掺杂炭材料的制备及其电化学性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
炭材料原料易得、成本低并且具有独特的物理化学性质,因而在气体储藏、催化化学以及污水处理等方面有广泛的应用,特别是作为电极材料方面,炭材料成为研究的热点。本文以氧化聚合所得聚苯胺(PANI)为前躯体,通过炭化活化,制备出应用于超级电容器及锂离子电池负极的掺杂炭材料,研究了其电化学性能。主要内容如下:
     1.以氧化聚合所得聚苯胺颗粒为前躯体,通过炭化与水蒸气活化,制备出应用于超级电容器的掺杂活性炭。通过正交试验探讨了各因素对材料性能的影响,确定了最佳工艺条件:炭化温度为700℃,活化温度为850℃,活化时间为2 h。该条件下制备的活性炭比表面积为584 m2/g,具有微孔结构,其中84%的氮原子以具有电化学活性的吡啶氮和吡咯氮形式存在。其比电容为170 F/g,并且循环性能良好,2000次循环后,比电容仍保持为起始容量的96.5%。
     2.采用自组装方法制备聚苯胺纳米管,通过条件实验讨论了各组分浓度对产品形貌的影响,确定了最佳反应介质为:含0.4 mol/L醋酸与1.0 mol/L甲醇的混合溶液。其分子结构与形貌随时间的演变表明纳米管通过自卷曲过程形成。以该聚苯胺纳米管为前躯体,通过炭化与氧气活化,制备出掺杂活性碳纳米管,将其应用于超级电容器。通过正交试验探讨了各因素对材料性能的影响,确定了制备炭材料的最佳工艺:炭化温度为700℃,炭化时间为1h,活化温度为450℃,活化时间为1.5 h。该条件下制备的碳纳米管比表面积为618.91 m2/g,微孔孔容为0.2213 cm3/g,介孔孔容为0.2581 cm3/g。其比电容达到220 F/g,并且具有良好的循环性能,在8000次循环后,其比电容还保持为初始循环比电容的98%。
     3.将制备的碳纳米管用作锂离子电池负极材料,炭化样与活化样的首次放电容量分别为1370和880 mAh/g,首次充电容量分别为907和404 mAh/g,均高于石墨的理论容量。随着充放电循环的进行,炭化样的容量逐渐衰减,而活化样品的容量在9个循坏后趋于稳定,20次循环后,活化样品放电容量仍保持为728mAh/g。
Due to the advantage of richness in raw materials, low cost and special physico-chemical properties, carbon materials have been widely used in many fields such as storage of gas, purifying sewage and catalyst, especially in electrode materials. Thus carbon materials have attracted more and more attention from scientists in electrode material field. In this paper, doped carbon materials have been prepared from polyaniline (PANI) particles and polyaniline nanotubes obtained via still reaction by carbonization and activation. These carbon materials have been used for electrode materials of supercapacitors and lithium ion batteries. Their electrochemical performances were studied. The major contents of the paper are as follows:
     1. Doped carbons have been prepared from polyaniline by steam activation for supercapacitors. Orthogonal experiments were carried out to study the influence of conditions and find out the optimum technological condition:the carbonization temperature was 700℃, the activation temperature was 850℃and the activation time was 2 h. The carbon has a BET surface area of 584 m2/g and presents micropore structure.84% of the nitrogen atoms in this marerial exist in forms of pyridinic and pyrrolic. The specific capacitance is 170 F/g. The cycle performance is also satisfactory. The specific capacitance retained 96.5% of original specific capacitance after 2000 cycles.
     2. Polyaniline nanotubes were prepared by the self-assembly method. Conditional experiments were carried out to study the influence of component concentration and find out the optimum media—the mixed solution of 0.4 mol/L acetic acid and 1.0 mol/L methanol. FTIR spectra and SEM images of PANI intermediates demonstrate that PANI nanotubes form through a self-curling behavior. Doped carbon nanotubes have been prepared from these polyaniline nanotubes by carbonization and oxygen activation for supercapacitors. Orthogonal experiments were employed to study the influence of conditions and find out the optimum technological condition:the carbonization temperature was 700℃, the carbonization time was 1 h, the activation temperature was 450℃, the activation time was 1.5 h. The carbon has a BET surface area of 584 m2/g and a micropore volume of 0.2213 cm3/g, a mesopore volume of 0.2581 cm3/g. The specific capacitance is 220 F/g. The cycle performance is also satisfactory. The specific capacitance retained 98% of original specific capacitance after 8000 cycles.
     3. The electrochemical performance of the obtained materials as the anode materials of lithium ion batteries has been studied. The first discharge capacities are 1370 and 880 mAh/g, respectively. The first charge capacities are 907 and 404 mAh/g, respectively. Both of them have the capacities higher than graphite. The capacity of unactivated sample takes on a gradual drop trend with cycle numbers. As for activated sample, it capacity-loss gets effective control after 9 cycles, even after 20 cycles its discharge capacity remains 728 mAh/g.
引文
[1]张治安,邓梅根,胡永达,等.电化学电容器的特点及应[J].电子元件与材料,2003,22(11):1-5.
    [2]Taguchi A, Inoue S, Akamaru S, et al. Phase transition and electrochemical capacitance of mechanically treated manganese oxides[J]. Journal of Alloys and Compounds,2006, 414(1-2):137-141.
    [3]Farahmandi C J, Gideon D. Proceedings of the 6th international seminar on double-layer capacitors and similar energy storage devices[C]. Florida Educational Seminars,1996.
    [4]Mill J R, Proceedings of the 5th international seminar on double-layer capacitors and similar energy storage devices[C]. Florida Educational Seminars.1995.
    [5]王国庆.双电层电容器发展现状及前景[J].电子元件与材料,2000.]9(1):38-42.
    [6]阿布里提·阿布都拉,清水健一.电动汽车的发展现状和开发动向[J].电工电能新技术,2000,19(1):49-53.
    [7]章锦泰.电容器的现状与应用[J].电子元件与材料,2004,23(11)(增刊):3-8.
    [8]南俊民,杨勇,林祖赓.电化学电容器及其研究进展[J].电源技术,1996,20(4):152-164.
    [9]张丹丹,姚宗干.大功率高储能密度电化学电容器的研究进展[J].电子元件与材料,2000,19(1):34-37.
    [10]张丹丹,姚宗干.双电层电容器[J].高电压技术,1999,25(4):69-71.
    [11]Kotz R, Carlen M. Principles and applications of electrochemical capacitors[J]. Electrochimica Acta,2000,45(15-16):2483-2498.
    [12]Burke A. Ultracapacitors:why, how, and where is the technology[J]. Journal of Power sources,2000,91(1):37-50.
    [13]Conway B E. Electrochemical supercapacitors scientific fundamentals and technological[M]. New York:Kluwer Acadamic/Plenum Publishers.1999.
    [14]Weinstock I B. Recent advances in the US Department of Energy's energy storage technology research and development programs for hybrid electric and electric vehicles[J]. Journal of Power Sources,2002,110(2):471-474.
    [15]袁国辉.电化学电容器[M].北京:化学工业出版社,2006.
    [16]王贵欣,瞿美臻,陈利,等.碳纳米管用做超级电容器电极材料[J].化学通报,2004,67(3):185-191.
    [17]Kinoshita K. Carbon:Electrochemical and Physicochemical Properties[M]. New York: Kodansa Press,1988.
    [18]Frackowiak E, Beguin F. Carbon materials for the electrochemical storage of energy in capacitors[J]. Carbon,2001,39(6):937-950.
    [19]Yang Yanjing, Liu Enhui, Li Liming, et al. Nanostructured MnO2/exfoliated graphite composite electrode as supercapacitors[J]. Journal of Alloys and Compounds,2009, 487(1-2):564-567.
    [20]Sparnaay M J. The electric double layer[M], Sydney:Pergamon Press Pty. Ltd,1972:4.
    [21]Bard A J, Faulkner L R电化学方法原理及应用[M].谷林瑛,译.北京:化学工业出版社,1986.
    [22]吕进玉,林志东.超级电容器导电聚合物电极材料的研究进展[J].材料导报,2007,21(3):29-31.
    [23]张传喜,郑中华.超级电容器碳材料的研究现状与发展[J].船电技术,2007,27(5):316-318.
    [24]庞旭,马正青,左列,等.超级电容器金属氧化物电极材料研究进展[J].表面技术,2009,38(3):77-79.
    [25]黄小文,谢忠巍,曲晓光,等.酚醛树脂热裂解碳为电极的双电层电容器的电化学特性[J].高等学校化学学报,2002,23(4):1444-1446.
    [26]黄小文,谢忠巍,曲晓光,等.以食糖热裂解碳为电极的双电层电容器的电化学特性[J].高等学校化学学报,2002,23(2):291-293.
    [27]Ruiz V, Blanco C, Raymundo-Pinero E, et al. Effects of thermal treatment of activated carbon on the electrochemical behavior in supercapacitors[J]. Electrochimca Acta,2007, 52(15):4969-4973.
    [28]Kim Y J, Lee B J, Suezaki H. Preparation and characterization of bamboo-based activated carbons as electrode materials for electric double layer capacitors[J]. Carbon,2006, 44(8):1592-1595.
    [29]孟庆函,李开喜,宋燕.等.石油焦基活性碳电极电容特性研究[J].新型炭材料,2001,16(4):18-21.
    [30]刘洪波,常俊玲,张红波,等.双电层电容器高比表面积活性炭的研究[J].电子元件与材料,2002,21(2):19-22.
    [31]Wen Y H, Cao G, Cheng P J, et al. Nanoporous glassy carbon-A new electrode material for super capacitors I. Effect of curing temperature on its structure and properties[J]. New Carbon Materials,2003,18(3):219-224.
    [32]Xu Bin, Wu Feng, Chen Shi, et al. Activated carbon fiber cloths as electrodes for high performance electric double layer capacitors[J]. Electrochimica Acta,2007, 52(13):4595-4598.
    [33]Qiao W M, Song Y, Yoon S H, et al. Modification of commercial activated carbon through gasification by impregnated metal salts to develop mesoporous structures[J]. New Carbon Materials,2005,20(3):198-204.
    [34]Hui Y, Lu T H, Masaki Y, et al. Enhanced capacitive characteristies of activated carbon by secondary activation[J]. Chemical Research in Chinese Universities,2004,20(5):617-623.
    [35]Jurewicz K, Babel K, Ziolkowski A, et al. Capacitance behaviour of the ammoxidised coal. Journal of Physics and Chemistry of Solids,2004,65(2-3):269-273.
    [36]Zhao J C, Lai C Y, Dai Y, et al. Synthesis of mesoporous carbon as electrode material for supercapacitor by modified template method[J]. Journal of Central South University of Technology,2005,12(6):647-652.
    [37]Li Liming, Liu Enhui, Yang Yanjing, et al. Charge storage performance of doped carbons prepared from polyaniline for supercapacitors[J]. Journal of Solid State Electrochemistry, 2011,15(1):175-182.
    [38]Merino C, Soto P, VilaPlana-Ortego E. et al. Carbon nanofibres and activated carbon nanofibres as electrodes in supercapacitors[J]. Carbon,2005,43(3):551-557.
    [39]Babel K. Jurewiez K. KOH activated carbon fabrics as supercapacitor material[J]. Journal of physics and Chemistry of solids,2004,65(2-3):275-280.
    [40]Sun Y, Wei J, Wang Y S, et al. Production of activated carbon by K2CO3 activation treatment of cornstalk lignin and its performance in removing phenol and subsequent bioregeneration[J]. Environmental Technology,2010,31 (1):53-61.
    [41]Pekala R W. Organic aerogels from the polycondensation of resorcinol with formaldehyde[J]. Journal of Materials Science,1989,24(9):3221-3227.
    [42]Horikawa T, Ono Y, Hayashi J, et al. Influence of surface-active agents on pore characteristics of the generated spherical resorcinol- formaldehyde based carbon aerogels[J]. Carbon,2004,42(12-13):2683-2689.
    [43]Inagaki M. Pores in carbon materials-importance of their control[J]. New Carbon Materials, 2009,24(3):193-232.
    [44]Wencui L, Reichenaue G, Frieke J. Carbon aerogels derived from cresol-resorcinol-formaldehyde for supercapacitors[J]. Carbon,2002,40(15):2955-2959.
    [45]Pekala R W, Alviso C T, Nielsen J K, et al. Electrochemical behavior of carbon aerogels derived from different Precursors[J]. Materials Research Society Symposium-Proceedings, 1995,393(10):413-449.
    [46]田艳红,付旭涛,吴伯荣.超级电容器用多孔碳材料的研究进展[J].电源技术,2002,26(6):466-479.
    [47]Conway B E. Transition from "supercapacitor" to "battery" behavior in electrochemical energy storage[J]. Journal of the Electrochemical Society,1991,138(6):1539-1548.
    [48]Li Wencui, Reichenaur G, Frieke J. Carbon aerogels derived from cresol-resorcinol-formaldehyde for supercapacitors[J]. Carbon,2002,40(15):2955-2959.
    [49]Fang B, Wei Y Z, Maruyama K, et al. High capacity supercapacitors based on modified activated carbon aerogel[J]. Journal of Applied Electrochemistry,2005, 35(3):229-233.
    [46]Pekala R W, Farmer J C, Alviso C T, et al. Carbon aerogels for electrochemical applications[J]. Journal of Non-Crystalline Solids,1998,225(1):74-80.
    [47]Tamon H, Ishizaka H, Yamamoto T, et al. Preparation of mesoporous carbon by freeze drying[J]. Carbon,1999,37(12):2049-2055.
    [48]Yamamoto T, Nishimura T, Suzuki T, et al. Control of mesoporosity of carbon gels prepared by sol-gel polycondensation and freeze drying[J]. Journal of Non-Crystalline Solids,2001, 288(1-3):46-55.
    [50]Niu C, Sichel E K, Hoch R, et al. High power electrochemical capacitors based on carbon nanotube electrode[J]. Applied Physics Letters,1997,70(11):1480-1482.
    [51]Frackowiak E, Beguin F. Electrochemical storage of energy in carbon nanotubes and nanostructured carbons[J]. Carbon,2002,40(10):1775-1787.
    [52]Frackowiak E, Jurewicz K, Delpeux S, et al. Nanotubular materials for supercapacitors[J]. Journal of Power Sources,2001,6(97-98):822-825.
    [53]Li Chensha, Wang Dazhi, Liang Tongxiang, et al. A study of activated carbon nanotubes as double-layer capacitors electrode materials[J]. Materials Letters,2004,58(29):3774-3777.
    [54]马仁志,魏秉庆,徐才录,等.应用于超级电容器的碳纳米管的几个特点[J].清华大学学报(自然科学版),2000,40(8):7-10.
    [55]Jiang Q, Qu M Z, Zhou G M, et al. A study of activated carbon nanotubes as electrochemical supercapacitors electrode materials[J]. Materials Letters,2002,57(4):988-991.
    [56]Shan Y, Gao L. Formation and characterization of multi-walled carbon nanotubes/Co3O4 nanocomposites for supercapacitors[J]. Materials Chemistry and Physics.2007. 103(2-3):206-210.
    [57]Wang Xiaofeng, Ruan Dianbo, You Zheng. Application of spherical. Ni(OH)2/CNTs composite electrode in FP asymmetric supercapacitor[J]. Transactions of Nonferrous Metal Society of China,2006,16(5):1129-1134.
    [58]Wang Xiaofeng, Wang Dazhi, Liang Ji, et al. Carbon nanotube capacitor materials loaded with different amounts of ruthenium oxide[J]. Acta Physico-Chimica Sinica,2003. 19(6):509-513.
    [59]Park J H, Ko J M, Park O O. Carbon nanotube/RuO2 nanocomposite electrode for supercapacitor[J]. Journal of the Electrochemical Society,2003.150(7):A864-A867.
    [60]郭炳馄,徐徽,王先友,等.锂离子电池[M].长沙:中南大学出版社,2000:291.
    [61]黄坤.锂离子电池的工艺探讨[J].电池,2002,30(5):217-215.
    [62]Xu J Q, Thomas H R, Francis R W, et al. A review of processes and technologies for the recycling of lithium-ion secondary batteries[J]. Journal of Power Sources.2008, 177(2):512-527.
    [63]Ritchie A, Howard W. Recent developments and likely advances in lithium-ion batteries[J]. Journal of Power Sources,2006,162(2):809-812.
    [64]黄峰,周运鸿.锂离子电池电解质现状与发展[J].电池,2001,31(6):290-293.
    [65]Masataka W. Recent developments in lithium ion batteries[J]. Materials Science and Engineering Reports,2001,33(4):109-134.
    [66]Ohzuku T, Iwakoshi Y, Sawai K et al. Formation of lithium-graphite intercalation compounds innonaqueous electrolytes and their application as a negative electrode for a lithium ion (shuttlecock) cell[J]. Journal of the Electrochemical Society,1993,140 (8):2490-2498.
    [67]Ratnakumar B V, Smart M C, Surampudi S. Effects of SEI on the kinetics of lithium intercalation[J]. Journal of Power Sources,2001,97-98:137-139.
    [68]Aurbach D, Markovsky B, Weissman I, et al. On the correlation between surface chemistry and performance of graphite negative electrodes for Li ion batteries[J]. Electrochimica Acta, 1999,45(1-2):67-86.
    [69]Mabuchi A, Tokumitsu K, Fujimoto H, et al. Charge-discharge characteristics of the mesocarbon microbeads heat-treated at different temperatures[J]. Journal of the Electrochemical Society,1995,142 (4):1041-1046.
    [70]Dahn J R, Zheng T, Liu Y, et al. Mechanisms for lithium insertion in carbonaceous materials [J]. Science,1995,270(5236):590-593.
    [71]Wu Zhongshuai, Wang Dawei, Ren Wencai, et al. Anchoring hydrous RuO2 on graphene sheets for high-performance electrochemical capacitors[J]. Advanced Functional Materials, 2010,20(20):3595-3602.
    [72]Mondal S K, Barai K, Munichandraiah N. High capacitance properties of polyaniline by electrochemical deposition on a porous carbon substrate[J]. Electrochimica Acta,2007, 52(9):3258-3264.
    [73]Seredych M, Hulicova-Jurcakova D, Lu G Q, et al. Surface functional groups of carbons and the effects of their chemical character, density and accessibility to ions on electrochemical performance[J]. Carbon,2008,46(11):1475-1488.
    [74]Grzyb B, Hildenbrand C, Berthon-Fabry S, et al. Functionalisation and chemical characterisation of cellulose-derived carbon aerogels[J]. Carbon,2010,48(8):2297-2307.
    [75]Kim Y J, Abe Y, Yanagiura T, et al. Easy preparation of nitrogen-enriched carbon materials from peptides of silk fibroins and their use to produce a high volumetric energy density in supercapacitors[J]. Carbon,2007,45(10):2116-2125.
    [76]Leitner K W, Gollas B, Winter M, et al. Combination of redox capacity and double layer capacitance in composite electrodes through immobilization of an organic redox couple on carbon black[J]. Electrochimica Acta,2004,50(1):199-204.
    [77]Inagaki M, Konno H, Tanaike O. Carbon materials for electrochemical capacitors[J]. Journal of Power Sources,2010,195(24):7880-7903.
    [78]Kodama M, Yamashita J, Soneda Y, et al. Preparation and electrochemical characteristics of N-enriched carbon foam[J]. Carbon,2007,45 (5):1105-1107.
    [79]Lota G, Grzyb B, Machnikowska H, et al. Effect of nitrogen in carbon electrode on the supercapacitor performance[J]. Chemical Physics Letters,2005,404(1-3):53-58.
    [80]Nowicki P, Pietrzak R, Wachowska H. X-ray photoelectron spectroscopy study of nitrogen-enriched active carbons obtained by ammoxidation and chemical activation of brown and bituminous coals[J]. Energy & Fuels,2010,24(2):1197-1206.
    [81]Gu L, Zhang X W, Lei L C. Degradation of aqueous p-nitrophenol by ozonation integrated with activated carbon[J]. Industrial & Engineering Chemistry Research,2008, 47(18):6809-6815.
    [82]Figueiredo J L, Pereira M F R, Freitas M M A, et al. Modification of the surface chemistry of activated carbons[J]. Carbon,1999,37(9):1379-1389.
    [83]Hulicova-Jurcakova D, Seredych M, Lu G Q, et al. Combined effect of nitrogen-and oxygen-containing functional groups of microporous activated carbon on its electrochemical performance in supercapacitors[J]. Advanced Functional Materials,2009,19(3):438-447.
    [84]Pandolfo A G, Hollenkamp A F. Carbon properties and their role in supercapacitors[J] Journal of Power Sources,2006,157(1):11-27.
    [85]Xing W, Huang C C, Zhuo S P, et al. Hierarchical porous carbons with high performance for supercapacitor electrodes[J]. Carbon,2009,47(7):1715-1722.
    [86]Li Wei, Zhu Meifang, Zhang Qinghua, et al. Expanded conformation of macromolecular chain in polyaniline with one-dimensional nanostructure prepared by interfacial polymerization[J]. Applied Physics Letters,2006,89(10):103110-3.
    [87]Yang Miaomiao, Cheng Bin, Song Huaihe, et al. Preparation and electrochemical performance of polyaniline-based carbon nanotubes as electrode material for supercapacitor[J]. Electrochimica Acta,2010,55(23):7021-7027.
    [88]Heeger A J. Semiconducting and metallic polymers:The fourth generation of polymeric materials (nobel lecture)[J]. Angewandte Chemie International Edition,2001, 40(14):2591-2611.
    [89]Bhadra J, Sarkar D. Self-assembled polyaniline nanorods synthesized by facile route of dispersion polymerization. Materials Letters.2009,63(1):69-71.
    [90]Xiong S X, Wang Q, Xia H S. Preparation of polyaniline nanotubes array based on anodic aluminumoxide template[J]. Materials Research Bulletin,2004,39(10):1569-1580.
    [91]Sun Q H, Deng Y L. The unique role of DL-tartaric acid in determining the morphology of polyaniline nanostructures during an interfacial oxidation polymerization[J].Materials Letters, 2008,62(12-13):1831-1834.
    [92]Yang S M, Chen K H, Yang Y F. Synthesis of polyaniline nanotubes in the channels of anodic alumina membrane[J]. Synthetic Metals,2005,152(1-3):65-68.
    [93]Zhang Lijuan, Wan Meixiang. Chirai polyaniline nanotubes synthesized via a self-assembly process[J]. Thin Solid Films,2005,477(1-2):24-31.
    [94]Laslau C, Zujovic Z D, Zhang L J, et al. Morphological evolution of self-assembled polyaniline nanostuctures obtained by pH-stat chemical oxidation[J]. Chemistry of Materials, 2009,21(5):954-962.
    [95]Zhou S, Wu T, Kan J. Effect of methanol on morphology of polyaniline[J]. European Polymers Journal,2007,43(2):395-402.
    [96]Konyushenko E N, Stejskal J, Sedenkova I, et al. Polyaniline nanotubes:conditions of formation[J]. Polymer International,2006,55(1):31-39.
    [97]Trchova M, Sedenkova I, Konyushenko E N, et al. Evolution of polyaniline nanotubes:The oxidation of aniline in water[J]. The Journal of Physsical Chemistry B,2006, 110(19):9461-9468.
    [98]Tang Q W, Wu J H, Sun X M, et al. Shape and size control of oriented polyaniline microstructure by a self-assembly method[J]. Langmuir,2009,25(9):5253-5257.
    [99]Wang J S, Wang J X, Wang Z, et al. A template-free method toward urchin-like polyaniline microspheres[J]. Macromolecular Rapid Communications,2009,30(8):604-608.
    [100]Zimmermann A, Kunzelmann U, Dunsch L. Initial states in the electropolymerization of aniline and p-aminodiphenylamine as studied by in situ FT-IR and UV-Vis spectroelectrochemistry[J]. Synthetic Metals,1998,93(1):17-25.
    [101]Stejskai J, Sapurina I, Trchova M, et al. Oxidation of aniline:Polyaniline granules, nanotubes, and oligoaniline microspheres[J]. Macromolecules,2008,41(10):3530-3536.
    [102]Ding Hangjun, Shen Jiaoyan, Wan Meixiang, et al. Formation mechanism of polyaniline nanotubes by a simplified template-free method[J]. Macromolecular Chemistry and Physics, 2008,209(8):864-871.
    [103]Huang Y F, Lin C W. Introduction of methanol in the formation of polyaniline nanotubes in an acid-free aqueous solution through a self-curling process[J]. Polymer,2009, 50(3):775-782.
    [104]Zhang Lijuan, Long Yunze, Chen Zhaojia, et al. The effect of hydrogen bonding on self-assembled polyaniline nanostructures[J]. Advanced Functional Materials,2004, 14(7):693-698.
    [105]Stejskal J, Sapurina I. Trchova M, et al. The genesis of polyaniline Nanotubes[J]. Polymer, 2006,47(25):8253-8262.
    [106]Zhang L J, Zujovic Z D, Peng H, et al. Structural characteristics of polyaniline nanotubes synthesized from different buffer solutions[J]. Macromolecules,2008,41(22):8877-8884.
    [107]Huang J X, Kaner R B. Nanofiber formation in the chemical polymerization of aniline:A mechanistic study[J], Angewandte Chemie.2004,116(43):5941-5945.
    [108]李文荣.介孔含氮超电容炭材料和喷墨打印Ni(OH)2膜电极的制备及电化学性能研究[博士学位论文].上海:复旦大学化学系,2007.
    [109]Subramanian V, Luo C, Stephan A M, et al. Supercapacitors from activated carbon derived from banana fibers[J]. The Journal of Physsical Chemistry C,2007,111(20):7527-7531.
    [110]Jurewicza K, Pietrzakb R, Nowicki P, et al. Capacitance behaviour of brown coal based active carbon modified through chemical reaction with urea[J]. Electrochimica Acta,2006, 53(16):5469-5475.
    [111]Kim Y J, Abe Y, Yanagiura T, et al. Easy preparation of nitrogen-enriched carbon materials from peptides of silk fibroins and their use to produce a high volumetric energy density in supercapacitors[J]. Carbon,2007,45(10):2116-2125.
    [112]Kim Y T, Mitani T. Competitive effect of carbon nanotubes oxidation on aqueous EDLC performance:Balancing hydrophilicity and conductivity[J]. Journal of Power Sources,2008, 158(2):1517-1522.
    [113]Denisa H, Masaya K, Hiroaki H. Electrochemical performance of nitrogen-enriched carbons in aqueous and non-aqueous supercapacitors[J]. Chemistry of Materials,2006, 18(9):2318-2326.
    [114]Fey G T K, Kao Y C. Synthesis and characterization of pyrolyzed sugar carbons under nitrogen or argon atmospheres as anode materials for lithium-ion batteries[J]. Materials Chemistry and Physics,2002,73(1-2):37-46.
    [115]吴宇平,方世璧,江英彦.可逆高储锂的锂离子电池炭负极材料的研究进展[J].化学通报,1997,(9):15.
    [116]唐致远,庄新国,翟玉梅,等.锂离子电池酚醛树脂裂解炭负极材料的研究[J].电化学,2000,6(2):218-221.
    [117]Gauthier, Michel. Surface modifled redox compounds and composite electrode obtain them: Canada,2506104[P].2006-06-11.
    [118]Tokumitsu K, Mabuchi A, Fujimoto H, et al. Electrochemical insertion of lithium into carbon synthesized from condensed aromatics[J]. Journal of the Electrochemical Society, 1996,143(7):2235-2239.
    [119]吴宇平,戴晓兵,马军旗,等.锂离子电池:应用与实践[M].北京:化学和化工出版社,2004:76.
    [120]Chang Yuqin, Li Hong, Wu Lie, et al. Irreversible capacity loss of graphite electrode in lithium-ion batteries[J]. Journal of Power Sources,1997,68(2):187-190.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700