所提高,而Ni(OH)2/石墨烯复合物比电容有所下降,但其电化学稳定性有所提高。
Graphene, a new carbon material, is a flat monolayer of carbon atoms tightly packed into a two-dimensional honeycomb lattice. Grpahene has attracted great interest by most researchers because of the unique electronic、thermal、optical and mechanical properties since its discovery in 2004. Recently, as a new hydrid material, Graphene composites have received much attention. In our work, a series of metal oxides or metal hydroxids/graphene (oxide) composites have been obtained via the electrostatic interaction of metal ions and graphene oxide which used as precursor. The certain properties of these composites were analyzed, and the photocatalytic activity and electrochemical properties of the obtained products have been studied. The principal results of the dissertation are discussed as follows:
     1. Graphene oxide was easily obtained through the sonication of graphite oxide, and negatively charged in the solution. Graphene oxide- ZnO nanocomposites were successfully synthesized through the fast precipitation method in the water-ethanol system via the electrostatic interaction of zinc metal ions and graphene oxide sheets. The photocatalytic experiments exhibit that the GO-ZnO nanocomposites have a good photocatalytic activity on degradation of methylene blue, the decomposition percentage reaches 92%.
     2. Graphene-ZnO nanocomposites were successfully prepared using graphene oxide sheets as precursor in ethylene glycol system through a one-step solvothermal approach. The in situ formed ZnO nanoparticles were randomly decorated on the surface of graphene oxide sheets, which were simultaneously reduced directly capable of forming the graphene sheets by the ethylene glycol. In addition, photoluminescence spectra of graphene-ZnO nanocomposites display the fluorescence quenching property, it is due to the interaction of ZnO nanoparticles in excited state and graphene sheets in electron transfer.
     3. Graphene-Co3O4 nanocomposites were successfully prepared using graphene oxide sheets as precursor in methanol system through a one-step solvothermal approach. The morphology of Graphene-Co3O4 nanocomposites could be important affected by the amount of NH3·H2O and the concentration of Co2+. In addition, the electrochemical properties were investigated through cyclic voltammogram analysis. The results indicated that the nanocomposites showed better electrochemical performances than the individual components, and the high specific capacitance was improved, the specific capacitance reaches 178 F·g-1 by cyclic voltammetry test.
     4. A composite of reduced graphene oxide supported by Co3O4 hollow spheres (Co3O4/RGO composite) has been synthesized by a one-pot solvothermal method in n-hexanol solvent. In the reaction, small Co3O4 nanocrystals were formed by the decomposition of cobalt nitrate in high temperature, and lots of microbubbles of gas produced. The Co3O4 hollow spheres were finally formed through the aggregation of small Co3O4 nanocrystals around the gas-liquid interface. Moreover, the electro- -chemical measurements of as-obtained composite demonstrate that the composites possesses the good electrochemical stability and the higher specific capacitance, the specific capacitance reaches 346 F·g-1 by cyclic voltammetry test.
     5. Co(OH)2/Graphene composites and Ni(OH)2/Graphene were successfully prepared using graphene oxide sheets as precursor and hydrazine as reducing agent in water system through a one-step hydrothermal approach. Moreover, the electrochemical properties were investigated through cyclic voltammogram analysis. The results indicated that the Co(OH)2/Graphene composites showed better electrochemical performances than the individual components, and the high specific capacitance was improved. The specific capacitance of Ni(OH)2/Graphene was reduced compared with the Ni(OH)2, but possess the good electrochemical stability.
引文
[1]张立德,牟季美.纳米材料和纳米结构[M].北京:科学出版社,2001.
    [2]Komamenis R R, Roy D M. Cation-exchange properties of hydrated cements. Materials Research Society Symposium Proceedings,1984,32:347~349
    [3]Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A. Electric field effect in atomically thin carbon films. Science,2004,306:666~669
    [4]Novoselov K S, Jiang D, Schedin F, Booth T J, Khotkevich V V, Morozov S V, Geim A K. Two-dimensional atomic crystals. Proceedings of the National Academy of Sciences,2005, 102:10451~10453
    [5]Meyer J C, Geim A K, Katsnelson M I, Novoselov K S, Booth T J, Roth S. The structure of suspended graphene sheets. Nature,2007,446:60~63
    [6]Geim A K, Novoselov K S. The rise of graphene. Nature Materials,2007,6:183~191
    [7]Kroho H W, Health J R, Brien S C, Curl R F, Smalley R E. C60:Buckyminister-fullerene. Nature,1985,318:162~163
    [8]Iijima S. Helical Microtubules of Graphite Carbon. Nature,1991,354:56~58
    [9]Schadler L S, Giannaris S C, Ajayan P M. Load transfer in carbon nanotube exopycomposites. Applied Physics Letters,1998,73:3842-3844
    [10]Chae H K, Siberio-Perez D Y, Kim J. A route to high surface area, porosity and inclusion of large molecules in crytals. Nature,2004,427:523~257
    [11]Balandin A A, Ghosh S, Bao W Z. Calizo I, Teweldebrhan D, Miao F, Lau C N. Superior thermal conductivity of single-layer graphene. Nano Letter,2008,8:902~907
    [12]Bolotin K I, Sikes K J, Jiang Z, Klima M, Fudenberg G, Hone J, Kim P, Stormer H L. Ultrahigh electron mobility in suspended graphene. Solid State Communications,2008, 146:351~355
    [13]Avouris P, Chen Z, Perebeinos V. Carbon-based electronics. Nature Nanotechnology, 2007,2:605~615
    [14]Kane C L. Erasing electron mass. Nature,2005,438:168~169
    [15]Cheianov V V, Falko V I. Selective transmission of dirac electrons and ballistic magneto resistance of n-p junctions in graphene. Physical Review B,2006,74:041403(R)
    [16]Williams J R, DiCarlo L C, Marcus C M. Quamtum hall effect in a gate-controlled p-n junction of graphene. Science,2007,317:638~641
    [17]Dikin D A, Stankovich S, Zimney E J, Piner R D, Dommett G H B, Evmenenko G, Nguyen S T, Ruoff R S. Preparation and characterization of graphene oxide paper. Nature, 2007,448:457~460
    [18]Blake P, Brimicombe P D, Nair R R, Booth T J, Jiang Da, Schedin F, Ponomarenko L A, Morozov S V, Gleeson H F, Hill E W, Geim A K, Novoselov K S. Graphene-based liquid crystal device. Nano Letter,2008,8:1704~1708
    [19]Patchkovskii S, Tse J S, Yurchenko S N, Zhechkov L, Heine T, Seifert G. Graphene nanostructures as tunable storage media for molecular hydrogen. Proceedings of the National Academy of Sciences,2005,102:10439-10444
    [20]Park N, Hong S, Kim G, Jhi S H. Computational study of hydrogen storage characteristics of covalent-bonded graphenes. Journal of the American Chemical Society, 2007,129:8999~9003
    [21]Gilje S, Han S, Wang M S, Wang K L, Kaner R B. A chemical route to graphene for device applications. Nano Letters,2007,7:3394~3398
    [22]Lemme M C, Echtermeyer T J, Baus M, Kurz H. A graphene field-effect device. IEEE Electron Device Letters,2007,28:282~284
    [23]Wang X, Zhi L J, Mullen K. Transparent, conductive graphene electrodes for dye-Sensitized solar cells. Nano letters,2008,8:323~327
    [24]Chen J H, Ishigami M, Jang C, Hines D R, Fuhrer M S, Williams E D. Printed graphene circuits. Advanced Materials,2007,19:3623~3627
    [25]Schedin F, Geim A K, Morozov S V, Hill E W, Blake P, Katsnelson M I, Novoselov K S. Detection of individual gas molecules adsorbed on graphene. Nature Materials,2007, 6:652~655
    [26]Stankovich S, Dikin D A, Dommett G H B, Kohlhaas K M, Zimney E J, Stach E A, Piner R D, Nguyen S T, Ruoff R S. Graphene-based composite materials. Nature,2006, 442:282~286
    [27]Berger C, Song Z, Li X, Wu X, Brown N, Naud C, Mayou D, Li T, Hass J, Marchenkov A N, Conrad E H, First P N, Heer W A. Electronic confinement and coherence in patterned epitaxial graphene. Science,2006,312:1191~1196.
    [28]Berger C, Song Z, Li T, Li X, Ogbazghi A Y, Feng R, Dai Z, Marchenkov A N, Conrad E H, First P N, De Heer W A. Ultrathin epitaxial graphite:2D electron gas properties and a route toward graphene-based nanoelectronics. Journal of Physics and Chemistry B,2004, 108:19912~19916
    [29]De Heer W A, Berger C, Wu X, First P N, Conrad E H, Li X, Li T, Sprinkle M, Hass J, Sadowski M L, Potemski M, Martinez G. Epitaxial graphene. Solid State Communication, 2007,143:92~100
    [30]Sutter P W, Flege J, Sutter E A. Epitaxial graphene on ruthenium. Nature Materials,2008, 7:406~411
    [31]Kim K S, Zhao Y, Jang H, Lee S Y, Kim J M, Kim K S, Ahn J, Kim P, Choi J, Hong B H. Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature, 2008,457:706~710
    [32]Reina A, Jia X, Ho J, Nezich D, Son H, Bulovic V, Dresselhaus M S, Kong J. Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Letters, 2009,9:30~35
    [33]Li X S, Cai W, An J, Kim S, Nah J, Yang D, Piner R, Velamakanni A, Jung I, Tutuc E, Banerjee S K, Colombo L, Ruoff R S. Large-area synthesis of high-quality and uniform graphene films on copper foils. Science,2009,324:1312~1314
    [34]Shioyama H. Cleavage of graphite to graphene. Journal of Materials Science Letters, 2001,20:499~500
    [35]Chen G, Wu D, Weng W, Wu C. Exfoliation of graphite flake and its nanocomposites. Carbon,2003,41:619~621
    [36]Viculis L M, Mack J J, Kaner R B. A chemical route to carbon nanoscrolls. Science, 2003,299:1361
    [37]Viculis L M, Mack J J, Mayer O M, Hahn H T, Kaner R B. Intercalation and exfoliation routes to graphite nanoplates. Journal of Materials Chemistry,2005,15:974-978
    [38]Dreyer D R, Park S, Bielawski C W. Ruoff R S. The chemistry of graphene oxide. Chemical Society Review,2010,39:228~240
    [39]Stankovich S, Piner R D, Chen X, Wu N, Nguyen S T, Ruoff RS. Stable aqueous dispersions of graphitic nanoplatelets via the reduction of exfoliated graphite oxide in the presence of poly(sodium 4-styrenesulfonate). Journal of Materials Chemistry,2006, 16:155~158
    [40]Stankovich S, Dikin D A, Piner R D, Kohlhaas K A, Kleinhammes A, Jia Y, Wu Y, Nguyen S T, Ruoff R S. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon,2007,45:1558~1565
    [41]Li D, Kaner R B. Graphene Based Materials. Science,2008,320:1170~1171
    [42]Fan X, Peng W, Li Y, Li X, Wang S, Zhang G, Zhang F. Deoxygenation of exfoliated graphite oxide under alkaline conditions:a green route to graphene preparation. Advance Materials,2008,20:1-4
    [43]Nethravathi C, Rajamathi M. Chemically modified graphene sheets produced by the solvothermal reduction of colloidal dispersions of graphite oxide. Carbon,2008, 46:1994~1998
    [44]Schniepp H C, Li J L, McAllister M J, Sai H, Alonso M H, Adamson D H, Prudhomme R K, Car R, Saville D A, Aksay I A. Functionalized single graphene sheets derived from splitting graphite oxide. Journal of Physical Chemistry B,2006,110:8535~8539
    [45]Mcallister M J, Lio J L, Adamson D H, Schniepp H C, Abdala A A, Liu J, Alonso M H, Milius D L, Car R, Prudhomme R K, Aksay I A. Single sheet functionalized graphene by oxidation and thermal expansion of graphite. Chemistry of Materials,2007,19:4396-4404
    [46]Lotov N A, Dekany I, Fendler J H. Ultrathin graphite oxide-polyelectrolyte composites prepared by self-assembly:transition between conductive and nonconductive states. Advanced Materials,1996,8:637-641
    [47]Brodie B C. On the atomic weight of graphite. Philosophical Transactions of the Royal Society of London,1859,149:249
    [48]Staudenmaier L. Verfahren zur darstellung der graphitsaure. Berichte der deutschen chemischen Geellschaft,1898,31:1481~1487
    [49]Hummers W S, Offeman R E. Preparation of graphite oxide. Journal of American Chemistry Society,1958,80:1339
    [50]Hofmann U, Holst R. Uber die saurenatur und die methylierung von graphitoxyd. Berichte der deutschen chemischen Geellschaft B,1939,72:754~771
    [51]Ruess G.. Zur wasserbindung im halloysit. Monatshefte fur Chemie,1946,76:381-417
    [52]Boehmand H P, Scholz W Z. Der verpuffungspunkt des graphitoxids. Zeitschrift fur anorganische und allgemeine Chemie,1965,335:74~79
    [53]Nakajima T, Matsuo Y. Formation process and structure of graphite oxide. Carbon,1994, 32:469~475
    [54]Dreyer D R, Park S, Bielawski C W, Ruoff R S. The chemistry of graphene oxide. Chemical Society Reviews,2010,39:228~240
    [55]Lerf A, He H, Forster M, Klinowski J. Structure of graphite oxide revisited. Journal of Physics Chemistry,1998,102:4477~4482
    [56]He H, Klinowski J, Forster M. A new structure model for graphite oxide. Chemical Physics Letter,1998,287:53~56
    [57]施锦.碳纳米管复合材料的制备、表征与应用.博士学位论文,2006
    [58]Yu A, Ramesh P, Itkis M E, Bekyarova, Haddon R C. Graphite nanoplatelet- -epoxy composite thermal interface materials. Journal of Physical Chemistry C,2007, 111:7565~7569
    [59]Ramanathan T, Abdala A A, Stankovich S, Dikin D A, Alonso M H, Piner R D, Adamson D H, Schniepp H C, Ruoff R S, Nguyen S T, Aksay I A, Prudhomme R K, Brinson L C. Functionalized graphene sheets for polymer nanocomposites. Nature Nanotechnology,2008, 3:327~331
    [60]Fang M, Wang K, Lu H, Yang Y, Nutt S. Covalent polymer functionalization of graphene nanosheets and mechanical properties of composites. Journal of Materials Chemistry,2009, 19:7098~7105
    [61]Yan J, Wei T, Shao B, Fan Z J, Qian W Z, Zhang M L, Wei F. Preparation of a graphene nanosheet/polyaniline composite with high specific capacitance. Carbon,2010,48:487~493
    [62]Muszynski R, Seger B, Kamat P V. Decorating graphene sheets with gold nanoparticles. Journal of Physical Chemistry C,2008,112:5263~5266
    [63]Goncalves G, Marques P A A P, Granadeiro C M, Nogueira H I S, Singh M K, Gracio J. Surface modification of graphene nanosheets with gold nanoparticles:the role of oxygen moieties at graphene surface on gold nucleation and growth. Chemistry of Materials,2009, 21:4796~4802
    [64]Hong W, Bai H, Xu Y, Yao Z, Gu Z, Shi G. Preparation of gold nanoparticle /graphene composites with controlled weight contents and their application in biosensors. Journal of Physical Chemistry C,2010,114:1822~1826
    [65]Si Y C, Samulski E T. Exfoliated graphene separated by platinum nanoparticles. Chemistry of Materials,2008,20:6792~6797
    [66]Seger B, Kamat P V. Electrocatalytically active graphene-platinum nanocompositess: role of 2-D carbon support in PEM fuel cells. Journal of Physical Chemistry C,2009, 113:7990~7995
    [67]Yoo E J, Okata T, Akita T, Kohyama M, Nakamura J J, Honma I. Enhanced electrocatalytic activity of Pt subnanoclusters on graphene nanosheet surface. Nano Letters, 2009,9:2255~2259
    [68]Li Y M, Tang L H, Li J H. Preparation and electrochemical performance for methanol oxidation of pt/graphene nanocomposites. Electrochemistry Communications,2009,11:846-849
    [69]Li Y, Gao W, Ci L, Wang C, Ajayan P M. Catalytic performance of Pt nanoparticles on reduced graphene oxide for methanol electro-oxidation. Carbon,2010,48:1124~1130
    [70]Liu S, Wang J, Zeng J, Ou J, Li Z, Liu X, Yang S. "Green" electrochemical synthesis of Pt/graphene sheet nanocomposites film and its electrocatalytic property. Journal of Power Sources,2010,195:4628~4633
    [71]Dong L F, Gari R R S, Li Z, Craig M M, Hou S F. Graphene-supported platinum and platinum-ruthenium nanoparticles with high electrocatalytic activity for methanol and ethanol oxidation. Carbon,2010,48:781~787
    [72]Scheuermann G M, Rumi L, Steurer P, Bannwarth W, Mulhaupt R. Palladium nanoparticles on graphite oxide and its functionalized graphene derivatives as highly active catalysts for the suzuki-miyaura coupling reaction. Journal of the American Chemical Society,2009,131:8262~8270
    [73]Pasricha R, Gupta S, Srivastava A K. A facile and novel synthesis of Ag- graphene-based nanocomposites. Small,2009,5:2253~2259
    [74]Zhou X, Huang X, Qi X, Wu S, Xue C, Boey F Y C, Yan Q, Chen P, Zhang H. In situ synthesis of metal nanoparticles on single-layer graphene oxide and reduced graphene oxide surfaces. The Journal of Physical Chemistry C,2009,113:10842~10846
    [75]Shen J, Shi M, Li N, Yan B, Ma H, Hu Y, Ye M. Facile synthesis and application of Ag-chemically converted graphene nanocomposites. Nano Research,2010,3:339~349
    [76]Hassan H M A, Abdelsayed V, Khder A E R S, AbouZeid K M, Terner J, EI- Shall M S, Al-Resayes S I, EI-Azhary A A. Microwave synthesis of graphene sheets supporting metal nanocrystals in aqueous and organic media. Journal of Material Chemistry,2009, 19:3832~3837
    [77]Guo S J, Dong S J, Wang E W. Three-dimensional Pt-on-Pd bimetallic nanodendrites supported on graphene nanosheet:facile synthesis and used as an advanced nanoelectrocatalyst for methanol oxidation. ACS Nano,2010,4:547~555
    [78]Williams G, Seger B, Kamt P V. TiO2-Graphene nanocomposites:UV-assisted photocatalytic reduction of graphene oxide. ACS Nano,2008,2:1487~1491
    [79]Wang D, Choi D, Li J, Yang Z, Nie Z, Kou R, Hu D, Wang C, Saraf L V, Zhang J, Aksay I A, Liu J. Self-assembled TiO2-graphene hybrid nanostructures for enhanced Li-ion insertion. ACS Nano,2009,3:907~914
    [80]Zhang H, Lv X, Li Y, Wang Y, Li J. P25-Graphene composite as a high performance photocatalyst. ACS Nano,2009,4:380~386
    [81]Akhavan O, Abdolahad M, Esfandiar A, Mohatashamifar M. Photodegradation of graphene oxide sheets by TiO2 nanoparticles after a photocatalytic reduction. The Journal of Physical Chemistry C,2010,114:12955~12959
    [82]Liu J, Bai H, Wang Y, Liu Z, Zhang X, Sun D D. Self-assembling TiO2 nanorods on large graphene oxide sheets at a two-phase interface and their anti-recombination in photocatalytic applications. Advanced Functional Materials,2010,20:4175~4181
    [83]Qiu Y, Yan K, Yang S, Jin L, Deng H, Li W. Synthesis of size-tunable anatase TiO2 nanospindles and their assembly into anatase@titanium oxynitride/titanium nitride-graphene nanocomposites for rechargeable Lithium Ion Batteries with high cycling performance. ACS Nano,2010,4:6515~6526
    [84]Tang Y B, Lee C S, Xu J, Liu Z T, Chen Z H, He Z, Cao Y L, Yuan G, Song H, Chen L, Luo L, Cheng H M, Zhang W J, Bello I, Lee S T. Incorporation of graphenes in nanostructured TiO2 films via molecular grafting for Dye-Sensitized Solar Cell application. ACS Nano,2010,4:3482~3488
    [85]Zhu C, Guo S, Wang P, Xing L, Fang Y, Zhai Y, Dong S. One-pot, water-phase approach to high-quality graphene/TiO2 composite nanosheets. Chemical Communications,2010, 46:7148~7150
    [86]Lambert T N, Chavez C A, Hernandez-Sanchez B, Lu P, Bell N S, Ambrosini A, Friedman T, Boyle T J, Wheeler D R, Huber D L. Synthesis and characterization of titania-graphene nanocomposites. The Journal of Physical Chemistry C,2009, 113:19812~19823
    [87]Liang Y, Wang H, Casalongue H S, Chen Z, Dai H. TiO2 nanocrystals grown on graphene as advanced photocatalytic hybrid materials. Nano Research,2010,3:701~705
    [88]Lightcap I V, Kosel T H, Kamat P V. Anchoring semiconductor and metal nanoparticles on a two-dimensional catalyst mat. storing and shuttling electrons with reduced graphene oxide. Nano Letters,2010,10:577~583
    [89]Paek S M, Yoo E, Honma I. Enhanced cyclic performance and lithium storage capacity of SnO2/graphene nanoporous electrodes with three-dimensionally delaminated flexible structure. Nano Letters,2009,9:72~75
    [90]Yao J, Shen X, Wang B, Liu H, Wang G. In situ chemical synthesis of SnO2-graphene nanocomposite as anode materials for lithium-ion batteries. Electrochemistry Communications,2009,11:1849~1852
    [91]Kim H, Kim S-W, Park Y-U, Gwon H, Seo D-H, Kim Y, Kang K. SnO2 graphene composite with high lithium storage capability for lithium rechargeable batteries. Nano Research,2010,3:813~821
    [92]Li Y, Lv X, Lu J, Li J. Preparation of SnO2-nanocrystal/graphene-nanosheets composites and their lithium storage ability. The Journal of Physical Chemistry C,2010, 114:21770~21774
    [93]Wang Z, Zhang H, Li N, Shi Z, Gu Z, Cao G. Laterally confined graphene nanosheets and graphene/SnO2 composites as high-rate anode materials for lithium-ion batteries. Nano Research,2010,3:748~756
    [94]Wen Z, Yang S, Liang Y, He W, Tong H, Hao L, Zhang X, Song Q. The improved electrocatalytic activity of palladium/graphene nanosheets towards ethanol oxidation by tin oxide. Electrochimica Acta,2010,56:139~144
    [95]Zhang L S, Jiang L Y, Yan H J, Wang W D, Wang W, Song W G,Guo Y G, Wan L J. Mono dispersed SnO2 nanoparticles on both sides of single layer graphene sheets as anode materials in Li-ion batteries. Journal of Materials Chemistry,2010,20:5462~5467
    [96]Meng X, Geng D, Liu J, Banis M N, Zhang Y, Li R, Sun X. Non-aqueous approach to synthesize amorphous/crystalline metal oxide-graphene nanosheet hybrid composites. The Journal of Physical Chemistry C,2010,114:18330~18337
    [97]Wang X, Zhou X, Yao K, Zhang J, Liu Z. A SnO2/graphene composite as a high stability electrode for lithium ion batteries. Carbon,2011,49:133~139
    [98]Wang B, Wu X L, Shu C Y, Guo Y G, Wang C R. Synthesis of CuO/graphene nanocomposite as a high-performance anode material for lithium-ion batteries. Journal of Materials Chemistry,2010,20:10661~10664
    [99]Mai Y J, Wang X L, Xiang J Y, Qiao Y Q, Zhang D, Gu C D, Tu J P. CuO/graphene composite as anode materials for lithium-ion batteries. Electrochimica Acta,2011, 56:2306~2311
    [100]Xu C, Wang X, Yang L, Wu Y. Fabrication of a graphene-cuprous oxide composite. Journal of Solid State Chemistry,2009,182:2486~2490
    [101]Yan J, Fan Z, Wei T, Qian W, Zhang M, Wei F. Fast and reversible surface redox reaction of graphene-MnO2 composites as supercapacitor electrodes. Carbon,2010, 48:3825~3833
    [102]Wu Z S, Ren W, Wang D W, Li F, Liu B, Cheng H M. High-energy MnO2 nanowire/graphene and graphene asymmetric electrochemical capacitors. ACS Nano,2010, 4:5835-5842
    [103]Qian Y, Lu S, Gao F. Synthesis of manganese dioxide/reduced graphene oxide composites with excellent electrocatalytic activity toward reduction of oxygen. Materials Letters,2011,65:56~58
    [104]Wang B, Park J, Wang C, Ahn H, Wang G. Mn3O4 nanoparticles embedded into graphene nanosheets:preparation, characterization, and electrochemical properties for supercapacitors. Electrochimica Acta,2010,55:6812~6817
    [105]Wang H, Cui L F, Yang Y, Casalongue H S, Robinson J T, Liang Y, Cui Y, Dai H. Mn3O4-graphene hybrid as a high-capacity anode material for lithium ion batteries. Journal of the American Chemical Society,2010,132:13978~13980
    [106]Yang X, Zhang X, Ma Y, Huang Y, Wang Y, Chen Y. Superparamagnetic graphene oxide-Fe3O4 nanoparticles hybrid for controlled targeted drug carriers. Journal of Materials Chemistry,2009,19:2710~2714
    [107]Zhou G, Wang D W, Li F, Zhang L, Li N, Wu Z S, Wen L, Lu G Q, Cheng H M. Graphene-wrapped Fe3O4 anode material with improved reversible capacity and cyclic stability for lithium ion batteries. Chemistry of Materials,2010,22:5306~5313
    [108]Shen J, Hu Y, Shi M, Li N, Ma H, Ye M. One step synthesis of graphene oxide-magnetic Nnanoparticle composite. The Journal of Physical Chemistry C,2010, 114:1498~1503
    [109]Cong H P, He J J, Lu Y, Yu S H. Water-soluble magnetic-functionalized reduced graphene oxide sheets:in situ synthesis and magnetic resonance imaging applications. Small,2010,6:169~173
    [110]Shen X, Wu J, Bai S, Zhou H. One-pot solvothermal syntheses and magnetic properties of graphene-based magnetic nanocomposites. Journal of Alloys and Compounds,2010, 506:136~140
    [111]Koo H Y, Lee H J, Go H A, Lee Y B, Bae T S, Kim J K, Choi W S. Graphene-based multifunctional iron oxide nanosheets with tunable properties. Chemistry-A European Journal, 2010,17:1214~1219
    [112]He F, Fan J, Ma D, Zhang L, Leung C, Chan H L. The attachment of Fe3O4 nanoparticles to graphene oxide by covalent bonding. Carbon,2010,48:3139~3144
    [113]Chandra V, Park J, Chun Y, Lee JW, Hwang I C, Kim K S. Water-dispersible magnetite-reduced graphene oxide composites for arsenic removal. ACS Nano,2010, 4:3979~3986
    [114]He H, Gao C. Supraparamagnetic, conductive and processable multifunctional graphene nanosheets coated with high-density Fe3O4 nanoparticles. Applied Materials Interfaces,2010, 2:3201~3210
    [115]Hou C, Zhang Q, Zhu M, Li Y, Wang H. One-step synthesis of magnetically-functionalized reduced graphite sheets and their use in hydrogels. Carbon,2011, 49:47~53
    [116]Singh V K, Patra M K, Manoth M, Gowd G S, Vadera S R, Kumar N. In situ synthesis of graphene oxide and its composites with iron oxide. New Carbon Materials,2009, 24:147~152
    [117]Fan Y C, Wang L J, Li J L, Li J Q, Sun S K, Chen F, Chen L D, Jiang W. Preparation and electrical properties of graphene nanosheet/Al2O3 composites. Carbon,2010, 48:1743~1749
    [118]Wu Z S, Wang D W, Ren W, Zhao J, Zhou G, Li F, Cheng H M. Anchoring hydrous RuO2 on graphene sheets for high-performance electrochemical capacitors. Advanced Functional Materials,2010,20:3595~3602
    [119]Wang H W, Hu Z A, Chang Y Q, Chen Y L, Lei Z Q, Zhang Z Y, Yang Y Y. Facile solvothermal synthesis of a graphene nanosheet-bismuth oxide composite and its electrochemical characteristics. Electrochimica Acta,2010,55:8974~8980
    [120]Nethravathi C, Nisha T, Ravishankar N, Shivakumara C, Rajamathi M. Graphene-nanocrystalline metal sulphide composites produced by a one-pot reaction starting from graphite oxide. Carbon,2009,47:2054~2059
    [121]Cao A, Liu Z, Chu S, Wu M, Ye Z, Cai Z, Chang Y, Wang S, Gong Q, Liu Y. A facile one-step method to produce graphene-CdS quantum dot nanocomposites as promising optoelectronic materials. Advanced Materials,2010,22:103~106
    [122]Wang P, Jiang T, Zhu C, Zhai Y, Wang D, Dong S. One-step, solvothermal synthesis of graphene-CdS and graphene-ZnS quantum dot nanocomposites and their interesting photovoltaic properties. Nano Research,2010,3:794~799
    [123]Wu J, Bai S, Shen X, Jiang L. Preparation and characterization of graphene/CdS nanocomposites. Applied Surface Science,2010,257:747~751
    [124]Xue L, Shen C, Zheng M, Lu H, Li N, Ji G, Pan L, Cao J. Hydrothermal synthesis of graphene-ZnS quantum dot nanocomposites. Materials Letters,2011,65:198~200
    [125]Farrow B, Kamat PV. CdSe quantum dot sensitized solar cells. shuttling electrons Through stacked carbon nanocups. Journal of the American Chemical Society,2009, 131:11124~11131
    [126]Kim Y T, Han J H, Hong B H, Kwon Y U. Electrochemical synthesis of CdSe quantum-dot arrays on a graphene basal plane using mesoporous silica thin-film templates. Advanced Materials,2009,4:515~518
    [127]Geng X, Niu L, Xing Z, Song R, Liu G, Sun M, Cheng G, Zhong H, Liu Z, Zhang Z, Sun L, Xu H, Lu L, Liu L. Aqueous-processable noncovalent chemically converted graphene-quantum dot composites for flexible and transparent optoelectronic films. Advanced Materials,2010,22:638-642
    [128]Lin Y, Zhang K, Chen W, Liu Y, Geng Z, Zeng J, Pan N, Yan L, Wang X, Hou JG. Dramatically enhanced photoresponse of reduced graphene oxide with linker-free anchored CdSe nanoparticles. ACS Nano,2010,4:3033~3038
    [129]Zedan A F, Sappal S, Moussa S, El-Shall M S. Ligand-controlled microwave synthesis of cubic and hexagonal CdSe nanocrystals supported on graphene. photoluminescence quenching by graphene. The Journal of Physical Chemistry C,2010,114:19920~19927
    [130]Wang Y, Yao H B, Wang X H, Yu S H. One-pot facile decoration of CdSe quantum dots on graphene nanosheets:novel graphene-CdSe nanocomposites with tunable fluorescent properties. Journal of Materials Chemistry,2011,21:562~566
    [131]Wu X J, Zeng X C. Periodic graphene nanobuds. Nano Letters,2009,9:250~256
    [132]Lee D H, Kim J E, Han T H, Hwang J W, Jeon S, Choi S Y, Hong S H, Lee W J, Ruoff R S, Kim S O.Versatile carbon hybrid films composed of vertical carbon nanotubes grown on mechanically compliant graphene films. Advance Materials,2010,22:1247~1252
    [133]Cai D, Song M, Xu C. Highly conductive carbon-nanotube/graphite-oxide hybrid films. Advance Materials,2008,20:1706~1709
    [134]Yoo E, Kim J, Hosono E, Zhou H, Kudo T, Honma I. Large reversible Li storage of graphene nanosheet families for use in rechargeable lithium ion batteries. Nano Letters,2008, 8:2277~2282
    [135]Tung V C, Chen L M, Allen M J, Wassei J K, Nelson K, Kaner R B, Yang Y. Low-temperature solution processing of graphene-carbon nanotube hybrid materials for high-performance transparent conductors. Nano Letters,2009,9:1949~1955
    [136]Zhang X Y, Huang Y, Wang Y, Ma Y F, Liu Z F, Chen Y S. Synthesis and characterization of a graphene-C6o hybrid material. Carbon,2009,47:334~337
    [137]Kue A, Zheehkov L, Patehkovskii S, Seifert G, Heine T. Hydrogen sieving and storage in fullerene intercalated graphite. Nano Letters,2007,7:1~5
    [138]Yan J, Wei T, Shao B, Ma F, Fan Z, Zhang M, Zheng C, Shang Y, Qian W, Wei F. Electrochemical properties of graphene nanosheet/carbon black composites as electrodes for supercapacitors. Carbon,2010,48:1731~1737
    [1]Katsnelson M I. Graphene:carbon in two dimensions. Materials Today,2007,10:20~27
    [2]Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M I, Grigorieva I V, Dubonos S V, Firsov A A. Two-dimensional gas of massless Dirac fermions in graphene. Nature,2005,438:197~200
    [3]Geim A K, Novoselov K S. The rise of graphene. Nature Materials,2007,6:183~191
    [4]Castro Neto A H, Guinea F, Peres N M R, Novoselov K S, Geim A K. The electronic properties of graphene. Reviews of Modern Physics,2009,81:109~162
    [5]Gilje S, Han S, Wang M, Wang K L, Kaner R B. A chemical route to graphene for device applications. Nano Letters,2007,7:3394~3398
    [6]Wu J, Pisula W, Mullen K. Graphenes as potential material for electronics. Chemical Reviews,2007,107:718~747
    [7]Iijima S. Helical microtubules of graphitic carbon. Nature,1991,354:56~58
    [8]Ebbesen T W, Lezec H J, Hiura H, Bennett J W, Ghaemi H F, Thio T. Electrical conductivity of individual carbon nanotubes. Nature,1996,382:54~56
    [9]Dai H, Wong E W, Lieber C M. Probing electrical transport in nanomaterials:conductivity of individual carbon nanotubes. Science,1996,272:523~526
    [10]Odom T W, Huang J L, Kim P, Lieber C M. Atomic structure and electric properties of single walled carbon nanotubes. Nature,1998,391:62~64
    [11]Berber S, Kwon Y K, Tomanek D. Unusually high thermal conductivity of carbon nanotubes. Physical Review Letters,2000,84:4613~4616
    [12]Kasumov A Y, Deblock R, Kociak M, Reulet B, Bouchiat H, Khodos I I, Gorbatov Y B, Volkov V T, Journet C, Burghard M. Supercurrents through single-walled carbon nanotubes. Science,1999,284:1508~1511
    [13]Jitianu A, Cacciaguerra T, Benoit R, Delpeux S, Beuin F, Bonnamy S. Synthesis and characterization of carbon nanotubes-TiO2 nanocomposites. Carbon,2004,42:1147~1151
    [15]An G, Yu P, Xiao M, Liu Z, Miao Z, Ding K, Mao L. Low-temperature synthesis of Mn3O4 nanoparticles loaded on multi-walled carbon nanotubes and their application in electrochemical capacitors. Nanotechnology,2008,19:275709
    [16]Lee J Y, Liang K, An K H, Lee Y H. Nickle oxide/carbon nanotubes nanocomposite for electrochemical capacitance. Synthetic Metals,2005,150:153~157
    [17]Ye J, Cui H F, Liu X, Lim T M, Zhang W, Sheu F. Preparation and characterization of aligned carbon nanotube-ruthenium oxide nanocomposites for supercapacitors. Small,2005, 1:560~565
    [18]Fu L, Liu Z, Liu Y, Han B, Hu P, Cao L, Zhu D. Beaded cobalt oxide nanoparticles along carbon nanotubes:towards more highly integrated electronic devices. Advanced Materials, 2005,17:217~221
    [19]Jiang L Q, Gao L. Carbon nanotubes-magnetite nanocomposites from solvothermal processes:formation, characterization, and enhanced electrical properties. Chemistry of Materials,2003,15:2848~2853
    [20]Li D, Kaner R B. Materials science:Graphene-based materials. Science,2008, 320:1170~1171
    [21]Ajayan P M, Ebbesen T W, Ichihashi T, Iijima S, Tanigaki K, Hiura H. Opening carbon nanotubes with oxygen and implications for filling. Nature,1993,362:522~525
    [22]Ebbesen T W, Ajayan P M, Tanigaki K. Purification of nanotubes. Nature,1994,367:519
    [23]Hiura H, Ebbesen T W, Tanigaki K. Opening and purification of carbon nanotubes in high yields. Advanced Materials,1995,7:275~276
    [24]Li D, Muller M B, Gilje S, Kaner R B, Wallace G G. Processable aqueous dispersions of graphene nanosheets. Nature Nanotechnology,2008,3:101~105
    [25]王玉新.功能性纳米ZnO的调控制备、表征及其光催化性能研究.博士学位论文,2008
    [26]朱路平,黄文娅,马丽丽,傅绍云,余颖,贾志杰. ZnO-CNTs纳米复合材料的制备及性能表征.物理化学学报,2006,22:1175~1180
    [27]Kim H, Sigmund W. Zinc oxide nanowires on carbon nanotubes. Applied Physics Letters,2002,81:2085
    [28]Sun J, Gao L, Iwasa M. Noncovalent attachment of oxide nanoparticles onto carbon nanotubes using water-in-oil microemulsions. Chemical Communications,2004,10:832~833
    [29]Jiang L, Gao L. Fabrication and characterization of ZnO-coated multi-walled carbon nanotubes with enhanced photocatalytic activity. Materials Chemistry and Physics,2005, 91:313~316
    [30]Liu J W, Li X J, Dai L M. Water-assisted growth of aligned carbon nanotube-ZnO heterojunction arrays. Advanced Materials,2006,18:1740
    [31]Zhu Y, Elim H I, Foo Y L, Yu T, Liu Y, Ji W, Lee J Y, Shen Z, Wee A T S, Thong J T L, Sow C H. Multiwalled carbon nanotubes beaded with ZnO nanoparticles for ultrafast nonlinear optical switching. Advanced Materials,2006,18:587~592
    [32]Vietmeyer F, Seger B, Kamat P V. Anchoring ZnO particles on functionalized single wall carbon nanotubes. Excited state interactions and charge collection. Advanced Materials, 2007,19:2935~2940
    [33]Dutta M, Basak D. Multiwalled carbon nanotubes/ZnO nanowires composite structure with enhanced ultraviolet emission and faster ultraviolet response. Chemical Physics Letters, 2009,480:253~257
    [34]Zhang N, Sun J, Jiang D, Feng T, Li Q. Anchoring zinc oxide quantum dots on functionalized multi-walled carbon nanotubes by covalent coupling. Carbon,2009, 47:1214~1219
    [35]Hummers W S, Offeman R E. Preparation of graphitic oxide. Journal of the American Chemical Society,1958,80:1339
    [36]Kovtyukhova N I, Ollivier P J, Martin B R, Mallouk T E, Chizhik S A, Buzaneva E V, Gorchinskiy A D. Layer-by-Layer assembly of ultrathin composite films from micron-sized graphite oxide sheets and polycations. Chemistry of Materials,1999,11:771~778
    [37]Xu C, Wang X, Zhu J. Graphene-Metal particle nanocomposites. Journal of Physical Chemistry C,2008,112:19841~19845
    [38]Cai D Y, Song M. Preparation of fully exfoliated graphite oxide nanoplatelets in organic solvents. Journal of Materials Chemistry,2007,17:3678~3680
    [39]Stankovich S, Piner R D, Nguyen S T, Ruoff R S. Synthesis and exfoliation of isocyanate treated graphene oxide nanoplatelets. Carbon,2006,44:3342~3347
    [40]Lepot N, Van Bael M K, Van den Rul H, D'Haen J, Peeters R, Franco D, Mullens J. Synthesis of ZnO nanorods from aqueous solution. Materials Letters,2007,61:2624~2627
    [41]Rao C N R, Sood A K, Subrahmanyam K S, Govindaraj A. Graphene:The new two-dimensional nanomaterial. Angewandte Chemie-International Edition,2009,48:7752~7777
    [42]Ferrari A C, Meyer J C, Scardaci V, Casiraghi C, Lazzeri M, Mauri F, Piscanec S, Jiang D, Novoselov K S, Roth S, Geim A K. Raman spectrum of graphene and graphene layers. Physical Review Letters,2006,97:187401~187404
    [1]Stankovich S, Piner R D, Nguyen S T, Ruoff R S. Synthesis and exfoliation of isocyanate-treated graphene oxide nanoplatelets. Carbon,2006,44:3342~3347
    [2]Stankovich S, Piner R D, Chen X, Wu N, Nguyen S T, Ruoff R S. Stable aqueous dispersions of graphitic nanoplatelets via the reduction of exfoliated graphite oxide in the presence of poly(sodium 4-styrenesulfonate). Journal of Materials Chemistry,2006, 16:155~158
    [3]Li D, Muller M B, Gilje S, Kaner R B, Wallace G G. Processable aqueous dispersions of graphene nanosheets. Nature Nanotechnology,2008,3:101~105
    [4]Park S, An J, Jung I, Piner R D, An S J, Li X, Velamakanni A, Ruoff R S. Colloidal suspensions of highly reduced graphene oxide in a wide variety of organic solvents. Nano Letters,2009,9:1593~1597
    [5]Wu J, Shen X, Jiang L, Wang K, Chen K. Solvothermal synthesis and characterization of sandwich-like graphene/ZnO nanocomposites. Applied Surface Science,2010,256: 2826~2830
    [6]Pasricha R, Gupta S, Srivastava A K. A facile and novel synthesis of Ag-graphene-based nanocomposites.Small,2009,5:2253~2259
    [7]Goncalves G, Marques P A A P, Granadeiro C M, Nogueira H I S, Singh M K, Gracio J. Surface modification of graphene nanosheets with gold nanoparticles:the role of oxygen moieties at graphene surface on gold nucleation and growth. Chemistry of Materials,2009, 21:4796~4802
    [8]Park S, An J, Piner R D, Jung I, Yang D, Velamakanni A, Nguyen S T, Ruoff R S. Aqueous suspension and characterization of chemically modified graphene sheets. Chemistry of Materials,2008,20:6592~6594
    [9]Stankovich S, Dikin D A, Dommett G H B, Kohlhaas K M, Zimney E J, Stach E A, Piner R D, Nguyen S T. Ruoff R S. Graphene-based composite materials. Nature,2006, 442:282~286
    [10]Stankovich S, Dikin D A, Piner R D, Kohlhaas K A, Kleinhammes A, Jia Y, Wu Y, Nguyen S T, Ruoff R S. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon,2007,45:1558~1565
    [11]Wang G X, Yang J, Park J, Gou X L, Wang B, Liu H, Yao J. Facile synthesis and characterization of graphene nanosheets. The Journal of Physical Chemistry C,2008,112: 8192~8195
    [12]Ryan M, Seger B, Kamat P V. Decorating graphene sheets with gold nanoparticles. The Journal of Physical Chemistry C,2008,112:5263~5266
    [13]Seger B, Kamat P V. Electrocatalytically active graphene-platinum nanocomposites. role of 2-D carbon support in PEM fuel cells. The Journal of Physical Chemistry C, 2009,113:7990~7995
    [14]Wang G X, Wang B, Wang X L, Park J, Dou S X, Ahn H J, Kim K. Sn/graphene nanocomposite with 3D architecture for enhanced reversible lithium storage in lithium ion batteries. Journal of Materials Chemistry,2009,19:8378~8384
    [15]Lee J M, Pyun Y B, Yi J, Choung J, Park W I. ZnO nanorod-graphene hybrid architectures for multifunctional conductors. The Journal of Physical Chemistry C,2009, 113:19134~19138
    [16]Zheng W T, Ho Y M, Tian H W, Wen M, Qi J L, Li Y A. Field emission from a composite of graphene sheets and ZnO nanowires. Journal of Physical Chemistry C,2009, 113:9164~9168
    [17]Zhang Y, Li H, Pan L, Lu T, Sun Z. Capacitive behavior of graphene-ZnO composite film for supercapacitors. Journal of Electroanalytical Chemistry,2009,634:68~71
    [18]Meulenkamp E A. Synthesis and growth of ZnO nanoparticles. Journal of Physical Chemistry B,1998,102:5566~5572
    [19]Sun X M, Chen X, Deng Z X, Li Y D. A CTAB-assisted hydrothermal orientation growth of ZnO nanorods. Materials Chemistry and Physics,2003,78:99~104
    [20]Lepot N, Van Bael M K, Van den Rul H, D'Haen J, Peeters R, Franco D, Mullens J. Synthesis of ZnO nanorods from aqueous solution. Materials Letters,2007,61:2624~2627
    [21]Lambert T N, Chavez C A, Hernandez-Sanchez B, Lu P, Bell N S, Ambrosini A, Friedman T, Boyle T J, Wheeler D R, Huber D L. Synthesis and characterization of titaniab graphene nanocomposites. The Journal of Physical Chemistry C,2009,113:19812~19823
    [22]Nethravathi C, Nisha T, Ravishankar N, Shivakumara C, Rajamathi M. Graphene-nanocrystalline metal sulphide composites produced by a one-pot reaction starting from graphite oxide. Carbon,2009,47:2054~2059
    [23]Chen S, Zhu J, Huang H, Zeng G, Nie F, Wang X. Facile solvothermal synthesis of graphene-MnOOH nanocomposites. Journal of Solid State Chemistry,2010,183:2552~2557
    [24]Xue L, Shen C, Zheng M, Lu H, Li N, Ji G, Pan L, Cao J. Hydrothermal synthesis of graphene-ZnS quantum dot nanocomposites. Materials Letters,2011,65:198~200
    [25]Kovtyukhova N I, Ollivier P J, Martin B R, Mallouk T E, Chizhik S A, Buzaneva E V, Gorchinskiy A D. Layer-by-Layer assembly of ultrathin composite films from micron-sized graphite oxide sheets and polycations. Chemistry of Materials,1999,11:771~778
    [26]Jiang L, Gao L. Fabrication and characterization of ZnO-coated multi-walled carbon nanotubes with enhanced photocatalytic activity. Materials Chemistry and Physics,2005, 91:313~316
    [27]Lepot N, Van Bael M K, Van den Rul H, D'Haen J, Peeters R, Franco D, Mullens J. Synthesis of ZnO nanorods from aqueous solution. Materials Letters,2007,61:2624~2627
    [28]Rao C N R, Sood A K, Subrahmanyam K S, Govindaraj A. Graphene:the new two-dimensional nanomaterial. Angewandte Chemie-International Edition,2009, 48:7752~7777
    [29]Xu C, Wang X, Zhu J. Graphene-metal particle nanocomposites. Journal of Physical Chemistry C,2008,112:19841~19845
    [30]Liu J W, Li X J, Dai L M. Water-assisted growth of aligned carbon nanotube -ZnO heterojunction arrays. Advanced Materials,2006,18:1740~1744
    [31]Zhang N, Sun J, Jiang D, Feng T, Li Q. Anchoring zinc oxide quantum dots on functionalized multi-walled carbon nanotubes by covalent coupling. Carbon,2009, 47:1214~1219
    [32]Zhu Y, Elim H I, Foo Y L, Yu T, Liu Y, Ji W, Lee J Y, Shen Z, Wee A T S, Thong J T L, Sow C H. Multiwalled carbon nanotubes beaded with ZnO nanoparticles for ultrafast nonlinear optical switching. Advanced Materials,2006,18:587~592
    [1]Wang C B, Tang C W, Gau S J, Chien S H. Effect of the surface area of cobaltic oxide on carbon monoxide oxidation. Catalysis Letters,2005,101:59~63
    [2]Ichiyanagi Y, Kimishima Y, Yamada S. Magnetic study on Co3O4 nanoparticles. Journal of Magnetism and Magnetic Materials,2004,272-276:E1245-E1246
    [3]Wang G X, Chen Y, Konstantinov K, Yao J, Ahn J H, Liu H K, Dou S X. Nanosize cobalt oxides as anode materials for lithium-ion batteries. Journal of Alloys and Compounds,2002, 340:L5-L10
    [4]Yuan Z, Huang F, Feng C, Sun J, Zhou Y. Synthesis and electrochemical performance of nanosized Co3O4. Materials Chemistry and Physics,2003,79:1-4
    [5]Li W Y, Xu L N, Chen J.Co3O4 nanomaterials in lithiumion batteries and gas sensors. Advanced Functional Materials,2005,15:851~857
    [6]He T, Chen D R, Jiao X L. Controlled synthesis of Co3O4 nanopartieles through oriented aggregation. Chemistry of Materials,2004,16:737-743
    [7]Tomlinson W J, Easterlow A. Kinetics and microstructure of oxidation of CoO to Co sub 3 O sub 4 at 700-800 deg C. Journal of Physics and Chemistry of Solids,1985,46,151-513
    [8]禚林海.几种无机氧化物纳米管的液相合成、生长机理及其应用研究.博士学位论文,2008
    [9]Ardizzone S, Spinolo G, Trasatti S. The point of zero charge of Co3O4 prepared by thermal decomposition of basic cobalt carbonate. Electrochimca Acta,1995,40:2683~2686
    [10]Yang H M, Hu Y H, Zhang X C, Qiu G Z. Mechanochemical synthesis of cobalt oxide nanoparticles. Material Letters,2004,58:387~389
    [11]李亚栋,贺蕴普,李龙泉,钱逸泰.液相沉淀法制备Co3O4微粉.高等学校化学学报,1999,20:519~522
    [12]Bahlawane N, Rivera E F, Kohse-hoinghaus K, Brechling A, Kleineberg U. Characterization and tests of planar Co3O4 model catalysts prepared by chemical vapor deposition. Applied Catalysis B:Environmental,2004,53:245~255
    [13]Gautier J L, Rios E, Gracia M, Marco J F, Gancedo J R. Characterisation by X-ray photoelectron spectroscopy of thin MnxCo3-xO4(1≥x≥0) spinel films prepared by low-temperature spray pyrolysis. Thin Solid Films,1997,311:51~57
    [14]Cao J Z, Zhao Y C, Yang W, Tian J N, Guan F, Ma Y J. Sol-gel preparation and characterization of Co3O4 nanocrystals. Journal of University of Science and Technology Beijing,2003,10:54~57
    [15]Guan H Y, Shao C L, Wen S B, Chen B, Gong J, Yang X H. A novel method for preparing Co3O4 nanofibers by using electrospun PVA/cobalt acetate composite fibers as precursor. Materials Chemistry and Physics,2003,82:1002
    [16]张卫民,宋新宇,李大枝,俞海云,孙思修.水热条件对立方Co3O4形貌的影响.高等学校化学学报,2004,25:797~801
    [17]Jiang Y, Wu Y, Xie B, Xie Y, Qian Y T. Moderate temperature synthesis of nanocrystalline Co3O4 via gel hydrothermal oxidation. Materials Chemistry and Physics, 2002,74:234~237
    [18]Wang X, Chen X, Gao L, Zheng H, Zhang Z, Qian Y. One-dimensional arrays of Co3O4 nanoparticles:synthesis, characterization, and optical and electrochemical properties. The Journal of Physical Chemistry B,2004,108:16401~16404
    [19]Cote L J, Teja A S, Wilkinson A P, Zhang Z J. Continuous hydrothermal synthesis and crystallization of magnetic oxide nanoparticles. Journal of Materials Research,2002, 17:2410~2416
    [20]Hao Y, Teja A S. Continuous hydrothermal crystallization of α-Fe2O3 and Co3O4 nanoparticles. Journal of Materials Research,2003,18:415~422
    [21]Nethravathi C, Sen S, Ravishankar N, Rajamathi M, Pietzonka C, Harbrecht B. Ferrimagnetic nanogranular Co3O4 through solvothermal decomposition of colloidally dispersed monolayers of α-cobalt hydroxide. The Journal of Physical Chemistry B,2005, 109:11468~11472
    [22]He T, Chen D, Jiao X, Xu Y, Gu Y. Surfactant-assisted solvothermal synthesis of Co3O4 hollow spheres with oriented-aggregation nanostructures and tunable particle size. Langmuir, 2004,20:8404~8408
    [23]黄可龙,刘人生,杨幼平,刘素琴,王丽平.形貌可控的四氧化三钴溶剂热合成及反应机理.物理化学学报,2007,23:655~658
    [24]曾雯雯,黄可龙,杨幼平,刘素琴,刘人生.溶剂热法合成不同形貌的Co3O4及其电容特性.物理化学学报,2008,24:263~268
    [25]刘冬梅,赵海军,曹洁明,郑明波,刘劲松.溶剂热-热解法制备具有纳米孔结构的Co3O4.无机化学学报,2008,24:636~640
    [26]Wang G X, Shen X P, Yao J. One-dimensional nanostructures as electrode materials for lithium-ion batteries with improved electrochemical performanc. Journal of Power Source, 2009,189:543~546
    [27]Wang G X, Shen X P, Yao J, Wexler D, Ahn J H. Hydrothermal synthesis of carbon nanotube/cobalt oxide core-shell one-dimensional nanocomposite and application as anode material for lithium-ion batteries. Electrochemistry Communications,2009,11:546~549
    [28]Fu L, Liu Z, Liu Y, Han B, Hu P, Cao L, Zhu D. Beaded cobalt oxide nanoparticles along carbon nanotubes:towards more highly integraed electronic devices. Advanced Materials, 2005,17:217~221
    [29]Shan Y, Gao L. Formation and characterization of multi-walled carbon nanotubes/Co3O4 nanocomposites for supercapacitors. Materials Chemistry and Physics,2007,103:206~210
    [30]Kovtyukhova N I, Ollivier P J, Martin B R, Mallouk T E, Chizhik S A, Buzaneva E V, Gorchinskiy A D. Layer-by-Layer assembly of ultrathin composite films from micron-sized graphite oxide sheets and polycations. Chemistry of Materials,1999,11:771~778
    [31]Xu C, Wang X, Zhu J. Graphene-Metal particle nanocomposites. Journal of Physical Chemistry C,2008,112:19841~19845
    [32]Cai D Y, Song M. Preparation of fully exfoliated graphite oxide nanoplatelets in organic solvents. Journal of Materials Chemistry,2007,17:3678~3680
    [33]Geng B, Zhan F, Fang C, Yu N. A facile coordination compound precursor route to controlled synthesis of nanostructures and their room-temperature gas sensing properties. Journal of Materials Chemistry,2008,18:4977~4984
    [34]Xie X, Shen W. Morphology control of cobalt oxide nanocrystals for promoting their catalytic performance. Nanoscale,2009,1:50~60
    [35]He T, Chen D, Jiao X, Wang Y, Duan Y. Solubility-controlled synthesis of high quality Co3O4 nanocrystals. Chemistry of Materials,2005,17:4023~4030
    [36]Ai L H, Jiang J. Rapid synthesis of nanocrystalline Co3O4 by a microwave -assisted combustion method. Powder Technology,2009,195:11~14
    [37]Li W H. Micarowave-assisted hydrothermal synthesis and optical property of Co3O4 nanorods. Materials Letters,2008,62:4149~4151
    [38]Ferrari A C, Meyer J C, Scardaci V, Casiraghi C, Lazzeri M, Mauri F, Piscanec S, Jiang D, Novoselov K S, Roth S, Geim A K. Raman spectrum of graphene and graphene layers. Physical Review Letters,2006,97:187401~187404
    [39]Tripathy S K, Christy M, Park N H, Suh E K, Anand S, Yu Y T. Hydrothermal synthesis of single-crystalline nanocubes of Co3O4. Materials Letters,2008,62:1006~1009
    [40]Xu R, Zeng H C. Mechanistic Investigation on self-redox decompositions of cobalt-hydroxide-nitrate compounds with different nitrate anion configurations in interlayer space. Chemistry of Materials,2003,15:2040~2048
    [1]Caruso F, Caruso R A, Mhwald H. Nanoengineering of inorganic and hydrid hollow spheres by colloidal templating. Science,1998,282:1111~1114
    [2]Dinsmore A D, Hsu M F, Nikolaides M G, Marquez M, Bausch A R, Weitz D A. Colloidosomes:selectively permeable capsules composed of colloidl particles. Science,2002, 298:1006~1009
    [3]Sun Y, Xia Y. Shape-controlled synthesis of gold and silver nanoparticles. Science,2002, 298:2176~2179
    [4]Nakashima T, Kimizuka N. Interfacial synthesis of hollow TiO2 microspheres in ionic liquids. Journal of the American Chemical Society,2003,125:6386~6387
    [5]Guo C W, Cao Y, Xie S H, Dai W L, Fan K N. Fabricaiton of mesoporous core-shell structured titania microspheres with hollow interiors. Chemical Communications,2003, 700~701
    [6]Yang H G, Zeng H C. Preparation of hollow anatase TiO2 nanospheres via ostwald ripening. The Journal of Physical Chemistry B,2004,108:3492~3495
    [7]Kawahashi N, Matjevic E. Preparation of hollow spherical particles of yttrium compounds. Journal of Colloid Interface Science,1991,143:103~110
    [8]Kawahashi N, Shiho H. Copper and Copper oxide as coatings on polystyrene particles and as hollow spheres. Journal of Materials Chemistry,2000,10:2294~2297
    [9]Bourlinos A, Boukos N, Petridis D. Exchange resins in shape fabricaiton of hollow inorganic and carbonaceous-inorganic composite spheres. Advanced Materials,2002, 14:21~24
    [10]Antipov A A, Sukhorukov G B, Fedutik Y A, Hartmann J, Giersing M, Mohwald H. Fabrication of a novel type of metallized colloids and hollow capsules. Langmuir,2002, 18:6687~6693
    [11]Cornelissen J J L M, Connor E F, Kim H C, Lee V Y, Magibitang T M, Rice P M, Volksen W, Sundberg L K, Miller R D. Versatile synthesis of nanometer sized hollow silica spheres. Chemical Communications,2003,1:1010~1011
    [12]Yang Z, Niu Z, Lu Y, Hu Z, Han C C. Templated synthesis of inorganic hollow spheres with a tunable cavity size onto core-shell gel particles. Angewandte Chemie -International Edition,2003,42:1943~1945
    [13]Hiral T, Hariguchi S, Komasawa I, Davey R J. Biomimetic synthesis of calcium carbonate particles in a pseudovesicular double emulsion. Langmuir,1997,13:6650~6653
    [14]Landfester K. The generation of nanoparticles in miniemulsions. Advanced Materials, 2001,13:765~768
    [15]Wu M, Wang G, Xu H, Long J, Shek F L Y, Lo S M F, Williams I D, Feng S, Xu R. Hollow spheres based on mesostructured lead titanate with amorphous framework. Langmuir, 2003,19:1362~1367
    [16]Liu T, Xie Y, Chu B. Use of block copolymer micelles on formation of hollow MoO3 nanospheres. Langmuir,2000,16:9015~9022
    [17]Zhang D, Qi L, Ma J, Cheng H. Synthesis of submicrometer-sized hollow silver spheres in mixed polymer-surfactant solutions. Advanced Materials,2002,14:1499~1502
    [18]Ma Y, Qi L, Ma J, Cheng H. Facile synthesis of hollow ZnS nanoparticles in block copolymer solutions. Langumir,2003,19:4040~4042
    [19]Huang J, Xie Y, Li B, Liu Y, Qian Y, Zhang S. In-situ source-template-interface reaction route to semiconductor CdS submicrometer hollow spheres. Advanced Materials,2000, 12:808~811
    [20]Fowler C E, Khushalani D, Mann S. Facile synthesis of hollow silica microspheres. Journal of Materials Chemistry,2001,11:1968~1971
    [21]Hentze H P, Raghavan S R, Mckelvey C A, Kaler E W. Silica hollow spheres by templating of catanionic vesicles.Langmuir,2003,19:1069~1074
    [22]Schmidt H T, Ostafn A E. Liposome directed growth of calcium phosphate nanoshells. Advanced Materials,2002,14:532~535
    [23]He T, Chen D, Jiao X, Xu Y, Gu Y. Surfactant-assited solvothermal synthesis of Co3O4 hollow spheres with oriented-aggregation nanostructures and tunable particles size. Langmuir, 2004,20:8404~8408
    [24]Wu Z S, Ren W, Wen L, Gao L, Zhao J, Chen Z, Zhou G, Li F, Cheng H M. Graphene anchored with Co3O4 nanoparticles as anode of lithium ion batteries with enhanced reversible capacity and cyclic performance. ACS Nano,2010,4:3187~3194
    [25]Yang S, Cui G, Pang S, Cao Q, Kolb U, Feng X, Maier J, Mullen K. Fabrication of cobalt and cobalt oxide/graphene composites:towards high-performance anode materials for lithium ion batteries. ChemSusChem,2010,3:236~239
    [26]Chen S Q, Wang Y. Microwave-assisted synthesis of a Co3O4-graphene sheet-on-sheet nanocomposite as a superior anode material for Li-ion batteries. Journal of Materials Chemistry,2010,20:9735~9739
    [27]Yan J, Wei T, Qiao W, Shao B, Zhao Q, Zhang L, Fan Z. Rapid microwave -assisted synthesis of graphene nanosheet/Co3O4 composite for supercapacitors. Electrochimica Acta, 2010,55:6973~6978
    [28]Kim H, Seo D H, Kim S W, Kim J, Kang K. Highly reversible Co3O4/graphene hybrid anode for lithium rechargeable batteries. Carbon,2011,49:326~332
    [29]Kovtyukhova N I, Ollivier P J, Martin B R, Mallouk T E, Chizhik S A, Buzaneva E V, Gorchinskiy A D. Layer-by-Layer assembly of ultrathin composite films from micron-sized graphite oxide sheets and polycations. Chemistry of Materials,1999,11:771~778
    [30]Cai D Y, Song M. Preparation of fully exfoliated graphite oxide nanoplatelets in organic solvents. Journal of Materials Chemistry,2007,17:3678~3680
    [31]Christoskova S G, Stoyanova M, Georgieva M, Mehandjiev D. Preparation and Characterization of a higher cobalt oxide. Materials Chemistry and Physics,1999,60:39~43
    [32]Xu C, Wang X, Zhu J. Graphene-Metal particle nanocomposites. Journal of Physical Chemistry C,2008,112:19841~19845
    [33]Tripathy S K, Christy M, Park N H, Suh E K, Anand S, Yu Y T. Hydrothermal synthesis of single-crystalline nanocubes of Co3O4. Materials Letters,2008,62:1006~1009
    [34]He T, Chen D R, Jiao X L. Controlled synthesis of Co3O4 nanopartieles through oriented aggregation. Chemistry of Materials,2004,16:737-743
    [1]Oliva P, Leonatede J, Laurent J F, Delmas C, Braconnier J J, Figlarz M, Fievet F, Guibert A D. Review of the structure and the electrochemistry of nickel hydroxides and oxyhydroxides. Journal of Power Sources,1982,8:229-255
    [2]Cao L, Xu F, Liang Y Y, Li H L. Preparation of the novel nanocomposite Co(OH)2/ultra-stable Y Zeolite and its application as a supercapacitor with high energy density. Advanced Materials,2004,16:1953~1857
    [3]Mockenhaupt C, Zeiske T, Lutz H D. Crystal structure of brucite-type cobalt hydroxide β-Co{O(H, D)}2-neutron diffraction, IR and Raman spectroscopy. Journal of Molecular Structure,1998,443:191~196
    [4]Lang J W, Kong L B, Wu W J, Liu M, Luo Y C, Kang L. A facile approach to the preparation of loose-packed Ni(OH)2 nanoflake materials for electrochemical capacitors. Journal of Solid State Electrochemistry,2009,13:333~340
    [5]Patil U M, Gurav K V, Fulari V J, Lokhande C D, Joo O S. Characterization of honeycomb-like "β-Ni(OH)2" thin films synthesis by chemical bath deposition method and their supercapacitor application. Journal of Power Sources,2009,188:338~342
    [6]Yang G W, Xu C L, Li H L. Electrodeposited nickel hydroxide on nickel foam with ultrahigh capacitance. Chemical Communications,2008,6537~6539
    [7]姜长印,万春荣,张泉荣.高密度高活性球形氢氧化镍的制备与性能控制.电源技术,1997,21:243~247
    [8]Yuan C Z, Zhang X G, Gao B, Li J. Synthesis and electrochemical capacitance of mesoporous Co(OH)2. Materials Chemistry and Physics,2007,101:148~152
    [9]Ji Z, Wu J, Shen X, Zhou H, Xi H. Preparation and characterization of graphene/NiO nanocomposites. Journal of Materials Science,2011,46:1190~1195

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700