掺杂间苯二酚的苯酚基炭气凝胶的制备与电化学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
炭气凝胶是一种新型轻质纳米多孔无定形炭素材料,具有许多优异性能(诸如导电性、绝热性、多孔性等),并可应用于催化剂载体、电吸附除盐、吸附剂、色谱仪填充材料、贮氢材料等方面,也是制备超级电容器和锂电池的理想电极材料。炭气凝胶自1989年诞生后的二十多年时间里,受到了各国广泛地关注及研究,目前在原料的选择、制备工艺及具体应用等方面有了相当程度的改进及创新。
     传统的炭气凝胶的制备采用间苯二酚及甲醛为原料,但由于间苯二酚高昂的价格,限制了其制备的炭气凝胶的应用。为了降低成本,提高炭气凝胶的市场竞争力,本文选用酚类同系物中价格最为低廉的苯酚为原料,碱作为催化剂,少量的间苯二酚作为反应成核剂与交联剂,在水相中与甲醛反应通过两步法制得炭气凝胶。
     本文考察了不同量的间苯二酚掺杂对催化剂碱用量的影响,以及对随后所制备的炭气凝胶的形貌、密度、体积收缩率及炭化收率等宏观物性的影响,并通过扫描电镜、氮气吸脱附等温线、热重分析等手段分析其对炭气凝胶微观结构的影响。结果表明,极少量的间苯二酚的加入可以极大地减少形成透明有机凝胶所需碱催化剂的用量;一定的少量间苯二酚(10%、20%)的加入时,炭气凝胶的微孔中孔含量轻微减少,并引入少量的大孔,碱催化剂用量的减少可以降低所得炭气凝胶的密度及体积收缩率;而当较多量的间苯二酚(30%)的加入时,炭气凝胶的中孔含量极大减少,大孔含量极大增加,碱催化剂用量的减少却提高了所得炭气凝胶的密度及体积收缩率。
     本文还利用恒流充放电实验考察了所得的炭气凝胶在不同电流密度下电化学性能,发现当电流密度从1mA增加至50mA时,纯苯酚炭气凝胶的比电容从146.2 F/g下降至125.1F/g,而加入少量间苯二酚的炭气凝胶的比电容从177.1 F/g略微下降至166.5 F/g,结果表明少量间苯二酚的加入可以增加相应炭气凝胶的比电容,特别是可以提高在高电流密度下的电容性能。
Carbon aerogels (CAs) are a new type of nano-sized porous carbon materials with many outstanding properties such as electrical conductibility, thermal conductivity and porosity, which make it can be used as an ideal electrode material in supercapacitor and lithium cell, as well as in some other aspects such as catalyst supports, adsorbents, chromatography fillers and hydrogen storage materials. In recent more than 20 years since its birth, CAs have got a worldwide attention and a great deal of researches and studies have been carried out to the improvement of CAs in many aspects, such as the selection of raw materials, the optimization of preparation process and the specific applications.
     CAs are prepared traditionally using resorcinol and formaldehyde as raw materials. However, the high cost of resorcinol reduces their market competitiveness seriously. To change this situation, in our process, the cheapest phenols, i.e. phenol, was chosen and CAs were successfully obtained via the two-step polycondensation method of phenol and formaldehyde in an aqueous alkaline solution with a small amount of resorcinol used as nucleating and cross-linking agent.
     In this paper, the effects of the different dosage of resorcinol and catalyst on gel appearance, bulk density, drying and carbonization shrinkage as well as the microstructure of the resultant organic and carbon aerogels were studied and their surface chemical properties were characterized by Infrared Analysis (IR). Morphology and microstructure of CAs were investigated by scanning electron microscopy (SEM), thermal gravimetric analysis (TGA) and N2 adsorption-desorption measurement. The experimental results showed that the prepared CAs have a three-dimensional network, consisting of interconnected pearl-like particles with abundance of micropores, controllable amount of mesopores and macropores. Besides, the addition of nucleating and cross-linking agent, i.e. resorcinol, can dramatically decrease the required amount of catalyst to form transparent organic gels. Furthermore, with different additive amounts of resorcinol, the porous microstructure of CAs can be tuned accordingly.
     Their electrochemical behaviors of the CAs samples as electrode material in electric double-layer capacitors (EDLCs) were characterized by constant current charge-discharge tests under different current densities. Due to the presence of the advisable amount of macropores, the specific capacitance of the CAs with the addition of resorcinol slightly decreased from 177.1F/g to 166.5F/g when increasing the current density from 1 mAcm-2 to 50mAcm-2, compared to the larger reduction of the CAs without the addition of resorcinol from 146.2F/g to 125.1F/g, indicating that the as-prepared samples have a high-rate charge-discharge performance.
引文
[1]Kistler S S. Nature[J],1931,127:741-744
    [2]Pekala R W, Kong F M. Resorcinol-formaldehyde aerogels and their carbonized derivatives [J]. Polymer preprints.1992,30(1):221-223
    [3]Samant P V, Pereira M F R, Figueiredo J L. Mesoporous carbon supported Pt and Pt-Sn catalysts for hydrogenation of cinnamaldehyde [J]. Catalysis Today,2005,102-103: 183-188
    [4]陈榕,胡熙恩.电吸附技术的应用与研究[J].化学进展,2006,18(1):80-86(Chen Rong, Hu Xi-en. Applications and research progress of electrosorption[J]. Progress in Chemistry,2006,18(1):80-86
    [5]Farmer J C, Ftx D V, Mack G V, et al. Capacitive deionization of NaCl and NaNO3 solutions with carbon aerogel electrodes [J]. Journal of Electrochemical Society,1996, 143(1):159-169
    [6]Gabelich J, Tran T D, Suffet I H. Electrosorption of inorganic salts from aqueous solution using carbon aerogels [J]. Environmental Science and Technology,2002,36:3010-3019
    [7]Yang W, Wu D, Fu R. Effect of surface chemistry on the adsorption of basic dyes on carbon aerogels[J]. Colloids and Surfaces A:Physicochem. Eng. Aspects,2008,312(2-3): 118-124
    [8]Fang Y, Hu H. Zeolite with tunable intracrystal mesoporosity synthesized with carbon aerogel as a secondary template [J]. Microporous and Mesoporous Materials,2008,113: 481-489
    [9]Tian H, Buckley C E, Wang S, Zhou M. Enhanced hydrogen storage capacity in carbon aerogels treated with KOH [J]. Carbon,2009,47:2128-2130
    [10]Li J, Wang X, et al. Studies on preparation and performances of carbon aerogel electrodes for the application of supercapacitor [J]. Journal of Power Sources,2006,158:784-788
    [11]吴丁财,刘晓方,符若文.炭气凝胶及其有机气凝胶前驱体的吸附性能[J].新型炭材料,2005,20(4):305-311
    [12]Farmer J C,Bahowick S U,Harrar J E. Electrosorption of chromium ions on carbon aerogel electrodes as a means of remediating ground water [J]. Energy & Fuels,1997,11(2): 337-347
    [13]Zhu Y, Hu H, et al. Cresol-formaldehyde based carbon aerogel as electrode material for electrochemical capacitor [J]. Journal of Power Sources,2006,162:738-742
    [14]Wu D, Fu R, et al. Low-density organic and carbon aerogels from the sol-gel polymerization of phenol with formaldehyde[J]. Journal of Non-Crystalline Solids, 2005,351:915-921
    [15]Scherdel C, Reichenauer G Carbon xerogels synthesized via phenol-formaldehyde gels[J]. Microporous and Mesoporous Materials,2009,126:133-142
    [16]Long D, Ling L, et al. Chemical state of nitrogen in carbon aerogels issued from phenol-melamine-formaldehyde gels[J]. Carbon,2008,1253-1269
    [17]吴丁财,余志铨,符若文.间苯二酚-糠醛气凝胶的制备与表征[J]功能材料,2004,2679-2681. (Wu Ding-cai, Yu Zhi-quan, Fu Ruo-wen. The preparation and characterization of resorcinol-furfural aerogel[J]. Journal of Functional Materials,2004,2679-2681)
    [18]Long D, Zhang R, Ling L, et al. Preparation and microstructure control of carbon aerogel produced using m-cresol mediated sol-gel polymerization of phenol and furfural[J]. New Carbon Materials,2008,23(2):165-170
    [19]张睿,凌立成,等.酚醛-糠醛基炭气凝胶的合成和表征[J].先进炭材料,2002,17(4):23-28.(ZHANG Rui, LING Li-cheng, et al. Synthesis and characterization of phenolic-furfural based carbon aerogels[J]. New Carbon Materials,2002,17(4):23-28)
    [20]Zeng X, Wu D, Fu R, Lai H. Structure and EDLC characteristics of pitch-based carbon aerogels[J]. Electrochimica Acta,2008,53:5711-5715
    [21]Biesmans G, Randall D, et al. Polyurethanebased organic aerogels' thermal performance[J]. Journal of Non-Crystalline Solids,1998,225:36-40
    [22]Biesmans G, Mertens A, Duffours L, et al. Polyurethane based organic aerogels and their transformation into carbon aerogels[J]. Journal of Non-Crystalline Solids,1998,225:64-68
    [23]Yamashita J, Ojima T, Shioya M, et al. Organic and carbon aerogels derived from poly(vinyl chloride)[J]. Carbon,2003,41:285-294
    [24]Katanyoota P, Chaisuwan T, Wongkasemjit S, Novel polybenzoxazine-based carbon aerogel electrode for supercapacitors [J]. Materials Science and Engineering B 167 (2010)36-42
    [25]Perez-Caballero F, et al. Preparation of carbon aerogels from 5-methylresorcinol-formaldehyde gels[J]. Microporous and Mesoporous Materials,2008, 108:230-235
    [26]Chang X, Chen D, Jiao X. Starch-derived carbon aerogels with high-performance for sorption of cationic dyes[J]. Polymer,2010,51:3801-3807
    [27]Fischer F, Rigacci A, et al. Cellulose-based aerogels[J]. Polymer,2006,47:7636-7645
    [28]Grzyb B, Berthon-Fabry S, et al. Functionalisation and chemicall characterisation of cellulose-derived carbon aerogels[J]. Carbon,2010,48:2297-2307
    [29]Tsioptsias C, Panayiotou C, et al. Chitin and carbon aerogels from chitin alcogels[J].Carbohydrate Polymers,2009,76:535-540
    [30]Carlson G, Lewis D, Mckinley K. Aerogel commercialization:technology, markets and costs[J]. Journal of Non-crystalline Solids,1995,186:372-379
    [31]Horikawa T, Muroyama K, et al. Size control and characterization of spherical carbon aerogel particles from resorcinol-formaldehyde resin[J]. Carbon,2004,42:169-175
    [32]李文翠,郭树才,朱玉东.间甲酚甲醛炭气凝胶炭化工艺的研究[J].炭素技术,2000(1):9-11(LI Wen-cui, GUO Shu-cai, ZHU Yu-dong. An investigation on carbonizing process of m-cresol and formaldehyde aerogels[J]. Carbon Techniques,2000 (1):9-11)
    [33]徐云龙等.合成条件对常压干燥炭气凝胶电导率的影响[J].炭素技术,2007,26(4):12-16(XU Yun-long, et al. Effects of synthesis cal conductivity conditions on electric carbon aerogels. Carbon Techniques,2007,26(4):12-16)
    [34]Petricevic R, Reichenauer G, Fricke J, et al. Structure of carbon aerogels near the gelation limit of the resorcinol-formaldehyde precursor[J]. Journal of Non-Crystalline Solids,1998, 225:41-45
    [35]赵海霞,朱玉东,李文翠,胡浩权.RF炭气凝胶孔结构的控制及其电化学性能研究[J].新型炭材料,2008,23(4):361-366(ZHAO Hai-xia, ZHU Yu-dong, LI Wen-cui, HU Hao-quan. Pore structure modification and electrochemical performance of carbon aerogels from resorcinol and formaldehyde[J]. New Carbon Materials,2008,23(4):361-366)
    [36]Lin C, Ritter J A. Carbonization and activation of sol-gel derived carbon xerogels[J]. Carbon,2000,38:849-861
    [37]Conceicao F L, Carrott P.J.M., et al. New carbon material with high porosity in the 1-7 nm range obtained by chemical activation with phosphoric acid of resorcinol-formaldehyde aerogels[J]. Carbon,2009,47:1867-1877
    [38]Wang J, Wu D, Fu R, et al. The porous structures of activeated carbon aerogels and their effects on electrochemical performance[J]. Journal of Power Sources,2008,185:589-594
    [39]Swiatkowski A, Pakula A, et al. Influence of the surface chemistry of modified activated carbon on its electrochemical behavior in the presence of lead(Ⅱ) ions[J]. Carbon,2004, 42:3057-3069
    [40]Seredych M, et al. Surface functional groups of carbons and the effects of their chemical character, density and accessibility to ions on electrochemical performance[J]. Carbon, 2008,46:1475-1488
    [41]Silva A M.T, Machado B F, et al. Controlling the surface chemistry of carbon xerogels using HNO3-hydrothermal oxidation[J]. Carbon,2009,47:1670-1679
    [42]Mahata N, Figueiredo J L, et al. Tuning of texture and surface chemistry of carbon xerogels[J]. Journal of Colloid and Interface Sciene,2008,324:150-155
    [43]Wu D, Fu R, et al. Preparation of low-density carbon aerogels by ambient pressure drying[J]. Carbon,2004,42:2033-2039
    [44]Barral K, et al. Journal of Non-Crystalline Solids,1998,225:46-50
    [45]Zubizarreta L, Arenillas A, et al. Development of microporous carbon xerogels by controlling synthesis conditions[J]. Journal of Non-Crystalline Solids,2008,354:817-825
    [46]Wu D, Fu R, et al. Fabrication and nano-structure control of carbon aerogels via a microemulsion-templated sol gel polymerization method[J]. Carbon,2006,44:675-681
    [47]Horikawa T, Muroyama K, et al. Size control and characterization of spherical carbon aerogel particles from resorcinol-formaldehyde resin[J]. Carbon,2004,42:169-175
    [48]梁长海.炭气凝胶及其研究进展[J].材料科学与工程,1998,16(1):13-18(Liang Chang-hai. Progress in study of carbon aerogels[J]. Material Science and Engineering,1998,16(1):13-18
    [49]ZHANG Rui, MENG Qing-han, LING Li-cheng, et al. A comparative study of supercritical petroleum ether and carbon dioxide drying in the preparation of carbon aerogels[J]. New Carbon Materials,2004,19(1):7-10
    [50]Egeberg E D, Engell J. Freeze drying of silica gels prepared form siliciumethoxid. Rev. Phys.Appl.1989,24:C4-23
    [51]郭艳芝,沈军,王珏.常压干燥法制备炭气凝胶[J].新型炭材料,2001,16(3):55-57.(GUO Yan-zi, SHEN Jun, WANG Jue. Carbon aerogels dried at ambient conditions[J]. New Carbon Materials,001,16(3):55-57)
    [52]Czakkel O, Laszlo K, et al. Influence of drying on the morphology of resorcinol-formaldehyde-based carbon gels[J]. Microporous and Mesoporous Materials, 2005,86:124-133
    [53]Yamamoto T, et al. Preparation and characterization of nickel-modified carbon cryogel beads with uniform particle size [J]. Journal of Non-crystalline solids 355 (2009) 1605-1612
    [54]Singh R, et al. Synthesis of platinum nanoparticles on carbon aerogel by ambient pressure drying method [J]. Materials Letters 64(2010) 843-845
    [55]Hyun S H, el al. Synthesis and characterization of tin oxide/carbon aerogel composite electrodes for electrochemical supercapacitors [J]. Journal of Power Sources 172(2007) 451-459
    [56]Jin Y, Zhao G H, et al. Photocatalysis-enhanced electrosorption process for degradation of high-concentration dye wastewater on TiO2/carbon aerogel [J]. Chemical Engineering Journal 2011 (In Press)
    [57]Song I K, et al. Preparation and characterization of metal-doped carbon aerogel for supercapacitor [J]. Current Applied Physics 10 (2010)947-951
    [58]Lv G F, Fu R W, et al. Preparation and electrochemical characterizations of MnO2-dispersed carbon aerogel as supercapacitor electrode material [J]. Journal of Non-crystalline solids 355(2009)2461-2465
    [59]Li J, Wang X Y, et al. A new type of MnO2 · xH2O/CRF composite electrode for supercapacitors [J]. Journal of Power sources 160(2006)1501-1505
    [60]Lambert S, et al. Synthesis of very highly dispersed platinum catalysts supported on carbon xerogels by the strong electrostatic adsorption method [J]. Journal of catalysis 261(2009) 23-33
    [61]Bordjiba T, Mohamedi M, et al. Synthesis and electrochemical capacitance of binderless nanocomposite electrodes formed by dispersion of carbon nanotubes and carbon aerogels [J]. Journal of Power Sources 172(2007) 991-998
    [62]Arbizzani C, Mastragostino M, et al. Graphene and carbon nanotube structures supported on mesoporous xerogel carbon as catalysts for oxygen reduction reaction in proton-exchange-membrane fuel cells [J].International Journal of Hydrogen Energy (2011) 1-9
    [63]Yuan X X, Ma Z F, et al. Preparation and characterization of carbon xerogel (CX) and CX-SiO composite as anode material for lithium-ion battery [J]. Electrochemistry Communications 9(2007) 2591-2595
    [64]An H F, Wang X Y, et al. Polypyrrole/carbon aerogel composite material for supercapacitor [J]. Journal of Power Sources 195(2010) 6964-6969
    [65]傅献彩,沈文霞,姚天扬等。物理化学[M]. 北京:高等教育出版社,2006:73
    [66]R.W. Pekala, J. Mater. Sci.24 (1989) 3221
    [67]Kruk M, Jaroniec M. Gas Adsorption characterization of ordered organic-inorganic nanocomposite materials [J]. Chem. Mater,2001,13:3169-3183
    [68]Zhang L. Modified materials from natural polymers and their application [in Chinese]. Beijing:chemistry press; 2006.P.216
    [69]Ghanem BS, Mckeown NB, et al. High-performance membranes from polyimides with intrinsic microporosity[J]. Advanced Materials 20(2008)2766-2771
    [70]Wang J B, Fu R W, et al. The porous structures of activated carbon aerogels and their effects on electrochemical performance [J]. Journal of Power Sources 185(2008) 589-594

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700