金属氧化物基超级电容器电极材料的制备与电化学性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
超级电容器是一种新型的电化学能量储存装置。与传统的电容器相比,超级电容器具有较高的功率密度、较长的循环寿命、低的等效串联电阻和对环境无污染等一系列的优点。它在电动汽车、航空航天、笔记本电脑和军事等方面都发挥重要的作用。因此,近年来对超级电容器的研究开发成为一个热点。在各种电极材料研究中,金属氧化物吸引了广泛兴趣。本文制备了金属氧化物基电极材料,采用X射线衍射法和扫描电子显微镜对制备材料微观结构和形貌做了表征;通过掺杂其他材料,采用循环伏安法、计时电位法和电化学阻抗等研究了所制备电极材料的电化学性能。
     主要研究内容和创新点归纳如下:
     (1)以氧化还原法制备MnO_2,溶胶-凝胶法制备SnO_2。研究了SnO_2掺杂MnO_2复合电极在KCl溶液中的电化学性能。当活性物中SnO_2的含量为10 wt%时,该复合电极的比容量为302.1 F/g,多次充放电测试后,其电容性能相当稳定。
     (2)以共沉淀法制备Co_2SnO_4粉末。形貌分析表明所制备的材料是三维纳米尖晶石球状结构。考察了Co_2SnO_4/AC复合电极在KCl电解液中的电化学性能。当Co_2SnO_4含量为25 wt%,该复合电极的比容量为285.3 F/g,1000次循环充放电后比容量衰减了4.2%。与活性炭电极相比,该复合电极不仅比容量大大提高,而且循环稳定性也得到改善。
     (3)以低温固相反应法制备Co_2O_3掺杂MnO_2。研究了其作为超级电容器电极材料的电化学性能。在1.0 mol/L KCl溶液中,当Co_2O_3掺杂MnO_2复合电极中,Co含量为2.3 wt%时比容量达到340.1 F/g。1000次循环后比容量衰减到291.1 F/g,减少到最初的85.6%。通过分析反应前后的电化学阻抗图得出,电极材料的性能相当稳定,电化学测试没有引起其微观结构的改变。
Supercapacitor is a new type of electrochemical energy storage devices. Compared with traditional capacitor, it can provide high energy density, long cycle life, low equivalent series resistance and good environmental compatibility, and so on. It can play an important role in the fields such as electric vehicles, space flight technology, portable computer and military field, etc.. Therefore, it becomes a hot topic to study supercapacitor. Transition metal oxides with various oxidation states have received much interest. In this thesis, MO_x-based electrode materials were prepared. The microstructural characterizations and morphological of as-prepared materials were investigated by X-ray diffraction and scanning electron microscopy, respectively. Cyclic voltammetry, chronopotentiometry and electrochemical impedance spectroscopy were used to evaluate the electrochemical properties.
     The main contributions and innovations of this thesis are as follows: (1) Redox reaction and sol-gel method were used to prepare MnO_2 and SnO_2, respectively. According to different weight ratio, MnO_2 and SnO_2 were mixed as electrode materials. The electrochemical properties for SnO_2-modified MnO_2 composite electrode were evaluated in KCl solution. It was shown that the composite electrode had excellent properties in capacitance, and the specific capacitance of single electrode with 10 wt% SnO_2 was up to 302.1 F g-1. Furthermore, SnO_2-modified MnO_2 composite electrode exhibited a very stable capacitance after repeating cycles compared to that of the separate MnO_2 or SnO_2 electrode.
     (2) Co_2SnO_4 was synthesized by co-precipitation method. The spherical beads with three-dimensional nanostructure were depicted by scanning electron microscopy. The electrochemical performance of Co_2SnO_4/AC composite electrode was investigated in KCl solution. It was shown that the composite materials with 25 wt% Co_2SnO_4 had excellent specific capacitance up to 285.3 F/g, and decrease 4.2% of initial capacitance after 1000 cycles. Compared with activated carbon electrode, capacitance performances and cyclic stability of the composite electrode had been noticeably improved.
     (3) Co_2O_3-doped MnO_2 was prepared by solid state reaction at low temperature. The electrochemical performance was evaluated for Co_2O_3-doped MnO_2 composite electrode. It was found that composite electrode with 2.3 wt% Co had excellent properties in specific capacitance up to 340.1 F/g in 1.0 mol/L KCl aqueous solution. Furthermore, the specific capacitance could keep 291.1 F/g event after 1000 cycles, presenting high operation stability in a continuous charge/discharge process. The stability of electrode materials was studied by electrochemical impedance spectroscopy. It was demonstrated that electrochemical test did not induce significant structural or microstructure changes of electrode active materials, which could be attributed to the co-effect of cobalt doping.
引文
[1] Winter M., Brodd R. J.. What are batteries, fuel cells, and supercapacitors [J]. Chem. Rev., 2004, 104(10): 4245-4269.
    [2]朱修锋,王君,景晓燕,张密林.超级电容器电极材料[J].化工新型材料, 2002, 30( 4): 5-8.
    [3] Pandolfo A. G., Hollenkamp A. F.. Carbon properties and their role in supercapacitors[J]. J. Power Sources, 2006, 157(1): 11-27.
    [4]陈新丽,李伟善.超级电容器电极材料的研究现状与发展[J].广东化工, 2006, 33( 7): 52-56.
    [5] Frackowiak E., Metenier K., Bertagna V., Beguin F.. Supercapacitor electrodes from multiwalled carbon nanotubes[J]. Appl. Phys. Lett., 2000, 77(15): 2421-2423.
    [6] Burke A.. Ultracapacitors: why, how and where is the technology[J]. J. Power Sources, 2000, 91(1): 37-50.
    [7] Malak A., Fic K., Lota G., Vix-Guterl C., Frackowiak E.. Hybrid materials for supercapacitor application[J]. J. Solid State Electrochem., 2010, 14(5): 811-816.
    [8]左晓希,李伟善.超级电容器用活性炭电极的制备及电化学性能研究[J].华南师范大学学报(自然科学版), 2005, 3( 1) : 77-81.
    [9]张治安,杨邦朝,邓梅根,胡永达.无定型氧化锰超级电容器电极材料[J].功能材料与器件学报, 2006, 11( 1) : 58-62.
    [10] Arbizzani C., Maatragostino M., Soavi F.. New trends in electrochemical supercapacitors[J]. J. Power Sources, 2001, 100(2): 164-170.
    [11]王晓峰,解晶营,孔祥华,刘庆国.“超电容”电化学电容器研究进展[J].电源技术, 2001, 25( S1) : 166-170.
    [12]陈夕明,孙逢春.电动汽车能量存储技术概况[J].电源技术, 2001,25( 1): 47-52.
    [13] Schaller K. V., Gruber C.. Fuel cell drive and high dynamic energy storage systems-opportunities for the future city bus[J]. Fuel Cells Bull., 2000, 3(27): 9-13.
    [14] Gutmann G.. Hybrid electric vehicles and electrochemical storagesystems-a technology push-pull couple[J]. J. Power Sources, 1999, 84(2): 275-279.
    [15]韦文生,梁吉,徐才录,魏秉庆,吴德海.碳纳米管超大容量电容器在光伏系统中的应用[J].太阳能学报, 2002, 23( 2): 223-226.
    [16] Nomoto S., Nakata H., Yoshioka K., Yoshida A., Yoneda H.. Advanced capacitors and their application[J]. J. Power Sources, 2001, 97-98(10): 807-811.
    [17] Hee Y., Goodenough J. B.. Supercapacitor behavior with KCl electrolyte[J]. J. Solid State Chem., 1999, 144(1): 220-225.
    [18] Gamby J., Taberna P. L., Simon P., Fauvarque J. F., Chesneau M.. Studies and characterisations of various activated carbons used for carbon/carbon supercapacitors[J]. J. Power Sources, 2001, 101(1): 109-116.
    [19] Zheng J. P.. Proton insertion into ruthenium oxide film prepared by pulsed layer deposition[J]. J. Electrochem. Soc., 1995, 143(3): 1068-1070.
    [20]陈英放,李媛媛,邓梅根.超级电容器的原理及应用[J].电子元件与材料, 2008, 27( 4): 6-9.
    [21] Helmholtz. On the modern development of Faraday’s conception of electricity[J]. Journal of the Franklin Institute, 1881, 111(6): 452-463.
    [22]戴贵平,刘敏.电化学电容器中碳电极的研究与开发[J].新型炭材料,2002, 17( 1): 72-79.
    [23]李荻.电化学原理[M].北京:航空航天大学出版社, 1989, 189-205.
    [24] Bard A. J., Faulkner L. R..电化学方法原理及应用(谷林锳 ,吕鸣祥,宋诗哲等) [M].北京:化学工业出版社, 1984, 557-587.
    [25]郭鹤桐,刘淑兰.理论电化学[M].北京:宇航出版社, 1984, 87-109.
    [26]康维著(陈艾,吴孟强,张绪礼等译) .电化学超级电容器[M].第一版,北京:化学工业出版社, 2005.
    [27] Qu D. Y., Shi H.. Studies of activated carbons used in double-layer capacitors[J]. J. Power Sources, 1998, 74(1): 99-107.
    [28]吴浩青,李永舫.电化学动力学[M].北京:高等教育出版社, 2006.
    [29]戴贵平,刘敏,王茂章,成会明.电化学电容器中炭电极的研究及开发I.电化学电容器[J].新型炭材料, 2002, 17( 1): 71-79.
    [30] Conway B. E.. Electrochemical supercapacitor: scientific fundamentals and technological applications[M]. New York Kluwer Academic/Plenum Publishers, 1999.
    [31] Conway B. E., Birss V., Wojtowic Z.. The role and utilization of pseudocapacitance for energy storage by supercapacitors[J]. J. Power Sources, 1997, 66(1-2): 1-4.
    [32] Vosburgh W. C.. The manganese dioxide electrode[J]. J. Electrochem. Soc., 1959, 105(9): 839-845.
    [33] Yoshizawa S., Vosburgh W. C.. The overpotential of the manganese dioxide electrodeⅡAcid electrolytes[J]. J. Electrochem. Soc., 1957, 104(7): 399-406.
    [34]张丹丹,姚宗干.大容量高储能密度电化学电容器的研究进展[J].电子元件与材料, 2000, 19( 1): 34-37.
    [35] Gurunathan K., Murugan A. V., Maritnuthu R., Mulik U. P., Amalnerkar D. P.. Electrochemically synthesized conducting polymeric materials for applications towards technology in electronics, optoelectronics and energy storage devices[J]. Mater. Chem. Phys., 1999, 61(3): 173-191.
    [36] Arbizzani C., Mastragostino M., Meneghello L.. Polymer-based redox supercapacitors: A comparative study[J]. Electrochin. Acta, 1996, 41(1): 21-26.
    [37] Halpin S. M., Spyker R. L., Nelme R. M., Burch R. F.. Application of double-layer capacitor technology to static condensers for distribution system voltage control[J]. IEEE Transactions on Power Systems, 1996, 11(4): 1899-1904.
    [38] Chu A., Braatz P.. Comparison of commercial supercapacitors and high-power lithium-ion batteries for power-assist applications in hybrid electric vehicles: I. Initial characterization[J]. J. Power Sources, 2002, 112(1): 236-246.
    [39] Conway B. E. Pell W. G.. Power limitations of supercapacitor operation associated with resistance and capacitance distribution in porous electrode devices [J]. J. Power Sources, 2002, 105(2): 67-79.
    [40] Eskusson J., J?nes A., Kikas A., Matisen L., Lust E.. Physical and electrochemical characteristics of supercapacitors based on carbide derived carbon electrodes in aqueous electrolytes[J]. J. Power Sources,2011, 196(8): 4109-4116.
    [41] Janes A., Kurig H., Lust E.. Characterisation of activated nanoporous carbon for supercapacitor electrode materials[J]. Carbon, 2007, 45(6): 1226-1233.
    [42] Tashima D., Sakamoto A., Taniguchi M., Sakoda T., Otsubo M.. Electrochemical properties of modified carbon electrodes for electric double layer capacitors[J]. Surf. Coat. Technol., 2008, 202(21): 5560-5563.
    [43] Robinson J. A., Snow E. S., Perkins F. K.. Improved chemical detection using single-walled carbon nanotube network capacitors[J]. Sens. Actuat. A-Phys., 2007, 135(2): 309-314.
    [44] Mu J. B., Chen B., Guo Z. C., Zhang M. Y., Zhang Z. Y., Shao C. L., Liu Y. C.. Tin oxide (SnO2) nanoparticles/electrospun carbon nanofiber (CNFs) heterostructures: controlled fabrication and high capacitive behavior[J]. J. Colloid Interface Sci., 2011, 356(2): 706-712.
    [45] Xu B., Wu F., Chen S., Zhang C. Z., Cao G. P., Yang Y. S.. Activated carbon fiber cloths as electrodes for high performance electric double layer capacitors[J]. Electrochim. Acta, 2007, 52(13): 4595-4598.
    [46] Huang C. W., Hsu C. H., Kuo P. L., Hsieh C. T., Teng H.. Mesoporous carbon spheres grafted with carbon nanofibers for high-rate electric double layer capacitors[J]. Carbon, 2011, 49(3): 895-903.
    [47] Gómez H., Ram M. K., Alvi F., Villalba P., Stefanakos E., Kumar A.. Graghene-conducting polymer nanocomposite as novel electrode for supercapacitors[J]. J. Power Sources, 2011, 196(8): 4102-4108.
    [48] Sofer A., Folman M.. The electrical double-layer of high surface porous carbon electrode[J]. J. Electroanal. Chem., 1972, 38(1): 25-43.
    [49]庄新国,杨裕生,稽友菊,杨冬平,唐致远.超级电容器炭电极材料孔结构对其性能的影响[J].物理化学学报, 2003, 19( 8): 689-694.
    [50] Gryglewica G., Machnikowski J., Grabowska E. L., Lota G., Frackowiak E.. Effect of pore size distribution of coal-based activated carbons on double-layer capacitance[J]. Electrochim. Acta, 2005, 50(5): 1197-1206.
    [51] Shi H.. Activated carbons and double-layer capacitance[J]. Electrochim. Acta, 1996, 41(10): 1633-1639.
    [52] Kim K. S., Park S. J.. Influence of multi-walled carbon nanotubes on thelectrochemical performance of graphene nanocomposites for supercapacitor electrodes[J]. Electrochim. Acta, 2011, 56(3): 1629-1635.
    [53] Huang X. W., Xie Z. W., He X. Q., Sun H. Z., Tong C. Y., Xie D. M.. Electric double layer capacitors using activated carbon prepared from pyrolytic treatment of sugar as their electrodes[J]. Synth. Met., 2003, 135(1-3): 235-235.
    [54] Babel K., Jurewicz K.. KOH activated carbon fabrics as suppercapacitor material[J]. J. Phys. Chem. Solids, 2004, 65(2-3): 75-280.
    [55] Yoon B. J., Jeong S. H., Lee K. H., Kim H. S., Park C. G., Han J. H.. Electrical properties of electrical double layer capacitors with integrated carbon nanotubes electrodes[J]. Chem. Phys. Lett., 2004, 388(1-3): 170-174.
    [56] Kierzek K., Frackowiak E., Lota G., Gryglewicz G., Machnikowski J.. Electrochemical capacitors based on highly porous carbons prepared by KOH activation[J]. Electrochim. Acta, 2004, 49(4): 515-523.
    [57] Kalpana D., Lee Y. S., Sato Y.. New, low-cost, high-power poly(o-anisidine-co-metanilic acid)/activated carbon electrode for electrochemical supercapacitors[J]. J. Power Sources, 2009, 190(2): 592-595.
    [58] Chen W. C., Wen T. C., Teng H.. Polyaniline-deposited porous carbon electrode for supercapacitor[J]. Electrochim. Acta, 2003, 48(6): 641-649.
    [59] Oke S., Yamamoto M., Shinohara K., Takikawa H., He X. J., Itoh S., Yamaura T., Miura K., Yoshikawa K., Okawa T., Aoyagi N.. Specific capacitance of electrochemical capacitor using RuO2 loading arc-soot/activated carbon composite electrode[J]. J. Chem. Eng., 2009, 146(3): 434-438.
    [60] Xue Y., Chen Y., Zhang M. L., Yan Y. D.. A new asymmetric supercapacitor based onλ-MnO2 and activated carbon electrodes[J]. Mater. Lett., 2008, 62(23): 3884-3886.
    [61] Karandikar P., Patil K. R., Mitra A., Kakade B., Chandwadkar A. J.. Synthesis and characterization of mesoporous carbon through inexpensive mesoporous silica as template[J]. Micropor. Mesopor. Mater., 2007, 98(1-3): 189-199.
    [62] Conway B. E.. Transition from“supercapacitor”to“battery”behavior inelectrochemical energy storage[J]. J. Electrochem. Soc., 1991, 138(6): 1539-1548.
    [63] Min C. K., Wu T. B., Yang W. T., Li C. L.. Nanocrystalline ruthenium oxide of fine mesoporosity prepared by templating for electrochemical capacitor applications[J]. Mater. Chem. Phys., 2009, 117(1): 70-73.
    [64] Kuratani K., Tanaka H., Takeuchi T., Takeichi N., Kiyobayashi T., Kuriyama N.. Binderless fabrication of amorphous RuO2 electrode for electrochemical capacitor using spark plasma sintering technique[J]. J. Power Sources, 2009, 191(2): 684-687.
    [65] Kuratani K., Kiyobayashi T., Kuriyama N.. Influence of the mesoporous on capacitance of the RuO2 electrode[J]. J. Power Sources, 2009, 189(2): 1284-1291.
    [66] Lee H. C., Lee W. J.. Characterization of Pb(Zr, Ti)O3 thin films fabricated by plasma enhanced chemical vapor deposition on Ir-based electrodes[J]. J. Vacuum Sci. Technol. A-Vacuum Surf. Films, 2002, 20(6): 1939-1947.
    [67] Hyun T. S., Kang J. E., Kim H. G., Hong J. M., Kim I D.. Electrochemical properties of MnOx-RuO2 nanofiber mats synthesized by Co-electrospinning[J]. Electrochem. Solid State Lett., 2009, 12(12): A225-A228.
    [68] Song R. Y., Park J. H., Sivakkumar S. R., Kim S. H., Ko J. M., Park D. Y., Jo S. M., Kim D. Y.. Supercapacitive properties of Polyaniline/Nafion/hydrous RuO2 composite electrodes[J]. J. Power Sources, 2007, 166(1): 297-301.
    [69] Grupioni A. A. F., Arashiro E., Lassali T. A. F.. Voltammetric characterization of an iridium oxide-based system: the pseudocapacitive nature of the Ir0.3Mn0.7O2 electrode[J]. Electrochim. Acta, 2002, 48(1): 407-418.
    [70] Souza A. R., Arashiro E., Golveia H., Lassali T. A. F.. Pseudocapacitive behavior of Ti/RuO2-Co3O4 electrodes in acidic medium: application to supercapacitor development[J]. Electrochim. Acta, 2004, 49(12): 2015-2023.
    [71] Wang X. F., Ruan D. B., Wang P., Lu Y. Q.. Pseudo-capacitance of ruthenium oxide/carbon black composites for electrochemical capacitors[J]. J. University Sci. Technol. Beijing, 2008, 15(6): 816-821.
    [72] Arabale G., Wagh D., Kulkarmi M., Mulla I. S., Vemekar S. P., Vijayamohanan K., Rao A. M.. Enhanced supercapacitance of multiwalled carbon nanotubes functionalized with ruthenium oxide[J]. Chem. Phys. Lett., 2003, 376(1-2): 207-213.
    [73] Lee B.J., Sivakkumar S.R., Ko J.M., Kim J.H., Jo S.M., Kim D.Y. Carbon nanofiber/hydrous RuO2 nanocomposite electrodes for supercapacitors[J]. J. Power Sources, 2007, 168(2): 546-552.
    [74] Lu Q., Zhou Y. K.. Synthesis of mesoporous polythiophene/MnO2 nanocomposite and its enhanced pseudocapacitive properties[J]. J. Power Sources, 2011, 196(8): 4088-4094.
    [75] Inamdar A. I., Kim Y. S., Pawar S. M., Kim J. H., Im H., Kim H.. Chemically grown, porous, nickel oxide thin-film for electrochemical supercapacitors[J]. J. Power Sources, 2011, 196(4): 2393-2397.
    [76] Kulal P. M., Dubal D. P., Lokhande C. D., Fulari V. J.. Chemical synthesis of Fe2O3 thin films for supercapacitor application[J]. J. Alloys Comp., 2011, 509(5): 2567-2571.
    [77]王晓峰,孔祥华,刘庆国,解晶莹.氧化镍超电容器的研究[J].电子元件与材料, 2000, 19( 5): 26-28.
    [78]王晓峰,孔祥华.新型氧化镍超电容器电极材料的研究[J].无机材料学报, 200l, 16( 5): 815-820.
    [79] Liu X. M., Zhang X. G., Fu S. Y.. Preparation of urchinlike NiO nanostructures and their electrochemical capacitive behaviors[J]. Mater. Res. Bull., 2006, 41(3): 620-627.
    [80]闪星,张密林.纳米氧化镍在超大容量电容器中的应用[J].功能材料,2002, 8( 1): 35-39.
    [81] Mao W. X., Shu J. B., Hu L. L.. Synthesis and characterization of mesoporous nickel oxide for electrochemical capacitor[J]. J. Solid State Electrochem., 2007, 11(3): 372-377.
    [82] Liu K. C., Anderson M. A.. Porous nickel oxide/nickel film for electrochemical capacitors [J]. J. Electrochem. Soc., 1996, 143(1): 124-131.
    [83] Kyung W. N, Kwang B. K.. A study of the NiOX electrode via electrochemical route for supercapactor applications and their charge storge mechanism[J]. J. Electrochem. Soc., 2002, 149(3): A346-A354. 62
    [84] Zhang F. B., Zhou Y. K., Li H. L.. Nanocrystalline NiO as an electrode material for electrochemical capacitor[J]. Mater. Chem. Phy., 2004, 83(2-3): 260-264.
    [85] Zhang S. M., Zeng H. C.. Self-assembled hollow spheres beta-Ni(OH)2 and their derived nanomaterials[J]. Chem. Mater., 2009, 21(5): 871-883.
    [86] He K. X., Wu Q. F., Zhang X. G., Wang X. L.. Electrodeposition of nickel and cobalt mixed oxide/carbon nanotube thin films and their charge storage properties[J]. J. Electrochem. Soc., 2006, 153(8): A1568-A1574.
    [87] Liang K., An K., Lee Y.. Nickel oxide/carbon nanotubes nanocomposite for electrochemical capacitance[J]. J. Mater. Sci. Technol., 2005, 21(3): 292-296.
    [88] Mintz T. S., Bhargava Y. V., Thorne S. A., Chopdekar R., Radmilovic V., Suzuki Y., Devine T. M.. Electrochemical synthesis of functionalized nickel oxide nanowires[J]. J. Solid State Electrochem., 2005, 8(9): D26-D30.
    [89] Wang Y. G., Xia Y. Y.. Electrochemical capacitance characterization of NiO with ordered mesoporous structure synthesized by template SBA-15[J]. Electrochim. Acta, 2006, 51(16): 3223-3227.
    [90] Lee J. Y., Liang K., An K. H., Lee Y. H.. Nickel oxide/carbon nanotubes nanocomposite for electrochemical capacitance[J]. Synth. Met., 2005, 150(2): 153-157.
    [91]张密林,刘志祥.沉淀转化法制备的Co(OH)2的超级电容特性[J].无机化学学报, 2002, 18( 5): 513-517.
    [92] Zhou W. J., Zhao D. D., Xu M. W., Xu C. L., Li H. L.. Effects of the electrode position potential and temperature on the electrochemical capacitance behavior of ordered mesoporous cobalt hydroxide films[J]. Electrochim. Acta, 2008, 53(24): 7210-7219.
    [93] Grupionl A. F., Lassali T.. Effect of the Co3O4 introduction in the pseudocapacitive behavior of IrO2 based electrode[J]. J. Electrochem. Soc., 2001, 148(9): A1015-A1022.
    [94] Liang Y. Y., Li H. L., Zhang X. G.. A novel asymmetric capacitor based on Co(OH)2/USY composite and activated carbon electrodes[J]. Mater. Sci. Eng. A, 2008, 473(1-2): 317-322.
    [95] Lin C., Eitter J. A., Popov B. N.. Characterization of sol-gel-derivedcobalt oxide xerogels as electrochemical capacitors[J]. J. Electrochem. Soc., 1998, 145(12): 4097-4103.
    [96] Yoon Y. I., Ko J. M.. CoNi oxide/carbon-nanofiber composite electrodes for supercapacitors[J]. Int. J. Electrochem. Sci., 2008, 3(1): 1340-1347.
    [97]黄峰,卢献忠,郑超超,余聪,刘芸. Co-Sn金属复合氧化物的制备及电化学性能研究[J].武汉科技大学学报, 2008, 31( 3): 316-319.
    [98] Zhao G. Y., Xu C. L., Li H. L.. Highly ordered cobalt-manganese oxide (CMO) nanowire array thin film on Ti/Si substrate as an electrode for electrochemical capacitor[J]. J. Power Sources, 2007, 163(2): 1132-1136.
    [99] Wang Y., Ynag W. S., Zhang S. C., Evans D. G., Duan X.. Synthesis and electrochemical characterization of Co-Al layered double hydroxides[J]. J. Electrochem. Soc., 2005, 152(9): A2130-A2137.
    [100] Lee H. Y., Goodenough J. B.. Supercapacitor behavior with KCl electrolyte[J]. J. Solid State Chem., 1999, 144(1): 220-223.
    [101]张治安,杨邦朝,邓梅根,胡永达,汪斌华.超级电容器纳米氧化锰电极材料的合成与表征[J].化学学报, 2004, 62( 17): 1614-1620.
    [102]张宝宏,张娜.纳米MnO2超级电容器的研究[J].物理化学学报,2003,19( 3): 286-288.
    [103] Chang J. K., Tsai W. T.. Material characterization and electrochemical performance of hydrous manganese oxide electrodes for use in electrochemical pseudocapacitors[J]. J. Electrochem. Soc., 2003, 150(10): A1228-A1333.
    [104]汪形艳,王先有,黄伟国.溶胶-凝胶模板法合成MnO2纳米线[J].材料科学与工程学报, 2005, 23( 1): 114-115.
    [105] Jeong Y. U., Mamtjoram A.. Nanocrystalline manganese oxides for electrochemical capacitors with neutral electrolytes[J]. J. Electrochem. Soc., 2002, 149(11): A1419-A1422.
    [106] Hong M. S., Lee S. H., Kim S. W.. Use of KCl aqueous electrolyte for 2 V manganese oxide/activated carbon hybrid capacitor[J]. Electrochem. Solid State Lett., 2002, 5(10): 227-230.
    [107] Brousse T., Toupin M., Belanger D.. A hybrid activated carbon-manganese dioxide capacitor using a mild aqueous electrolyte[J]. J. Electrochem. Soc., 2004, 151(4): 614-622.
    [108] Bezdicka P., Grygar T., Klapste B., Vondrak J.. MnOx/C composite as electrode materials. Synthesis, XRD and cyclic voltammetric investigation[J]. Electrochim. Acta, 1999, 45(6): 920-931.
    [109]唐致远,耿新,王占良,薛建军.掺Fe3+ MnO2超级电容器电极材料的制备[J].应用化学, 2002, 16( 10): 936-940.
    [110] Chuang P. Y., Hu C. C.. The electrochemical characteristics of binary manganese-cobalt oxides prepared by anodic deposition[J]. Mater. Chem. Phys., 2005, 92(1): 138-145.
    [111] Li W. K., Chen J., Zhao J. J., Zhang J. R., Zhu J. J.. Application of ultrasonic irradiation in preparing conducting polymer as active materials for supercapacitor[J]. Mater. Lett., 2005, 59(7): 800-803.
    [112] Mastragostino M., Arbizzani C., Soavi F.. Polymer-based supercapacitors[J]. J. Power Sources, 2001, 97-98(1): 812-815.
    [113] Rajendra P. K., Munichandraiah N.. Potentiodynamically deposited polyaniline on stainless steel inexpensive, high-performance electrodes for electrochemical supercapacitors[J]. J. Electrochem. Soc., 2002, 149(11): A1393-A1399.
    [114] Xu G. C., Wang W., Qu X. F., Yin Y. S., Chu L., He B. L., Wu H. K., Fang J. R., Bao Y. S., Liang L.. Electrochemical properties of polyaniline in p-toluene sulfonic acid solution[J]. Eur. Polym. J., 2009, 45(9): 2701-2707.
    [115] Kim B. C., Ko J. M., Wallace G. G.. A novel capacitor material based on nafion-doped polypyrrole[J]. J. Power Sources, 2008, 177(2): 665-668.
    [116] Gnanakan S. R. P., Rajasekhar M., Subramania A.. Synthesis of polythiophene nanoparticles by surfactant-assisted dilute polymerization method for high performance redox supercapacitors[J]. Int. J. Electrochem. Sci., 2009, 4(9): 1289-1301.
    [117] Arbizzani C., Catellani M., Mastragostina M., Mingazzini C.. N and P-doped polyditnieno [3, 4-B: 3’4’-D] thiophene: a narrow band gap polymer for redox supercapacitors[J]. Electrochim. Acta, 1995, 40(12): 1871-1876.
    [118] Canobre S. C., Almeida D. A. L., Fonseca C. P., Neves S.. Synthesis and characterization of hybrid composites based on carbon nanotubes[J]. Electrochim. Acta, 2009, 54(26): 6383-6388.
    [119] Du B., Jiang Q., Zhao X. F., Huang B., Zhao Y.. Preparation of PPy/CNT composite applications for suoercapacitor electrode material[J]. Mater. Sci. Forum, 2009, 610(3): 502-505.
    [120] An H. F., Wang Y., Wang X. Y., Zheng L. P., Wang X. Y., Yi L. H., Yi L. H., Bai L., Zhang X. Y.. Polypyrrole/carbon aerogel composite materials for supercapacitor[J]. J. Power Sources, 195, (2010) 6964-6969.
    [121] Zheng J. P., Cygan P. J., Jew T. R.. Hydrous ruthenium oxide as an electrode material for electrochemical capacitors[J]. J. Electrochem. Soc., 1995, 142(8): 2699-2703.
    [122]赵藻藩,周性尧,张捂铭,赵文宽.仪器分析[M].北京:高等教育出版社, 1990.
    [123]马礼敦.近代X射线多晶体衍射——实验技术与数据分析[M].北京:化学工业出版社, 2004.
    [124]吴刚.材料结构表征及应用[M].北京:化学工业出版社, 2002.
    [125]刘志广,张华,李亚明.仪器分析[M].大连:大连理工大学出版社,2004.
    [126]祁景玉.现代分析测试技术[M].上海:同济大学出版社, 2006.
    [127]田昭武.电化学研究方法[M].北京:科学出版社, 1984.
    [128] Aurora M. F., Erin M., Pieter S.. Layer-by-layer polymeric supermolecule structures containing nickel hydroxide nano particles and microcrystallites[J]. Ind. Eng. Chem. Res., 2002, 41(11): 2662-2667.
    [129]查全性.电极过程动力学导论(第三版)[M].北京:科学出版社,2002.
    [130] Ito M., Murakami Y., Kaji H., Yahikozawa K., Takasu Y.. Surface characterization of RuO2-SnO2 titanium electrodes[J]. J. Electrochem. Soc., 1996, 27(19): 32-36.
    [131] Wohlfahrt Mehrens M., Schenk J., Wilde P. M., Abdelmula E., Axmann P., Garche J.. New materials for supercapacitors[J]. J. Power Sources, 2002, 105(2): 182-188.
    [132]曹楚南,张鉴清.电化学阻抗谱导论[M].北京:科学出版社, 2002,21-24.
    [133] Brousse T., Toupin M., Dugas R., Athou?l L., Crosnier O., Bélanger D.. Crystalline MnO2 as possible alternatives to amorphous compounds in electrochemical supercapacitors[J]. J. Electrochem. Soc., 2006, 153(12):A2171-A2180.
    [134] Jiang J. H., Kucernak A.. Electrochemical supercapacitor material based on manganese oxide: preparation and characterization[J]. Electrochim. Acta, 2002, 47(15): 2381-2386.
    [135] Li J., Wang X. Y., Huang Q. H., Gamboa S., Sebastian P. J.. Studies on preparation and performances of carbon aerogel electrodes for the application of supercapacitor[J]. J. Power Sources, 2006, 158(1): 784-788.
    [136] Bao S. J., Liang Y. Y., Zhou W. H., He B. L., Li H. L.. Synthesis and electrochemical properties of LiAl0.1Mn1.9O4 by microwave-assisted sol-gel method[J]. J. Power Sources, 2006, 154(1): 239-245.
    [137] Arulepp M., Permann L., Leis J., Perkson A., Rumma K., J?nes A., Lust E.. Influence of the solvent properties on the characteristics of a double layer capacitor[J]. J. Power Sources, 2004, 133(2): 320-328.
    [138] Kalpana D., Cho S. H., Lee S. B., Lee Y. S., Misra R., Renganathan N. G.. Recycled waste paper-A new source of raw material for electric double-layer capacitors[J]. J. Power Source, 2009, 190(2): 587-591.
    [139] Wang L. H., Morishita T., Toyoda M., Inagaki M.. Asymmetric electric double layer capacitors using carbon electrodes with different pore size distributions[J]. Electrochim. Acta, 2007, 53(2): 882-886.
    [140] Patil U.M., Kulkarni S.B., Jamadade V.S., Lokhande C.D.. Chemically synthesized hydrous RuO2 thin films for supercapacitor application[J]. J. Alloys Compd., 2011, 509(5): 1677-1682.
    [141] Karthikeyan K., Kalpana D., Renganathan N. G.. Synthesis and characterization of ZnCo2O4 nanomaterial for symmetric supercapacitor applications[J]. Ionics, 2009, 15(1): 107-110.
    [142] Gupta V., Gupta S., Miura N.. Electrochemically synthesized nanocrystalline spinel thin film for high performance supercapacitor[J]. J. Power Sources, 2010, 195(11): 3757-3760.
    [143] Yuan W. S., Tian Y. W., Liu G. Q.. Synthesis and electrochemical properties of pure phase Zn2SnO4 and composite Zn2SnO4/C[J]. J. Alloys Comp., 2010, 506(2): 683-687.
    [144] Sen P., De A.. Electrochemical performances of poly(3, 4 - ethylenedioxythiophene) - NiFe2O4 nanocomposite as electrode for supercapacitor[J]. Electrochim. Acta, 2010, 55(16): 4677-4684.
    [145] Kuo S. L., Wu N. L.. Electrochemical characterization on MnFe2O4/carbon black composite aqueous supercapacitor[J]. J. Power Sources, 2006, 162(2): 1437-1443.
    [146] Lin Y. P., Wu N. L.. Characterization of MnFe2O4/LiMn2O4 aqueous asymmetric supercapacitor[J]. J. Power Sources, 2011, 196(2): 851-854.
    [147] Choi D. W., Blomgren G. E., Kumta P. N.. Fast and reversible surface redox reaction in nanocrystalline vanadium nitride supercapacitors[J]. Adv. Mater., 2006, 18(9): 1178-1182.
    [148] Simon P., Gogotsi Y.. Materials for electrochemical supercapacitor[J]. Nat. Mater., 2008, 7(1): 845-854.
    [149] Zheng J. P., Jow T. R.. High energy and high power density electrochemical capacitors[J]. J. Power Sources, 1996, 62(2): 155-159.
    [150] Xu C. J., Li B. H., Du H. D., Kang F. Y., Zeng Y. Q.. Supercapacitive studies on amorphous MnO2 in mild solutions[J]. J. Power Sources, 2008, 184(2): 691-694.
    [151] Subramanian V., Zhu H. W., Wei B. Q.. Nanostructured MnO2: Hydrothermal synthesis and electrochemical properties as a supercapacitor electrode material[J]. J. Power Sources, 2006, 159(1): 361.
    [152] Zolfaghari A., Ataherian F., Ghaemi M., Gholami A.. Capacitive behavior of nanostructured MnO2 prepared by sonochemistry method[J]. Electrochim. Acta, 2007, 52(8): 2806-2814.
    [153] Reddy R. N., Reddy R. G.. Sol-gel MnO2 as an electrode material for electrochemical capacitors[J]. J. Power Sources, 2003, 124(1): 330-337.
    [154] Chen X., Li X., Jiang Y., Shi C.. Rational synthesis ofα-MnO2 andγ-Mn2O3 nanowires with the electrochemical characterization ofα-MnO2 nanowires for supercapacitor[J]. Solid State Commun., 2005, 136(2): 94-96.
    [155] Zhang Z. A., Lai Y. Q., Li J., Liu Y. X.. Effect of Ni-doping on electrochemical capacitance of MnO2 electrode materials[J]. J. Cent. South Univ. Technol., 2007, 14(5): 638-642.
    [156] Kandalkar S. G., Gunjakar J. L., Lokhande C. D.. Preparation of cobalt oxide thin films and its use in supercapacitor application[J]. Appl. Surf. Sci., 2008, 254(17): 5540-5544.
    [157] Natile M. M., Glisenti A.. New NiO/Co3O4 and Fe2O3/Co3O4nanocomposite catalysts: synthesis and characterization[J]. Chem. Mater., 2003, 15(13): 2502-2510.
    [158] Feng J., Zeng H. C.. Size-controlled growth of Co3O4 nanocubes[J]. Chem. Mater., 2003, 15(14): 2829-2835.
    [159] Wang X., Chen X. Y., Gao L. S., Zheng H. G., Zhang Z. D., Qian Y. T.. One-dimensional arrays of Co3O4 nanoparticles: synthesis, characterization, and optical and electrochemical properties[J]. J. Phys. Chem. B, 2004, 108(42): 16401-16404.
    [160] Barrera E., Viveros T., Montoya A., Ruiz M.. Titanium-tin oxide protective films on a black cobalt photothermal absorber[J]. J. Sol. Energy Mater. Sol. Cells, 1999, 57(2): 127-140.
    [161] Cao A. M., Hu J. S., Liang H. P., Song W. G., Wan L. J., He X. L., Gao X. G., Xia S. H.. Hierarchically structured cobalt oxide (Co3O4): the morphology control and its potential in sensors[J]. J. Phys. Chem. B, 2006, 110(32): 15858-15863.
    [162] Liu Y., Zhao W. W., Zhang X. G.. Soft template synthesis of mesoporous Co3O4/RuO2·xH2O composites for electrochemical capacitors[J]. Electrochim. Acta, 2008, 53(8): 3296-3304.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700