利用阳极氧化铝模板制备表面增强拉曼散射活性基底
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文针对目前表面增强拉曼散射(SERS)技术在应用中所面临的主要问题,即缺乏高活性、高稳定性和均匀性的SERS活性基底,利用高度有序的多孔阳极氧化铝膜(AAO)作为模板,制备具有优异性能的SERS活性基底;另外,在我们课题组关于半导体纳米材料SERS效应的研究基础上,合成氧化锌/银纳米复合物,研究半导体材料的复合对银的SERS效应的影响,取得了一些创新性成果,具体内容如下:
     (1)采用两步阳极氧化法制备了具有规则结构的多孔阳极氧化铝模板,对电化学抛光过程以及阳极氧化过程进行了电流随时间变化的监测,优化抛光条件,研究了阳极氧化过程。对制备的阳极氧化铝模板的细微结构进行详细研究,SEM表征发现这种方法所制备的模板表面呈现规则的凸起结构。
     (2)利用多孔氧化铝模板制备过程中得到的铝模板,采用磁控溅射方法,将铝模板的结构复制到溅射的银膜表面,得到超稳定性、具有极高抗氧化能力的SERS基底,对其结构进行了详细研究。研究吸附分子对这种有序结构的局域表面等离子体共振(LSPR)最大吸收峰的影响,SERS测试表明这种基底具有巨大的应用前景。
     (3)利用制备的多孔氧化铝模板,采用交流电化学沉积方法,将银纳米粒子填充到模板的孔道当中,得到具有三维结构的基底。SERS测试表明该基底具有较高的SERS增强能力,同时具有良好的均匀性、重复性以及稳定性;紫外-可见反射光谱可用来测定AAO膜的厚度,在沉积银之后的AAO模板的反射光谱中出现了干涉增强现象,这是由于银的LSPR所引起的。
     (4)制备了氧化锌/银纳米复合物,分析其形成机理;详细对比了单纯氧化锌与氧化锌/银纳米复合物的紫外-可见吸收光谱、荧光光谱和SERS光谱的变化,认为这些变化是由于银纳米粒子与氧化锌之间的电子转移引起的。
Surface-enhanced Raman scattering (SERS) spectroscopy is a powerful analytical tool for chemical and biological sensing applications due to its advantages of super-sensitivity and wealth of structural information on characteristic“fingerprint”signatures of analytes. But there are still some problems that block SERS to be a universal analytical tool, especially on quantitative analysis. One of the most important problems is the poor performance of SERS substrates. SERS is an optical phenomenon which is closely related with the substrates absorbing molecules and SERS signals are strongly dependent on the feature of substrates. Since the discovery of SERS, kinds of SERS substrates were prepared, including metal colloids, metal island films, ordered arrays, metal-metal or metal-semiconductor composite materials, and so on. Some of these substrates have shown great potential, but there is still some way to go, compared with ideal SERS substrates. Usually, an ideal SERS substrate suitable for quantitative analysis should possess advantages of high sensitivity, homogeneity, stability and purity. Making SERS substrates to satisfy these conditions as much as possible is the key of promoting SERS to be a reliable analytical tool. In the thesis, porous Anodic Aluminum Oxide (AAO) films with regular structure were used as templates to fabricate two-dimensional (2D) and there dimensional (3D) SERS substrates, and then the properties of these substrates were tested. The major contributions of this work are as follows:
     (1) Preparation of AAO templates and detail characterization on microstructure
     AAO templates with regular structure were prepared using a two-step anodization approach. During the electrochemical polishing process, changes of current with time were monitored. Electrochemical polishing was performed under 15V, 17V and 19V, respectively. AFM was performed to characterize polishing effect and results indicate that 17V is the most suitable for our preparation process. Changes of current with time were also monitored during anodization approach and step-step voltage decrement process. Anodization approach could be divided into three stages, including the formation of barrier, pore formation and stable growth process. In the step-step voltage decrement process, the thinning rate of barrier layer in each voltage range was different. Microstructure of anodic aluminum oxide templates before and after widening pores in phosphoric acid was investigated by AFM and SEM in detail. The top face of AAO templates takes on regularly convex structure, which is resulted from the uneven distribution of surface electric field. But after widening pores, the convex structure was disappeared due to corrosion.
     (2) Preparation of ultrastable 2D SERS substrates using AAO templates
     The aluminum substrate remained after the process of oxidation acted as the template to prepare SERS substrate. A layer of silver film was formed on aluminum substrate using magnetron sputtering method. Aluminum substrate was then peeled off and a layer of silver was obtained. The morphology of SERS substrate and aluminum substrates were studied in detail by AFM and SEM. Results show that the silver films replicated the structure of aluminum substrates perfectly, which took on ordered array of Ag spherical caps. Throughout the preparation process, the aluminum substrate not only acted as the patterned matrix, but also served as a coating that protected Ag from being oxidized. UV-vis reflection measurement was performed to monitor the adsorption process of probing molecules. Taking 4-mercaptopyridine as probing molecules, SERS spectra were investigated. Comparing with the ordinary Ag film, the patterned Ag layer exhibited better SERS activity. The ultrastability and regular nanostructure endow these substrates with great potential in SERS applications.
     (3) Preparation of 3D SERS substrates using AAO templates
     Highly ordered porous AAO templates were employed to construct SERS substrates. An alternating current (AC) electrochemical deposition was used to fill AAO templates with Ag nanoparticles. SEM characterization indicated that Ag nanoparticles were 10-20 nm in size and there were some short Ag nanowires. Taking 4-mercaptopyridine as probing molecules, SERS measurement was performed on substrates deposited for 30, 60, 120 and 180 s, respectively. High-quality SERS spectra were observed. The UV-vis mirror reflection spectra were measured to investigate the localized surface plasma resonance (LSPR) absorbance. An interesting phenomenon of LSPR-affected thin film interference was observed. SERS mapping was performed to characterize the homogeneity of as-prepared substrates. Good homogeneity and stability make these substrates good candidates for SERS spectroscopy.
     (4) Preparation and optical properties of ZnO/Ag nanocomposites
     At present, neither electromagnetic enhancement mechanism nor chemical enhancement mechanism could make a full explanation of SERS, which is closely related to the complex experimental conditions and also related to theoretical models and theoretical methods. Until now, there is not yet a unified theory to explain the underlying physical and chemical nature of SERS. Electromagnetic mechanism has long been considered to play the most important role in SERS enhancement, but in recent years, research on chemical enhancement mechanism proved that the chemical charge transfer mechanism play a major role in SERS enhancement of semiconductors. An enhancement of 104 was observed. These experiments conducted in semiconductors exclude interference of electromagnetic field and have great significance for understanding the nature of SERS. However, in most system, electromagnetic mechanism cannot be completely ruled out, so the further study of metal-semiconductor composite is very helpful for investigating the relationship between electromagnetic mechanism and chemical mechanism in complex systems.
     We prepare ZnO/Ag nanocomposites by trisodium citrate-reduction in light conditions. SEM characterization indicated that silver nanoparticles were found only in parts of the surface sites of ZnO and there were no independent silver particles. These indicated that ZnO induced sodium citrate to reduce silver nitrate. In UV-vis absorption spectra, the plasma band of Ag in ZnO/Ag nanocomposites red shifted and widened compared with the silver colloid. This is due to the electron transfer from Ag to ZnO. In photoluminescence spectra, UV emission of ZnO due to exciton recombination increased compared to pure ZnO under the same concentration. This is also resulted from the electron transfer from Ag to ZnO. In SERS spectra, enhancement of the individual b2 vibration mode is due to electron transfer.
引文
[1] Fleischmann M, Hendra P J, McQuillan A J. Raman spectra of pyridine adsorbed at a silver electrode[J]. Chemical Physics Letters, 1974, 26(2): 163-166.
    [2] Jeanmaire D L, Van Duyne R P. Surface raman spectroelectrochemistry: Part I. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode[J]. Journal of Electroanalytical Chemistry, 1977, 84(1): 1-20.
    [3] Albrecht M G, Creighton J A. Anomalously intense Raman spectra of pyridine at a silver electrode[J]. Journal of the American Chemical Society, 1977, 99(15): 5215-5217.
    [4]丁松园,吴德印,杨志林,等.表面增强拉曼散射增强机理的部分研究进展[J].高等学校化学学报, 2008, 29(12): 2569-2581.
    [5] Otto A. The 'chemical' (electronic) contribution to surface-enhanced Raman scattering[J]. Journal of Raman Spectroscopy, 2005, 36(6-7): 497-509.
    [6] Wood R. On a remarkable case of uneven distribution of light in diffraction grating problems[J]. Philosophical Magazine Series 6, 1902, 4(21): 396-402.
    [7] Fano U. The Theory of Anomalous Diffraction Gratings and of Quasi-Stationary Waves on Metallic Surfaces (Sommerfeld's Waves)[J]. Journal of the Optical Society of America, 1941, 31(3): 213-222.
    [8] Ritchie R H. Plasma Losses by Fast Electrons in Thin Films[J]. Physical Review, 1957, 106(5): 874-881.
    [9] Powell C J, Swan J B. Origin of the Characteristic Electron Energy Losses in Aluminum[J]. Physical Review, 1959, 115(4): 869-875.
    [10] Stern E A, Ferrell R A. Surface Plasma Oscillations of a Degenerate Electron Gas[J]. Physical Review, 1960, 120(1): 130-136.
    [11] Wark A W, Lee H J, Corn R M. Long-Range Surface Plasmon Resonance Imaging for Bioaffinity Sensors[J]. Analytical Chemistry, 2005, 77(13): 3904-3907.
    [12] Willets K A, Van Duyne R P. Localized Surface Plasmon Resonance Spectroscopy and Sensing[J]. Annual Review of Physical Chemistry, 2007, 58(1): 267-297.
    [13] Stewart M E, Anderton C R, Thompson L B, et al. Nanostructured plasmonic sensors[J]. Chemical Reviews, 2008, 108(2): 494-521.
    [14] Stiles P L, Dieringer J A, Shah N C, et al. Surface-Enhanced Raman Spectroscopy[J]. Annual Review of Analytical Chemistry, 2008, 1(1): 601-626.
    [15] Schatz G C, Van Duyne R P, Electromagnetic mechanism of surface enhanced spectroscopy. In Handbook of Vibrational Spectroscopy, Chalmers J M, Griffiths P R, ''Eds.' ; Wiley: New York, 2002;
    [16] Kreibig U, Vollmer M. Optical Properties of Metal Clusters[M]. Berlin: Springer, 1995.
    [17] Bohren C F, Huffman D R. Absorption and Scattering of Light by Small Particles[M]. New York: Wiley, 1983.
    [18] Mie G. Contributions to the optics of turbid media, especially colloidal metal solutions[J]. Ann. Phys., 1908, 25: 377-445.
    [19] Link S, El-Sayed M A. Spectral Properties and Relaxation Dynamics of Surface PlasmonElectronic Oscillations in Gold and Silver Nanodots and Nanorods[J]. The Journal of Physical Chemistry B, 1999, 103(40): 8410-8426.
    [20] Kelly K L, Coronado E, Zhao L L, et al. The Optical Properties of Metal Nanoparticles: The Influence of Size, Shape, and Dielectric Environment[J]. The Journal of Physical Chemistry B, 2003, 107(3): 668-677.
    [21] Draine B T, Flatau P J. Discrete-dipole approximation for scattering calculations[J]. Journal of the Optical Society of America A, 1994, 11(4): 1491-1499.
    [22] Yang W, Schatz G C, Van Duyne R P. Discrete dipole approximation for calculating extinction and Raman intensities for small particles with arbitrary shapes[J]. The Journal of Chemical Physics, 1995, 103(3): 869-875.
    [23] Taflove A. Computational Electrodynamics: The Finite-Difference Time Domain Method[M]. Boston: Artech House, 1995.
    [24] Hao E, Schatz G C. Electromagnetic fields around silver nanoparticles and dimers[J]. The Journal of Chemical Physics, 2004, 120(1): 357-366.
    [25] Camden J P, Dieringer J A, Zhao J, et al. Controlled Plasmonic Nanostructures for Surface-Enhanced Spectroscopy and Sensing[J]. Accounts of Chemical Research, 2008, 41(12): 1653-1661.
    [26] McFarland A D, Young M A, Dieringer J A, et al. Wavelength-Scanned Surface-Enhanced Raman Excitation Spectroscopy[J]. The Journal of Physical Chemistry B, 2005, 109(22): 11279-11285.
    [27] Zhang X, Young M A, Lyandres O, et al. Rapid Detection of an Anthrax Biomarker by Surface-Enhanced Raman Spectroscopy[J]. Journal of the American Chemical Society, 2005, 127(12): 4484-4489.
    [28] Lin X, Cui Y, Xu Y, et al. Surface-enhanced Raman spectroscopy: substrate-related issues[J]. Analytical and Bioanalytical Chemistry, 2009, 394(7): 1729-1745.
    [29]骆智训,方炎.表面增强拉曼散射光谱的应用进展[J].光谱学与光谱分析, 2006, 26(02): 358-364.
    [30] Mrozek M F, Weaver M J. Periodic Trends in Monoatomic Chemisorbate Bonding on Platinum-Group and Other Noble-Metal Electrodes As Probed by Surface-Enhanced Raman Spectroscopy[J]. Journal of the American Chemical Society, 2000, 122(1): 150-155.
    [31] Oklejas V, Sjostrom C, Harris J M. SERS Detection of the Vibrational Stark Effect from Nitrile-Terminated SAMs to Probe Electric Fields in the Diffuse Double-Layer[J]. Journal of the American Chemical Society, 2002, 124(11): 2408-2409.
    [32] Tolaieb B, Constantino C J L, Aroca R F. Surface-enhanced resonance Raman scattering as an analytical tool for single molecule detection[J]. Analyst, 2004, 129(4): 337-341.
    [33] Hering K, Cialla D, Ackermann K, et al. SERS: a versatile tool in chemical and biochemical diagnostics[J]. Analytical and Bioanalytical Chemistry, 2008, 390(1): 113-124.
    [34] Von Raben K U, Dorain P B, Chen T T, et al. No-2 and No-3 formation on oxygenated Ag Surfaces exposed to nitrogen oxide gases: a sers study[J]. Chemical Physics Letters, 1983, 95(3): 269-273.
    [35] Moskovits M, Suh J S. Surface selection rules for surface-enhanced Raman spectroscopy: calculations and application to the surface-enhanced Raman spectrum of phthalazine on silver[J]. The Journal of Physical Chemistry, 1984, 88(23): 5526-5530.
    [36] Moskovits M. Surface selection rules[J]. The Journal of Chemical Physics, 1982, 77(9):4408-4416.
    [37] Tian Z Q, Lian Y Z, Fleischmann M. In-situ raman spectroscopic studies on coadsorption of thiourea with anions at silver electrodes[J]. Electrochimica Acta, 1990, 35(5): 879-883.
    [38] Angel S M, Katz L F, Archibald D D, et al. Near-Infrared Surface-Enhanced Raman Spectroscopy. Part II: Copper and Gold Colloids[J]. Applied Spectroscopy, 1989, 43(3): 367-372.
    [39] Kneipp K, Kneipp H, Itzkan I, et al. Ultrasensitive Chemical Analysis by Raman Spectroscopy[J]. Chemical Reviews, 1999, 99(10): 2957-2976.
    [40] Pieczonka N P W, Aroca R F. Single molecule analysis by surfaced-enhanced Raman scattering[J]. Chemical Society Reviews, 2008, 37(5): 946-954.
    [41] Otto A. On the significance of Shalaev's "hot spots' in ensemble and single-molecule SERS by adsorbates on metallic films at the percolation threshold[J]. Journal of Raman Spectroscopy, 2006, 37(9): 937-947.
    [42] Kneipp K, Kneipp H, Bohr H G, Single-molecule SERS spectroscopy. In Surface-Enhanced Raman Scattering: Physics and Applications, Kneipp K, Moskovits M, Kneipp H, ''Eds.' ; Springer: 2006; pp 261-277
    [43] Van Duyne R P, Haushalter J P. Surface-enhanced Raman spectroscopy of adsorbates on semiconductor electrode surfaces: tris(bipyridine)ruthenium(II) adsorbed on silver-modified n-gallium arsenide(100)[J]. The Journal of Physical Chemistry, 1983, 87(16): 2999-3003.
    [44] Smith W E. Practical understanding and use of surface enhanced Raman scattering/surface enhanced resonance Raman scattering in chemical and biological analysis[J]. Chemical Society Reviews, 2008, 37(5): 955-964.
    [45] Graham D, Goodacre R. Chemical and bioanalytical applications of surface enhanced Raman scattering spectroscopy[J]. Chemical Society Reviews, 2008, 37(5): 883-884.
    [46] Han X X, Kitahama Y, Itoh T, et al. Protein-Mediated Sandwich Strategy for Surface-Enhanced Raman Scattering: Application to Versatile Protein Detection[J]. Analytical Chemistry, 2009, 81(9): 3350-3355.
    [47] Han X X, Huang G G, Zhao B, et al. Label-Free Highly Sensitive Detection of Proteins in Aqueous Solutions Using Surface-Enhanced Raman Scattering[J]. Analytical Chemistry, 2009, 81(9): 3329-3333.
    [48] Han X X, Zhao B, Ozaki Y. Surface-enhanced Raman scattering for protein detection[J]. Analytical and Bioanalytical Chemistry, 2009, 394(7): 1719-1727.
    [49] Han X X, Cai L J, Guo J, et al. Fluorescein isothiocyanate linked immunoabsorbent assay based on surface-enhanced resonance Raman scattering[J]. Analytical Chemistry, 2008, 80(8): 3020-3024.
    [50] Han X X, Jia H Y, Wang Y F, et al. Analytical technique for label-free multi-protein detection-based on Western blot and surface-enhanced Raman scattering[J]. Analytical Chemistry, 2008, 80(8): 2799-2804.
    [51] Han X X, Kitahama Y, Tanaka Y, et al. Simplified protocol for detection of protein-ligand interactions via surface-enhanced resonance Raman scattering and surface-enhanced fluorescence[J]. Analytical Chemistry, 2008, 80(17): 6567-6572.
    [52] Shah N C, Lyandres O, Jr. Walsh J T, et al. Lactate and sequential lactate-glucose sensing using surface-enhanced Raman spectroscopy[J]. Analytical Chemistry, 2007, 79(18): 6927-6932.
    [53] Yonzon C R, Lyandres O, Shah N C, et al, Glucose sensing with surface-enhanced Raman spectroscopy. In Surface-Enhanced Raman Scattering: Physics and Applications, Kneipp K,Moskovits M, Kneipp H, ''Eds.' ; Springer: 2006; pp 367-379
    [54] Stuart D A, Yuen J M, Lyandres N S O, et al. In vivo glucose measurement by surface-enhanced Raman spectroscopy[J]. Analytical Chemistry, 2006, 78(20): 7211-7215.
    [55] Tian Z, Ren B, Wu D. Surface-Enhanced Raman Scattering: From Noble to Transition Metals and from Rough Surfaces to Ordered Nanostructures[J]. The Journal of Physical Chemistry B, 2002, 106(37): 9463-9483.
    [56] Xia Y, Xiong Y, Lim B, et al. Shape-Controlled Synthesis of Metal Nanocrystals: Simple Chemistry Meets Complex Physics?[J]. Angewandte Chemie International Edition, 2009, 48(1): 60-103.
    [57] Kneipp K, Wang Y, Kneipp H, et al. Single Molecule Detection Using Surface-Enhanced Raman Scattering (SERS)[J]. Physical Review Letters, 1997, 78(9): 1667-1670.
    [58] Freeman R G, Grabar K C, Allison K J, et al. Self-Assembled Metal Colloid Monolayers: An Approach to SERS Substrates[J]. Science, 1995, 267(5204): 1629-1632.
    [59] Tao A R, Huang J, Yang P. Langmuir?Blodgettry of Nanocrystals and Nanowires[J]. Accounts of Chemical Research, 2008, 41(12): 1662-1673.
    [60] Mulvihill M, Tao A, Benjauthrit K, et al. Surface-Enhanced Raman Spectroscopy for Trace Arsenic Detection in Contaminated Water[J]. Angewandte Chemie International Edition, 2008, 47(34): 6456-6460.
    [61] Mahajan S, Abdelsalam M, Suguwara Y, et al. Tuning plasmons on nano-structured substrates for NIR-SERS[J]. Physical Chemistry Chemical Physics, 2007, 9(1): 104-109.
    [62] Marquestaut N, Martin A, Talaga D, et al. Raman Enhancement of Azobenzene Monolayers on Substrates Prepared by Langmuir?Blodgett Deposition and Electron-Beam Lithography Techniques[J]. Langmuir, 2008, 24(19): 11313-11321.
    [63] Gunnarsson L, Bjerneld E J, Xu H, et al. Interparticle coupling effects in nanofabricated substrates for surface-enhanced Raman scattering[J]. Applied Physics Letters, 2001, 78(6): 802-804.
    [64] Wu D, Li J, Ren B, et al. Electrochemical surface-enhanced Raman spectroscopy of nanostructures[J]. Chemical Society Reviews, 2008, 37(5): 1025-1041.
    [65] Natan M J. Concluding remarks - Surface enhanced Raman scattering[J]. Faraday Discussions, 2006, 132: 321-328.
    [66] Jessensky O, Muller F, Gosele U. Self-organized formation of hexagonal pore arrays in anodic alumina[J]. Applied Physics Letters, 1998, 72(10): 1173-1175.
    [67] Yi-kun S, Cheng-min S, Hai-tao Y, et al. Controlled synthesis of highly ordered CuO nanowire arrays by template-based sol-gel route[J]. Transactions of Nonferrous Metals Society of China, 2007, 17(4): 783-786.
    [68] Chik H, Liang J, Cloutier S G, et al. Periodic array of uniform ZnO nanorods by second-order self-assembly[J]. Applied Physics Letters, 2004, 84(17): 3376-3378.
    [69] Zhu R, Pang Y T, Feng Y S, et al. Fabrication and magnetic behaviour of Co film with ordered nanodot arrays[J]. Chemical Physics Letters, 2003, 368(5-6): 696-700.
    [70] Lai M, Riley D J. Templated electrosynthesis of nanomaterials and porous structures[J]. Journal of Colloid and Interface Science, 2008, 323(2): 203-212.
    [71] Routkevitch D, Bigioni T, Moskovits M, et al. Electrochemical Fabrication of CdS Nanowire Arrays in Porous Anodic Aluminum Oxide Templates[J]. The Journal of Physical Chemistry, 1996, 100(33): 14037-14047.
    [72] Liang J, Chik H, Xu J. Nonlithographic fabrication of lateral superlattices for nanometric electromagnetic-optic applications[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2002, 8(5): 998-1008.
    [73] Miao Z, Xu D, Ouyang J, et al. Electrochemically Induced Sol?Gel Preparation of Single-Crystalline TiO2 Nanowires[J]. Nano Letters, 2002, 2(7): 717-720.
    [74] Wang Y D, Chua S J, Sander M S, et al. Fabrication and properties of nanoporous GaN films[J]. Applied Physics Letters, 2004, 85(5): 816-818.
    [75] Gao H, Mu C, Wang F, et al. Field emission of large-area and graphitized carbon nanotube array on anodic aluminum oxide template[J]. Journal of Applied Physics, 2003, 93(9): 5602-5605.
    [76] Park J, Oh J K, Kwon K W, et al. Improved light output of photonic crystal light-emitting diode fabricated by anodized aluminum oxide nano-patterns[J]. IEEE Photonics Technology Letters, 2008, 20(4): 321-323.
    [77] Zhao Q, Wen G H, Liu Z G, et al. High-density, vertically aligned crystalline CrO2 nanorod arrays derived from chemical vapor deposition assisted by AAO templates[J]. Chemical Communications, 2009, (26): 3949-3951.
    [78] Eichfeld S M, Ho T T, Eichfeld C M, et al. Resistivity measurements of intentionally and unintentionally template-grown doped silicon nanowire arrays[J]. Nanotechnology, 2007, 18(31): 315201.
    [79] Ruan C, Eres G, Wang W, et al. Controlled fabrication of nanopillar arrays as active substrates for surface-enhanced Raman spectroscopy[J]. Langmuir, 2007, 23(10): 5757-5760.
    [80] Gu G H, Kim J, Kim L, et al. Optimum length of silver nanorods for fabrication of hot spots[J]. The Journal of Physical Chemistry C, 2007, 111(22): 7906-7909.
    [81] Wang H H, Liu C Y, Wu S B, et al. Highly Raman-enhancing substrates based on silver nanoparticle arrays with tunable sub-10 nm gaps[J]. Advanced Materials, 2006, 18(4): 491-495.
    [82] Lu Z, Ruan W, Yang J, et al. Deposition of Ag nanoparticles on porous anodic alumina for surface enhanced Raman scattering substrate[J]. Journal of Raman Spectroscopy, 2009, 40(1): 112-116.
    [83] Ko H, Tsukruk V V. Nanoparticle-Decorated Nanocanals for Surface-Enhanced Raman Scattering[J]. Small, 2008, 4(11): 1980-1984.
    [84] Ko H, Chang S, Tsukruk V V. Porous Substrates for Label-Free Molecular Level Detection of Nonresonant Organic Molecules[J]. ACS Nano, 2009, 3(1): 181-188.
    [85] Zhang C, Smirnov A I, Hahn D, et al. Surface enhanced Raman scattering of biospecies on anodized aluminum oxide films[J]. Chemical Physics Letters, 2007, 440(4-6): 239-243.
    [86] Zhang C, Abdijalilov K, Grebel H. Surface enhanced Raman with anodized aluminum oxide films[J]. The Journal of Chemical Physics, 2007, 127(4): 44701.
    [87] Masuda H, Fukuda K. Ordered Metal Nanohole Arrays Made by a Two-Step Replication of Honeycomb Structures of Anodic Alumina[J]. Science, 1995, 268(5216): 1466-1468.
    [88] Masuda H, Kanezawa K, Nishio K. Fabrication of Ideally Ordered Nanohole Arrays in Anodic Porous Alumina Based on Nanoindentation Using Scanning Probe Microscope[J]. Chemistry Letters, 2002, 31(12): 1218-1219.
    [89] Liu C Y, Datta A, Wang Y L. Ordered anodic alumina nanochannels on focused-ion-beam-prepatterned aluminum surfaces[J]. Applied Physics Letters, 2001, 78(1): 120-122.
    [90] Masuda H, Yamada H, Satoh M, et al. Highly ordered nanochannel-array architecture inanodic alumina[J]. Applied Physics Letters, 1997, 71(19): 2770-2772.
    [91] Masuda H, Matsui Y, Yotsuya M, et al. Fabrication of Highly Ordered Anodic Porous Alumina Using Self-organized Polystyrene Particle Array[J]. Chemistry Letters, 2004, 33(5): 584-585.
    [92] Wu H, Zhang X, Hebert K R. Atomic Force Microscopy Study of the Initial Stages of Anodic Oxidation of Aluminum in Phosphoric Acid Solution[J]. Journal of The Electrochemical Society, 2000, 147(6): 2126-2132.
    [93] Datta M, Vercruysse D. Transpassive Dissolution of 420 Stainless Steel in Concentrated Acids under Electropolishing Conditions[J]. Journal of The Electrochemical Society, 1990, 137(10): 3016-3023.
    [94] Brevnov D A, Barela M, Piyasena M E, et al. Patterning of Nanoporous Anodic Aluminum Oxide Arrays by Using Sol?Gel Processing, Photolithography, and Plasma Etching[J]. Chemistry of Materials, 2004, 16(4): 682-687.
    [95] Yuan J H, He F Y, Sun D C, et al. A Simple Method for Preparation of Through-Hole Porous Anodic Alumina Membrane[J]. Chemistry of Materials, 2004, 16(10): 1841-1844.
    [96] Zhao Y, Chen M, Zhang Y, et al. A facile approach to formation of through-hole porous anodic aluminum oxide film[J]. Materials Letters, 2005, 59(1): 40-43.
    [97] Sulka G D, Highly Ordered Anodic Porous Alumina Formation by Self-Organized Anodizing. In Nanostructured Materials in Electrochemistry , 1st ed.; Eftekhari A, 'Ed.' ; Wiley-VCH: 2008; pp 1-116
    [98] Sui Y, Saniger J M. Characterization of anodic porous alumina by AFM[J]. Materials Letters, 2001, 48(3-4): 127-136.
    [99]姚素薇,张璐,孔亚西,等.铝阳极氧化膜纳米孔阵列的微细结构[J].材料研究学报, 2005, (06): 567-572.
    [100] Zhang X Y, Zhao J, Whitney A V, et al. Ultrastable substrates for surface-enhanced Raman spectroscopy: Al2O3 overlayers fabricated by atomic layer deposition yield improved anthrax biomarker detection[J]. Journal of the American Chemical Society, 2006, 128(31): 10304-10309.
    [101] Yonzon C R, Haynes C L, Zhang X Y, et al. A glucose biosensor based on surface-enhanced Raman scattering: Improved partition layer, temporal stability, reversibility, and resistance to serum protein interference[J]. Analytical Chemistry, 2004, 76(1): 78-85.
    [102] Banholzer M J, Millstone J E, Qin L, et al. Rationally designed nanostructures for surface-enhanced Raman spectroscopy[J]. Chemical Society Reviews, 2008, 37(5): 885-897.
    [103] Tripp R A, Dluhy R A, Zhao Y. Novel nanostructures for SERS biosensing[J]. Nano Today, 2008, 3(3-4): 31-37.
    [104] Hulteen J C, Duyne R P V. Nanosphere lithography: A materials general fabrication process for periodic particle array surfaces[J]. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 1995, 13(3): 1553-1558.
    [105] Hering K, Cialla D, Ackermann K, et al. SERS: a versatile tool in chemical and biochemical diagnostics[J]. Analytical and Bioanalytical Chemistry, 2008, 390(1): 113-124.
    [106] Lyandres O, Shah N C, Yonzon C R, et al. Real-time glucose sensing by surface-enhanced Raman spectroscopy in bovine plasma facilitated by a mixed decanethiol/mercaptohexanol partition layer[J]. Analytical Chemistry, 2005, 77(19): 6134-6139.
    [107] Stuart D A, Yonzon C R, Zhang X Y, et al. Glucose sensing using near-infraredAnalytical Chemistry, 2005, 77(13): 4013-4019.
    [108] Yonzon C R, Haynes C L, Zhang X Y, et al. A glucose biosensor based on surface-enhanced Raman scattering: Improved partition layer, temporal stability, reversibility, and resistance to serum protein interference[J]. Analytical Chemistry, 2004, 76(1): 78-85.
    [109] Shafer-Peltier K E, Haynes C L, Glucksberg M R, et al. Toward a glucose biosensor based on surface-enhanced Raman scattering[J]. Journal of the American Chemical Society, 2003, 125(2): 588-593.
    [110] Huebner R H, Arakawa E T, Macrae R A, et al. Optical Constants of Vacuum-Evaporated Silver Films[J]. Journal of the Optical Society of America, 1964, 54(12): 1434-1437.
    [111] Hamanaka Y, Nakamura A, Omi S, et al. Ultrafast response of nonlinear refractive index of silver nanocrystals embedded in glass[J]. Applied Physics Letters, 1999, 75(12): 1712-1714.
    [112] Ehrenreich H, Philipp H R. Optical Properties of Ag and Cu[J]. Physical Review, 1962, 128(4): 1622-1629.
    [113] Jensen T R, Duval M L, Kelly K L, et al. Nanosphere lithography: Effect of the external dielectric medium on the surface plasmon resonance spectrum of a periodic array of sliver nanoparticles[J]. The Journal of Physical Chemistry B, 1999, 103(45): 9846-9853.
    [114] Jensen T R, Malinsky M D, Haynes C L, et al. Nanosphere lithography: Tunable localized surface plasmon resonance spectra of silver nanoparticles[J]. The Journal of Physical Chemistry B, 2000, 104(45): 10549-10556.
    [115] Xu G, Tazawa M, Jin P, et al. Wavelength tuning of surface plasmon resonance using dielectric layers on silver island films[J]. Applied Physics Letters, 2003, 82(22): 3811-3813.
    [116] Hu J W, Zhao B, Xu W Q, et al. Surface-enhanced Raman spectroscopy study on the structure changes of 4-mercaptopyridine adsorbed on silver substrates and silver colloids[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2002, 58(13): 2827-2834.
    [117] Ru E, Blackie E, Meyer M, et al. Surface enhanced Raman scattering enhancement factors: a comprehensive study[J]. The Journal of Physical Chemistry C, 2007, 111(37): 13794-13803.
    [118] Song W, Wang Y X, Zhao B. Surface-enhanced raman scattering of 4-mercaptopyridine on the surface of TiO2 nanofibers coated with ag nanoparticles[J]. The Journal of Physical Chemistry C, 2007, 111(34): 12786-12791.
    [119] Li W Y, Camargo P, Lu X M, et al. Dimers of Silver Nanospheres: Facile Synthesis and Their Use as Hot Spots for Surface-Enhanced Raman Scattering[J]. Nano Letters, 2009, 9(1): 485-490.
    [120] Moon J M, Wei A. Uniform gold nanorod arrays from polyethylenimine-coated alumina templates[J]. The Journal of Physical Chemistry B, 2005, 109(49): 23336-23341.
    [121] Sauer G, Brehm G, Schneider S, et al. In situ surface-enhanced Raman spectroscopy of monodisperse silver nanowire arrays[J]. Journal of Applied Physics, 2005, 97(2): 24308.
    [122] Sauer G, Brehm G, Schneider S, et al. Highly ordered monocrystalline silver nanowire arrays[J]. Journal of Applied Physics, 2002, 91(5): 3243-3247.
    [123] Nielsch K, Muller F, Li A P, et al. Uniform nickel deposition into ordered alumina pores by pulsed electrodeposition[J]. Advanced Materials, 2000, 12(8): 582-586.
    [124] Xu D S, Chen D P, Xu Y J, et al. Preparation of II-VI group semiconductor nanowire arrays by dc electrochemical deposition in porous aluminum oxide templates[J]. Pure and AppliedAnalytical Chemistry, 2005, 77(13): 4013-4019.
    [108] Yonzon C R, Haynes C L, Zhang X Y, et al. A glucose biosensor based on surface-enhanced Raman scattering: Improved partition layer, temporal stability, reversibility, and resistance to serum protein interference[J]. Analytical Chemistry, 2004, 76(1): 78-85.
    [109] Shafer-Peltier K E, Haynes C L, Glucksberg M R, et al. Toward a glucose biosensor based on surface-enhanced Raman scattering[J]. Journal of the American Chemical Society, 2003, 125(2): 588-593.
    [110] Huebner R H, Arakawa E T, Macrae R A, et al. Optical Constants of Vacuum-Evaporated Silver Films[J]. Journal of the Optical Society of America, 1964, 54(12): 1434-1437.
    [111] Hamanaka Y, Nakamura A, Omi S, et al. Ultrafast response of nonlinear refractive index of silver nanocrystals embedded in glass[J]. Applied Physics Letters, 1999, 75(12): 1712-1714.
    [112] Ehrenreich H, Philipp H R. Optical Properties of Ag and Cu[J]. Physical Review, 1962, 128(4): 1622-1629.
    [113] Jensen T R, Duval M L, Kelly K L, et al. Nanosphere lithography: Effect of the external dielectric medium on the surface plasmon resonance spectrum of a periodic array of sliver nanoparticles[J]. The Journal of Physical Chemistry B, 1999, 103(45): 9846-9853.
    [114] Jensen T R, Malinsky M D, Haynes C L, et al. Nanosphere lithography: Tunable localized surface plasmon resonance spectra of silver nanoparticles[J]. The Journal of Physical Chemistry B, 2000, 104(45): 10549-10556.
    [115] Xu G, Tazawa M, Jin P, et al. Wavelength tuning of surface plasmon resonance using dielectric layers on silver island films[J]. Applied Physics Letters, 2003, 82(22): 3811-3813.
    [116] Hu J W, Zhao B, Xu W Q, et al. Surface-enhanced Raman spectroscopy study on the structure changes of 4-mercaptopyridine adsorbed on silver substrates and silver colloids[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2002, 58(13): 2827-2834.
    [117] Ru E, Blackie E, Meyer M, et al. Surface enhanced Raman scattering enhancement factors: a comprehensive study[J]. The Journal of Physical Chemistry C, 2007, 111(37): 13794-13803.
    [118] Song W, Wang Y X, Zhao B. Surface-enhanced raman scattering of 4-mercaptopyridine on the surface of TiO2 nanofibers coated with ag nanoparticles[J]. The Journal of Physical Chemistry C, 2007, 111(34): 12786-12791.
    [119] Li W Y, Camargo P, Lu X M, et al. Dimers of Silver Nanospheres: Facile Synthesis and Their Use as Hot Spots for Surface-Enhanced Raman Scattering[J]. Nano Letters, 2009, 9(1): 485-490.
    [120] Moon J M, Wei A. Uniform gold nanorod arrays from polyethylenimine-coated alumina templates[J]. The Journal of Physical Chemistry B, 2005, 109(49): 23336-23341.
    [121] Sauer G, Brehm G, Schneider S, et al. In situ surface-enhanced Raman spectroscopy of monodisperse silver nanowire arrays[J]. Journal of Applied Physics, 2005, 97(2): 24308.
    [122] Sauer G, Brehm G, Schneider S, et al. Highly ordered monocrystalline silver nanowire arrays[J]. Journal of Applied Physics, 2002, 91(5): 3243-3247.
    [123] Nielsch K, Muller F, Li A P, et al. Uniform nickel deposition into ordered alumina pores by pulsed electrodeposition[J]. Advanced Materials, 2000, 12(8): 582-586.
    [124] Xu D S, Chen D P, Xu Y J, et al. Preparation of II-VI group semiconductor nanowire arrays by dc electrochemical deposition in porous aluminum oxide templates[J]. Pure and Applied

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700