ZnO复合薄膜作为锂离子电池负极的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
ZnO薄膜由于导电性不好,脱嵌锂过程体积效应较大,因此电化学性能不佳。本课题通过ZnO薄膜与其他物质进行复合有效的改善其循环性能和倍率性能。利用蒲公英形貌的ZnO薄膜制备出两类ZnO复合薄膜:一类是ZnO薄膜与单质元素C和Cu复合,分别制备出ZnO-C复合薄膜、ZnO-Cu-C复合薄膜;另一类则是ZnO与四种过渡金属氧化物(MnO、CoO、TiO_2、Fe_2O_3)复合制得ZnO-MO薄膜。利用XRD、SEM、EDS、TEM、Raman等测试手段研究复合薄膜的物质组成和微观形貌,并通过恒流充放电和循环伏安曲线来研究其电化学性能。
     ZnO-C复合薄膜在234 mA/g倍率下循环50次之后脱锂容量维持在509 mA·h/g,ZnO-Cu-C复合薄膜在234 mA/g倍率下循环50之后脱锂容量维持在468 mA·h/g。性能提高原因在于通过复合单质C、Cu,能提高薄膜的电子导电性能,另外复合C能有效缓解体积效应,而复合Cu可以促进Li_2O的分解。
     第二类薄膜通过复合过渡金属氧化物可以有效的维持结构的稳定性。ZnO-MnO-C复合薄膜、ZnO-CoO-C复合薄膜首次放电形成的金属Mn和Co能促进Li_2O分解,前者234 mA/g倍率循环50次之后脱锂容量为475.5 mA·h/g,后者234 mA/g倍率循环50次之后脱锂容量为533 mA·h/g。ZnO-TiO_2-C复合薄膜中TiO_2主要是维持结构稳定,234 mA/g倍率循环50次后脱锂容量有437 mA·h/g。而ZnO-Fe_2O_3复合薄膜具有与其他复合薄膜不同的形貌,颗粒表面由纳米薄片组成,具有很好的循环性能和倍率性能,以400 mA/g倍率充放电循环50次之后脱锂容量有777 mA·h/g,容量保持率达到96%。当以2000 mA/g的倍率循环至第50次依然有641.2 mA·h/g。
Because of poor conductivity and large volume change of ZnO, the capacity of ZnO anode decreases quickly in the cycling process. In this work, the cycling performance and rate performance of ZnO anode were improved effectively by combining ZnO film with other materials.
     In this paper, we constructed two types of ZnO composite films based on dandelion-liked ZnO film. One type was ZnO-C and ZnO-Cu-C composite film, which were combined ZnO film with C and Cu. The other type was ZnO-MO film, which were combined ZnO film with MnO、CoO、TiO_2、Fe_2O_3. XRD、SEM、EDS、TEM、Raman were used to analyze the chemical composition and micro-nano structure. Electrochemical performances of the composite films were measured by galvanostatic charge-discharge and cyclic voltammetry.
     The electronic conductivity was improved for the first type of ZnO film by C and Cu coatings. In addition, the volume change of ZnO can be alleviated effectively by combined the ZnO film with C, while the decomposition of Li_2O can be promoted by Cu. When the rate was 234 mA/g, the delithiation capacity of ZnO-C composite film kept at 509 mA·h/g after 50 cycles. The delithiation capacity of ZnO-Cu-C composite film kept at 468 mA·h/g after 50 cycles under the same conditions.
     The structural stability of the second type of ZnO-MO composite film was excellent. The decomposition of Li_2O was promoted by Mn and Co that formed in the first lithiation process for ZnO-MnO-C and ZnO-CoO-C composite films. When the discharge rate was 234 mA/g, the delithiation capacity of the above two films were 475.5 mA·h/g and 533 mA·h/g, respectively. The function of TiO_2 was keeping the stability of the structure in the ZnO-TiO_2-C composite film. The delithiation capacity of the film was 437 mA·h/g. ZnO-Fe_2O_3 composite film exhibits a different structure and cycling performance and rate performance. At a rate of 400 mA/g, the delithiation capacity of this film kept at 777 mA·h/g after 50 cycles, and capacity retention was 96%. At a rate of 2000 mA/g, the delithiation capacity of ZnO-Fe_2O_3 composite film was 641.2 mA·h/g.
引文
[1] Broussely M. Recent Developments on Lithium Ion Batteries at SAFT[J]. Journal of Power Sources. 1999, 82: 140-143.
    [2]闰俊美,杨金贤,贾永忠.锂电池的发展与前景[J].盐湖研究. 2001, 09(04): 58-62.
    [3]安平,其鲁.锂离子二次电池的应用和发展[J].北京大学学报. 2006, 42: 1-7.
    [4] Nagaura T, Tozawak K. Lithium Ion Rechargeable Battery[J]. Prog Batteries Sol Cells. 1990, 9: 209-210.
    [5] Wang X Y, Zhou Xu F, Yao K, et al. A SnO_2/graphene Composite as a High Stability Electrode for Lithium Ion Batteries[J]. Carbon. 2011, 49(1): 133-139
    [6] Li L M , Yin X M , Liu S A, et al. Electrospun Porous SnO_2 Nanotubes as High Capacity Anode Materials for Lithium Ion Batteries[J]. Electrochemistry Communications. 2010, 12(10): 1383-1386.
    [7] Ji X X, Huang X T , Liu J P, et al. Carbon-Coated SnO_2 Nanorod Array for Lithium-Ion Battery Anode Material[J]. Nanoscale Research Letters.2010, 5: 649-653.
    [8] Zhang A, Zheng Z M, Cheng F Y, et al. Preparation of Li_4Ti_5O_(12) Submicrospheres and their Application as Anode Materials of Rechargeable Lithium-ion Batteries[J]. Science China Chemistry. 2011, 54(6): 936-940.
    [9] Liu G Q , Wen L , Liu G Y, et al. Synthesis and Electrochemical Properties of Li_4Ti_5O_(12)[J]. Journal OF Alloys and Compounds. 2011, 509(22): 6427-6432.
    [10]张丽娟,赵新兵,夏定国.锑基合金电化学嵌锂性能研究[J].稀有金属材料与工程. 2005, 34(9): 1399-1402.
    [11] Masaki Y S, Wang H Y, and Fukuda K J. Spherical Carbon-coated Natural Graphite as a Lithium-ion Battery-anode Material[J]. Angewandte Chemie-International Edition. 2003, 42(35): 4203-4206.
    [12] Gao J, Yang L C, Fu L J, et al. Novel Composite Anode Materials of Ag and Polymeric Carbon for Lithium Ion Batteries[J]. Polym. Adv. Technol. 2006, 17: 587–590.
    [13] Tsumura T, Katanosaka A, Souma I, et al. Surface Modification of Natural Graphite Particles for Lithium Ion Batteries[J]. Solid State Ionics.2000, 135: 209-212.
    [14] Doh C H, Shin H M, Kim D H, et al . A new Composite Anode: Fe–Cu–Si/C for LithiumIon Battery[J]. Journal of Alloys and Compounds. 2008, 461:321-325.
    [15] Gao J ,Zhang H P, Zhang T, et al. Preparation of Cu coating on graphite electrode foil and its suppressive effect on PC decomposition[J]. Solid State Ionics.2007, 178: 1225-1229.
    [16] Wu X D, Wang Z X, Chen L Q, et al. Ag-deposited mesocarbon microbeads as an anode in a lithium ion battery with propylene carbonate electrolyte[J]. Surface & Coatings Technology. 2004, 186: 412-415.
    [17] Jang S M, Jin M, Masaharu T, et al. Preparation of a Carbon Nanofiber/natural Graphite Com-posite and an Evaluation of its Electrochemical Properties as an Anode Material for a Li-ion battery[J]. New Carbon Materials. 2010, 25(2): 89-96.
    [18] Cai J J, Zuo P J, Cheng X Q, et al. Nano-silicon/polyaniline Composite for Lithium Storage[J]. Electrochemistry Communications. 2010, 12: 1572-1575.
    [19] Xiao X, Liu P, Verbrugge M W, et al. Improved Cycling Stability of Silicon Thin Film Electrodes through Patterning for High Energy Density Lithium Batteries[J]. Journal of Power Sources. 2011, 196: 1409-1416.
    [20] Su L W, Zhou Z, Ren M M. Core Double-shell Si@SiO_2@C Nanocomposites as Anode Materials for Li-ion batteries[J]. Chemical Communication. 2010, 46(15): 2590-2592.
    [21] Hee P M, Kim M G, Joo J, et al. Silicon Nanotube Battery Anodes[J]. Nano Letters. 2009, 9(11): 3844-3847.
    [22] Poizot P, Laruelle S, Grugeon S, et al. Nano-sized Transition-metal Oxides as Negative-electrode Materials for Lithium-ion Batteries[J]. Nature. 2000, 407: 496-499.
    [23] Chen C H, Hwang B J, Do J S, et al. An Understanding of Anomalous Capacity of Nano-sized CoO Anode Materials for Advanced Li-ion battery[J]. Electrochemistry Communications. 2010, 12: 496-498.
    [24] Huang F, Zhan H, Zhou Y H. Studies of Nano-sized Co3O4 as Anode Materials for Lithium-ion Batteries[J]. Chinese Journal of Chemistry. 2003, 21, 1275-1279.
    [25] Zhang P, Guo Z P, Liu H K. Submicron-sized Cube-likeα-Fe_2O_3 Agglomerates as an Anode Material for Li-ion Batteries[J]. Electrochimica Acta. 2010, 55: 8521-8526.
    [26] Xiao A G, Yang J F , Zhang W Q. Mesoporous Cobalt Oxide Film Prepared by Electrodeposition as Anode Material for Li ion Batteries[J]. J Porous Mater. 2010, 17: 583–588.
    [27] Zhang P, Guo Z P, Kang S G, et al. Three-dimensional Li_2O–NiO–CoOComposite Thin-film Anode with Network Structure for Lithium-ion Batteries[J]. Journal of Power Sources. 2009, 189: 566–570.
    [28] Lee J W, Jung Y S, Scott C W, et al. Direct Access to Mesoporous Crystalline TiO_2/Carbon Composites with Large and UniformPores for Use as Anode Materials in LithiumIon Batteries[J]. Macromol. Chem. Phys. 2011, 212: 383–390.
    [29] Ban C M, Wu Z C, Gillaspie D T, et al. Nanostructured Fe3O4/SWNT Electrode: Binder-Free and High-Rate Li-Ion Anode[J]. Adv. Mater. 2010, 22: E145–E149.
    [30] Sun Bing, Horvat J, Kim H S, et al. Synthesis of Mesoporousα-Fe_2O_3 Nanostructures for Highly Sensitive Gas Sensors and High Capacity Anode Materials in Lithium Ion Batteries[J]. J. Phys. Chem. C. 2010, 114: 18753-18761.
    [31] Xiang J Y, Tu J P, Yuan Y F, et al. Improved Electrochemical Performances of Core-shell Cu_2O/Cu Composite Prepared by a Simple one-step Method[J]. Electrochemistry Communications. 2009, 11: 262-265.
    [32] Jin S L, Deng H G, Long D H, et al. Facile Synthesis of Hierarchically Structured Fe3O4/carbon Micro-flowers and their Application to Lithium-ion Battery Anodes[J]. Journal of Power Sources. 2011, 196: 3887-3893.
    [33] Chen J, Xu L N, Li W Y, et al. a-Fe_2O_3 Nanotubes in Gas Sensor and Lithium-Ion Battery Applications[J]. Advanced Matertials. 2005, 17(5): 582-586.
    [34] Lee J H, Hon M H, Chung Y W. The Effect of TiO_2 Coating on the Electrochemical Performance of ZnO Nanorod as the Anode Material forLithium-ion Battery[J]. Appl Phys A. 2011, 102: 545–550.
    [35] Liu J P, Li Y Y, Ding R M, et al. Carbon/ZnO Nanorod Array Electrode with Significantly Improved Lithium Storage Capability[J]. J. Phys. Chem. C. 2009, 113: 5336–5339.
    [36] Yan G F, Fang H S, Li G S, et al. Improved Electrochemical Performance of Mg-doped ZnO Thin Film as Anode Material for Lithium Ion Batteries[J]. Chinese J. Struct. Chem. 2009, 28(4): 409-413.
    [37]曹志峰,段好伟,徐宝龙,等.低温下ZnO花状微结构的合成和性质.纳米加工工艺[J]. 2006, 3(16): 48-51.
    [38]乔靓,胡小颖,毕冬梅.花状氧化锌微晶的合成、表征及光学性质研究[J].吉林师范大学学报. 2009, 04: 18-20.
    [39]朱鲁明,祝洪良,于桂霞,等.蒲公英状ZnO纳米结构的水热自组装及表征[J].浙江理工大学学报. 2007, 1: 40-43.
    [40]赵燕禹,陈洪潮,商连弟.碳铵法制备纳米氧化锌的研究[J].无机盐工业. 2005, 37(6): 38-39.
    [41]江浩,胡俊青,顾锋,等.花状ZnO超细结构的水热自组装[J].无机材料学报. 2009, 1: 69-72.
    [42]杨永强,杜高辉,许并社.花状ZnO纳米结构的液相合成和光学性能[J]. 2010, 31(2): 248-252.
    [43] Belliard F, Irvine J T S. Electrochemical Performance of Ball-Milled ZnO-SnO_2 Systems as Anodes in Lithium-ion Battery[J]. Journal of Power Sources. 2001, 97-98: 219-222.
    [44] Zhang C Q, Tu J P, Yuan Y F, et al. Electrochemical Performances of Ni- Coated ZnO as an Anode Material for Lithium-Ion Batteries[J]. Journal of the Electrochemical Society. 2007, 154(2): A65-A69.
    [45] Liu J P, Li Y Y, Huang X T. ZnO Nanoneedle Arrays Directly Grown on Bulk Nickel Substrate for Li Ion Battery Electrodes with Improved Performance[J]. Nanoelectronics Conference. 2008, 24-27: 53-57.
    [46]郑占丰,高学平,潘桂玲,等.一维棒状ZnO的制备及电化学嵌锂性能研究[J].无机化学学报. 2004, 20(4): 488-491.
    [47] Liu J P, Li Y Y, Fan H J, et al. Iron Oxide-Based Nanotube Arrays Derived from Sacrificial Template-Accelerated Hydrolysis: Large-Area Design and Reversible Lithium Storage[J]. Chem. Mater. 2010, 22: 212–217.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700