锂离子电池负极纳米碳复合材料的制备与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
锂离子电池作为一种新型的高能电池在性能提高方面仍有很大的空间,而负极材料性能的提高是其中的关键。碳基复合材料用于锂离子电池负极材料方面的研究已经取得了一定的进展,包括碳的金属或金属氧化物复合材料、碳表面镀聚合物及改性纳米碳管等。
     本文以砂糖为原料,将砂精加热离心制成纤维状,经低温焙烧碳化,高温焙烧碳化,采用高能球磨法制备炭纳米纤维(CNF),再以CNF作为载体制备MnO2/C锂离子电池负极材料。并对MnO2/C进行物理和电化学表征,与未载入MnO2的CNF电极材料性能进行比较。再以砂糖作为碳源,采用简单、低成本方法一次合成了碳包覆SnO2的SnO2/C复合负极材料。通过SEM、TEM和XRD测试可以看出,通过离心拉丝的方法制备的CNF样品颗粒小于砂糖样品。CNF的形貌更加均匀,比表面积也大于砂糖样品。载体CNF上MnO2颗粒的粒径在30nm左右,分布比较均匀,SnO2粒径约10-20nm。循环伏安测试也表明由于砂糖纤维制备的碳具有较高的比表面积,所以显现出更大的电容。MnO2/C负极材料采用循环伏安法研究,电容明显大于未添加MnO2的碳纤维。说明此方法可以使碳较均匀包裹金属氧化物,并可以同时提高两者的比表面积,减小粒径,显现出良好的电化学性能。将SnO2/C复合材料作为负极材料组装模拟电池进行了电化学性能测试。测试表明碳包覆纳米SnO2作为负极材料使电池的电化学性能有明显改善,可以有效抑制充放电循环中锡的体积膨胀,从而提高循环稳定性和比容量,表现出较高的库伦效率和循环稳定性。
     本文利用价格低廉,无污染的砂糖作为前驱体,把碳同储锂量高的金属氧化物制备成碳复合电极材料,并对其进行物理表征和电化学测试。结果表明碳包覆金属氧化物复合材料应用于锂离子电池负极达到高充放电效率,高循环性能,同时满足了低成本的要求。
Lithium-ion batteries are most promising high power secondary batteries. The development of negative material plays an important role in the further development of Lithium-ion batteries. In recent years, many efforts have been devoted to C-based composite materials, and great progresses have been made.
     Nanosized SnO2/C composite and MnO2/C composite have been prepared using CNF as supports. The composite materials were characterized by X-ray diffraction (XRD) and transmission eletron microscopy (TEM). The Carbon in composite materials was amorphous. TEM results revealed that the SnO2 particles with the average crystallite size of about 10nm and MnO2 particles with the average crystallite size of 20-30nm were homogenously dispersed in the carbon matrix. The electrochemical properties of the nanosized SnO2/C and MnO2/C composites as negative materials for lithium ion batteries were also studied. Cyclic voltammetry and AC impedance (EIS) measurements show that the high discharge capacity and excellent cycling performance were obtained.
     In this paper, we used cheaper and no-pollution cane sugars as the precursors, and prepared the metal oxides/C composite electrode materials, which were characterized by physical and electrochemical tests. High discharge capacity and excellent cycling performance were achieved.
引文
[1]Shan Y, Gao L, Multiwalled carbon nanotubes/Co3O4 nanocomposites and its electrochemical performance in lithium storage, J. Power Sources,2004,33,1560-1561
    [2]钱建才,于维平,王朋朋,等.石墨表面电沉积-热处理制备Co3O4锂离子电池负极,金属热处理,2006,31,(10),47-50
    [3]叶茂,周震,卞锡奎,等.CoO填充多壁碳纳米管作为锂离子电池负极材料,无机化学学报,2006,22,(7),1307-1311
    [4]Wang G X, Chen Y, Konstantinov K, et al. Nanosize cobalt odes as anode materials for lithium-ion batteries, Journal of Alloys and Compounds,2002,340, L5-L10
    [5]S C Nam, Y S Yoon, W I Cho, et al. Enhancement of thin film tin oxide negative electrodes for lithium batteries, Electrochemistry Communications.2001,316-320
    [6]D L Solid Foster, J State Lett Wolfensine J R Read-W K Behl_Electrochem.2000, (3):203
    [7]陈猛,肖斌,杨闯.锂离子电池负极材料石墨的改性方法[J].电池工业,2006(11).2.125-128
    [8]Hassoun J, Panero S, Simon P, et al. HighRate, Long-Life Ni-Sn Nanostructured Electrodes for Lithium-Ion Batteries, Adu Mate:,2007,19,1632-1635
    [9]Yao J, Shen X, Wang B, et al. In situ chemical synthesis of SnO2-graphene nanocomposite as anode materials for lithium-ion batteries. Electrochem. Commun.2009,11,1849-1852
    [10]Wu Guo Liang,锂离子电池及其电极材料的研制[J]Battery Bimonthly,1998,28(6):258-262
    [11]Yata S, Strucure and popertics of deeply polyacenic semi-conductor matcrials beyond LiC6-stage[J]. Synth Mer,1994,62:153-158
    [12]YANG Han-xi, AI Xing-ping锂离子电池炭负极研究[J]. Chinese Journal of Power Scource, 1992(5):2-5
    [13]Ma bu-chi. A charge-discharge characteristics of the mesocarbon mi-cro-eads hest-treated at different temperature[J]. J ElectrochernSoc.1995,142(4):1401-1406
    [14]Zheng T. capecity carbon preperatedvfrom phenolic resin for anode of lithium-ionbatteries[J]J Elcetrochern SO.1995,142:L211-L214
    [15]西美绪.用作锂离子二次电池负极的活性物质炭[J].新型碳材料.1993.33(3):46-51
    [16]WU Guo-liang, LiCo02.正极材料的制备及其应用研[J]Battery Bimonthly(电池),2000,30(3):105-107
    [17]FENG Xi-kang,锂离子在石墨中的嵌入特性研究[J]. Chinese Journal of power Sources(电源技术).1997.21(40):139-142
    [18]Shi H. Barker J Stnldure and lilhitma intcrcalalion properties ofsynthetic and natural graphite[J]J Electrochemical Soc,1996,143(11):3466-3472
    [19]Wu Guo-liang石墨/LiCoO2锂离子电池研制[J]Battery Bimomhly(电池),1996,26(2):62-65
    [20]Fam YY, Li F, CHENG HM, et al. Preparation morphology, and microstructure of diameter-controllable vapor-grown carbon nanofibers[J]. J. Mater. Res.1998,13(8):2342
    [21]黄辉,张文魁,马淳安,等纳米碳管的制备及其在化学电源中的应用[J]化学通报.2002,2:96
    [22]Che GL, LakshmiBB, Fisher ER, et al. Carbon ranotubule membranes for electrochemical emergy storage production[J]. Nature,1998,393(28):346
    [23]陈卫样,吴国涛,王春生.等纳米碳管的电化学贮锂性能[J]化学物理学报.2001,14(1):88
    [24]吴国涛,王春生,齐仲甫.等巴基管嵌锂电极性能的研究[J]电化学.1998,4(3):313
    [25]刘春燕,唐致远,赵秉英.纳米碳管作为锂离子电池负极材料的研究[J]天津大学报.2001.34(1):31
    [26]李志杰,粱奇,陈栋梁,等碳纳米管和石墨在电化学嵌锂过程中的协同效应[J]应用化学.2001,18(4):269
    [27]成会明,纳米碳管一制各、结构、物性及应用[M]北京:化学工业出版社,2002,436
    [28]M Endo, YA Kim, T Hayashi. et al. Vapor-grown carbon fibers(VGCFs):basic properties and their battery applications[J]. Carbon,2001,39(9):1287
    [29]Nishirnura K, Kim YA, Matushita T, et al. Structural characterization of boron-doped submicron vapor-grown carbon fibers and their anode performance[J]. J. Mater. Res.2000,15(6):1303
    [30]Wu Y P, Rahm E, Holze R. Carbon anode materials for lithium ion batteries[J]. Journal of Power Sources,2003,114:228-236
    [31]Frodorie Ian telme, Arnaud Man toux, Henri Groult. et al. Electrochemical study of phase transition processes in lithi. am insertion in V205 electrodes[J]. Journal of the Electrochemical Society,2003,150: A1 202-A1208
    [32]Zhao N H, Yang L C, Zhang P. et al. Polycrystalline SnO2 nanowires coated with amorphous carbon nanotubes as anode material for lithium ion batteries. Mater. Lett.2010,64,972-975
    [33]Idota Y, Kubate T, Matsufuji A, et al. Tin-based amorphousoxide:a hish-capacity lithium ion storage material[J]. Sci-ence,1997,276:1395-1397
    [34]Nam S C, PaiK C H, Cho B W, et al. Electro-chemical char-acterization of various tin-based oxides as negative electrodes for rechargeable lithium batteries[J]. J Power Sources,1999,84:24-31
    [35]Naichao Li, Charles R Martin, Bruno Scrosati. Nanomateri-als-based Li-ion battery electrodes[J]. Journal of Power Sources 2001,97/98:240-243
    [36]Wang Y, Lee J Y, Deivaraj T. Tin nanoparticle loaded graphite anodes for Li-ion battery applications[J]. Journal of the Electrochemical Society,2004(151):A1804-A1809
    [37]T. Brousse, O. Crosnier, X. powders for negative electrodes 2002,128:124-130
    [38]Wanuk Choi, Jeong Yong Lee, Bok Hwan Jung, Hong Sup Lim. Microstructure and electrochemical properties of a nanometer-scale tin anode for lithium secondary batteries. Journal of Power Sources, 2004,136:154-159
    [39]Basker Veeraraghavan, Anand Durairajan, Bala Haran, Study of Sn-Coated Graphite as Anode Material for Secondary Lithium-Ion Batteries, Journal of Electrochemical Society,2002 149(6):A675-A681
    [40]Minato Egashira, Hideyasu Takatsuji, Shigeto Okada, Jun-ichi Yamaki. Properties of containing Sn nanoparticles activated carbon fiber for a negative electrode in lithium batteries. Journal of Power Sources, 2002,107:56-60
    [41]T. Prem Kumar, R. Ramesh, Y.Y. Lin, George Ting-Kuo Fey. Tin-filled carbon nanotubes as insertion anode materials for lithium-ion batteries. Electrochemistry Communications,2004,6:520-525
    [42]Wei Xiang Chen, Jim Yang Lee, Zhaolin Liu. Electrochemical lithiation and de-lithiation of carbon nanotube-Sn2Sb nanocomposites. Electrochemistry Communications,2002,4:260-265
    [43]Skowrofiski J M, BlaJzewiez S, Knofezyfiski K. Reversible insertion of lithium ions into carbon/carbon nanocomposite[J]. Synthetic Metals,2003,135/136:733-734
    [44]Yong-Top Kim, Sukumaran Gopukumar, Kwang-Bum Kim, et al. Performance of electrostatic spray-deposited vanadiam pentoxide in lithium secondary cells[J]. Jou of Pow er Sources.2003,117: 110-117
    [45]Gao Xueping, Zhu Huaiyong, Pan Guiling, et al. Preparation and electrochemieal characterization of anatase lanorods for lithium-inserting electrode material. [J]. J ehys Che m B,2004,108:2868-2872
    [46]Yuan Zheng-yong, Huang Feng, Feng Chuan-qi, et al. Synthesis an d eleetrochemieal perform an ce of nan osized Co3O4[J]. Materials Chemistry and Physics,2003,79:1-4
    [47]汪飞,赵铭妹,宋晓平.锂离子电池锡基负极材料的研究进展[J].电池,2005,35(2):152-154
    [48]Kang Y M, Song M S, Kim J M, et al. A study on the charge-discharge mechanism of Co3O4 as an anode for the Li ion secondary battery[J]. Electrochim.Acta,2005,50:3367-3673

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700