三种新奇的过氧化氢电化学生物传感器的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
过氧化氢(H2O2)电化学生物传感器因其简单,且对H2O2有高选择性和高灵敏性而得到广泛应用。本论文采用Au-Pt-PANI NPs、Fe3O4-PpPD NPs等纳米复合材料,构置了三种H202电化学生物传感器,研究了血红蛋白酶(HB)的电化学行为。该研究具有一定的科学意义和应用价值。全文共分三章,主要内容如下:
     1、综述了纳米材料和氧化还原蛋白质(酶)在H2O2电化学传感器中的应用情况,应用参考文献116篇。
     2、分别以CHIT-Au-Pt-PANI NPs、CHIT-Fe3O4-PpPD NPs作为固载膜,研究了血红蛋白酶(HB)在复合膜中的直接电化学行为,并建立了检测H2O2的分析方法。研究表明,CHIT-Au-Pt-PANI NPs、CHIT-Fe3O4-PpPD NPs复合膜能够提高氧化还原蛋白(酶)的直接电子传递速率,保持蛋白质(酶)的生物活性,并增强生物传感器的稳定性。这些研究工作对纳米复合材料在H2O2电化学生物传感器领域的构置和应用具有重要意义。
     3、利用辣根过氧化酶(HRP)催化H2O2的反应从而诱导苯胺以SWNTs为模板发生聚合反应,构置了一种基于酶催化体系新型的H2O2电化学生物传感器。研究结果表明,采用生物催化诱导体系所构置的检测H2O2的电化学生物传感器具有易操作、选择性好、灵敏度高等特点。该研究工作不仅扩展了生物催化在纳米材料合成领域的应用,而且为构置检测H202的电化学生物传感界面提供新方向。
Hydrogen peroxide (H2O2) electrochemical biosensors have been widely used because of its simple fabrication, inherent high selectivity and sensitivity. In this thesis, we composed three kinds of hydrogen peroxide electrochemical biosensors using Au-Pt-PANI NPs or Fe3O4-PpPD NPs composite nanomaterials, which are used to investgate the electrochemistry behavior of Heme Oxygenase. The research has certain scientific significance and application value. The thesis consists of three chapters. The author's main contributions are summarized as follows:
     1、Overview the application of nanomaterials and redox proteins (enzymes) in H2O2 electrochemical biosensors which are from 116 references.
     2. Study the direct eletrochemistry of hemoglobin (HB) by CHIT-Au-Pt-PANI NPs and CHIT-Fe3O4-PpPD composite nanomaterial films and structured two novel electrochemical biosensors for the determination of H2O2. The results indicated that CHIT-Au-Pt-PANI NPs and CHIT-Fe3O4-PpPD composite nanomaterial films with good biocompatibility can not only accelerate the direct electron transfer of redox proteins (enzymes) but also improve the stabilities of the biosensors. It can be conclude that the present studies extended the application of nanomaterials in novel electrochemical biosensors.
     3. Fabracation of a novel H2O2 biosensor based on enzymatically induced the deposition of electroactive polyaniline (PANI) at the horseradish peroxide (HRP)/aligned single-wall carbon nanotubes (SWCNTs) modified Au electrode, and investigated its electrochemical behaviors. The electrochemical impedance spectroscopy of the biosensor confirmed that the formation of PANI on SWCNTs through the HRP catalytic reaction. In the biosensing system, a highly simple, sensitive and selective biosensor for the detection of the H2O2 was achieved in connection with the biocatalytic deposition of PANI. The above studies may provide a general platform for the construction of bioelectronic devices and the design of novel electrochemical biosensors with other bionano-systems.
引文
[1]Clark L. C. J., Lyons C. Electrode Systems for Continuous Monitoring in Cardiovascular Surgery[J]. Ann New York Acad Sei,1962,102:29-45.
    [2]Clark L. C. J. Monitor and Control of Blood and Tissue Oxygen Tensions[J]. Trans Am Soc Artif Int Organs.1956,2(1):41-48.
    [3]Sekhar P. K., Brosha E. L., Mukundan R., Li W. X., Nelson M. A., Palanisamy P., Garzon F. H. Application of Commercial Automotive Sensor Manufacturing Methods for NOx/NH3 Mixed Potential Sensors for On-board Emissions Control[J]. Sensors and Actuators B:Chemical,2010,144(1):112-119
    [4]Santhaveesuk T., Wongratanaphisan D., Choopun S. Enhancement of Sensor Response by TiO2 Mixing and Au Coating On ZnO Tetrapod Sensor[J]. Sensors and Actuators B: Chemical,2010 doi:10.1016/j.snb.2010.03.081
    [5]Wusten J., Kamloth K. P. Chalcogenides for Thin Film NO Sensors[J]. Sensors and Actuators B:Chemical,2010,145(1):216-224
    [6]Wang X. D., Chen H. X., Zhou T. Y., Lin Z. J., Zeng J. B., Xie Z. X., Chen X., Wong K. Y., Chen G. N., Wang X. R. Optical Colorimetric Sensor Strip for Direct Readout Glucose Measurement[J]. Biosensors and Bioelectronics,2009,24(12):3702-3705
    [7]Chen Q., Bian Z., Hua X., Yao C., Wu W., Zhang X., Zhang B., Huang J., Tang W., Fu W., Chen Q. H., Bian Z. H., Xing H., Yao C. Y., Wu W., Zhang X., Zhang B., Huang J. F., Tang W. L., Fu W. L. Detection of Hybridization of Single-strand DNA PCR Products in Temperature Change Process by a Novel Metal-clamping Piezoelectric Sensor[J]. Biosensors and Bioelectronics.2010, doi:10.1016/j.bios.2010.02.028
    [8]Sheng Q. L., Wang J., Zheng J. B., Xu Z. Q., Zhang H. F. Ultrasensitive Electrical Biosensing of Syphilis DNA Using Target-guided Formation of Polyaniline Based on Enzyme-catalyzed Polymerization[J]. Biosensors and Bioelectronics,2010,25(9): 2071-2077
    [9]Wang F. R., Yang J. Q., Wu K. B. A Mesoporous Silica-based Electrochemical Sensor for Sensitive Determination of Environmental Hormone Bisphenol[J]. Analytica Chimica Acta, 2009,638(1):23-28
    [10]Mascini M., Macagnano A., Scortichini G., Del C. M., Diletti G., D'Amico A., Di N. C., Compagnone D. Biomimetic Sensors for Dioxins Detection in Food Samples[J]. Sensors and Actuators B:Chemical,2005,111(11):376-384
    [11]Eisenman E. Cation Selective Glass Electrodes and their Mode of Operation [J]. Biophys J. 1962,2(2):259-323
    [12]Sealy C. New Link Has The Right Chemistry:Electronic Materials[J]. Materials Today,2006, 9(10):15
    [13]Gonchar M., Maidan M., Moroz O., Woodward J., Sibirny A. Microbial O2-and H2O2-electrode Sensors for Alcohol Assays based on the Use of Permeabilized Mutant Yeast Cells as the Sensitive Bioelements[J]. Biosensors and Bioelectronics,1998,13(9):945-952
    [14]Polakova P., Novotny L., Ostatna V., Palecek E. Electrochemical Renewal of Stationary Mercury Drop or Meniscus Electrodes[J]. Electroanalysis,2009,21(3):625-630
    [15]Sun Y. Y., Yu B., Yang W. W., Sun C. Q. Controlled Multilayer Films of Sulfonate-capped Gold Nanoparticles/thionine Used for Construction of a Reagentless Bienzymatic Glucose Biosensor[J]. Electrochimica Acta,2007,52(25):7352-7361
    [16]McConnell H. M., Rice P., Wada G. H., Owicki J. C., Parce J. W. The Microphysiometer Biosensor [J]. Current Opinion in Structural Biology,1991,1(4):647-652
    [17]Riedel K., Renneberg R., Wollenberger U., Kaiser G., Scheller F. W. Microbial Sensors: Fundamentals and Application for Process Control[J]. Journal of Chemical Technology and Biotechnology,1989,44(2):85-106
    [18]HasoS., Fojt L., Sebest P., Fojta M. Improved Electrochemical Detection of Purine Nucleobases at Mechanically Roughened Edge-Plane Pyrolytic Graphite Electrode [J]. Electroanalysis,2009,21(3):666-670
    [19]ISvancara V., Vytras K., Kalcher K., Walcarius A., Wang J., Carbon Paste Electrodes in Facts, Numbers, and Notes:A Review on the Occasion of the 50-Years Jubilee of Carbon Paste Electrochemistry and Electroanalysis[J]. Electroanalysis,2009,21(1):7-28
    [20]Razmi H., Mohammad-Rezaei R., Heidar H. Self-Assembled Prussian Blue Nanoparticles Based Electrochemical Sensor for High Sensitive Determination of H2O2 in Acidic Media[J]. Electroanalysis,2009,21(21):2355-2362
    [21]Adler A. L., Badihi M. M., Gazit E., Rishp J., Characterization of Peptide-Nanostructure-Modified Electrodes and Their Application for Ultrasensitive Environmental Monitoring[J]. Small,2010,6(7):825-831
    [22]Chien H. C., Chou T. C. Glassy Carbon Paste Electrodes for the Determination of Fructosyl Valine[J]. Electroanalysis,2010,22(6):688-693
    [23]Leo M. D., Moretto L. M., Buriez O., Ugo P. Electrochemical Behavior of Nanoelectrode Ensembles in the Ionic Liquid [BMlm][BF4][J]. Electroanalysis,2009,21(3):392-398
    [24]武宝利,张国梅,高春光,双少敏,生物传感器的应用研究进展[J].中国生物工程杂志,2004,24(7):65-69
    [25]舒友琴,罗国安生物传感器在食品分析中的发展和应用[J].食品科学,1999,20(11):13-17
    [26]张先恩,生物传感器[M].北京:化学工业出版社现代生物技术与医药科技出版中心,2006,6-7
    [27]铃木周一,霍纪文,姜远海.生物传感器[M].北京:科学出版社.1998
    [28]Koncki R. Recent Developments in Potentiometric Biosensors for Biomedical Analysis[J]. Analytical Chimica Acta,2007,599(1):7-15
    [29]Dzyadevych S. V., Arkhypova V. N., Soldatkin A. P., El&aposkaya A., Martelet C., Jaffrezic-Renault N. Amperometric Enzyme Biosensors:Past, Present and Future[J]. ITBM-RBM.2008,29(2-3):171-180
    [30]Thevenot D. R., Toth K., Durst R. A. Electrochemical Biosensors:Recommended Definitions and Classification[J]. Biosensors and Bioelectronics,2001,16(1-2):121-131
    [31]Wang J. Analytical Electrochemistry[M]. John Wiley and Sons, Inc,2006,202-238.
    [32]蒋中华,马立人,化学传感器和生物传感器的研究进展[J]. Bull Acad Med Sci,1995, 19(4):306-309
    [33]Pedroso N., Matias A. C., Cyrne L., Antunes F., Borges C., Malho R., Almeida R. F. M., Herrero E., Marinho H. S. Modulation of Plasma Membrane Lipid Profile and Microdomains by H2O2 in Saccharomyces Cerevisiae[J]. Free Radical Biology and Medicine,2009,46(2): 289-298
    [34]Shi L., Goldbach A., Zeng G. F, Xu H. Y. Direct H2O2 Synthesis over Pd Membranes at Elevated Temperatures [J]. Journal of Membrane Science,2010,348 (1-2):160-166
    [35]Li Y., Yin H., Wang Q., Zhao X. M., Du Y. G., Li F. L. Oligochitosan Induced Brassica napus L. production of NO and H2O2 and Their Physiological Function[J]. Carbohydrate Polymers,2009,75(4):612-617
    [36]Chelme A. P., El D. M. G., Smith D. W. Degradation of Bromoxynil and Trifluralin in Natural Water by Direct Photolysis and UV plus H2O2 Advanced Oxidation Process[J]. Water Research,2010,44 (7):2221-2228
    [37]Neungnapa R., Yang B., Lin H. T., Chen F., Jiang Y. M. Degradation of Anthocyanin from Litchi Fruit Pericarp by H2O2 and Hydroxyl Radical[J]. Food Chemistry,2009, 116(4):995-998
    [38]汤伯歌,王培萍,杨艳明,丁光俊,王三保,李尚武,汽蒸爆破麦草浆H202漂白的研究[J].湖南造纸,2007,1:11-13
    [39]王春林,余瑛,全棉纱线酶煮氧漂工艺探讨[J].印染,2002,1(24):62-63
    [40]夏敏,窦正远,蔗渣化机浆过氧化物漂白及返黄的研究[J].中国造纸,1993,6(3):23-28
    [41]古映莹,李丹,过氧化氢氧化的锑白溶液中SbⅢ,SbV和过氧化氢的测定[J].冶金分析,2006,26(4):20-23
    [42]Paolo M. L. D., Scarpa M., Rigo A. A Senstive Spectrophotometry-based Mehtod for the Determination of the Rate of Hydrogen Peroxide Generation in Biological Systems[J]. Journal of Biochemical and Biophysical Methods,1994,28(3):205-214
    [43]Tang B., Wang Y., Liang H. L., Chen Z. Z., He X. W., Shen H. X. Studies on the Oxidation Reaction of Tyrosine (Tyr) with H2O2 Catalyzed by Horseradish Peroxidase (HRP) in Alcohol-water Medium by Spectrofluorimetry and Differential Spectrophotometry[J]. Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy,2006,63(3): 609-613
    [44]Zappacosta B., Persichilli S., Mormile F., Minucci A., Russo A., Giardina B., Sole P. D. A fast Chemiluminescent Method for H2O2 Measurement in Exhaled Breath Condensate[J]. Clinica Chimica Acta,2001,310(2):187-191
    [45]Yang X. Y., Guo Y. S., Mei Z. H. Chemiluminescent Determination of H2O2 using 4-(1,2,4-triazol-1-yl)Phenol as an Enhancer Based on the Immobilization of Horseradish Peroxidase onto Magnetic Beads[J]. Analytical Biochemistry,2009,393(1):56-61
    [46]梅洪睿,云霞,王安良,杨红,樊志鹏,槲皮素-H2O2-硼砂荧光光度法测定方法的研究[J].食品研究与开发.2009,30(3):25-28
    [47]Liu J., Steinberg S. M., Johnson B. J. A High Performance Liquid Chromatography Method for Determination of Gas-phase Hydrogen Peroxide in Ambient Air Using Fenton's Chemistry [J]. Chemosphere,2003,52(5):815-823
    [48]Diaz A. N., Sanchez F. G., Garcia J. A. G. Thin-layer Chromatography with Chemiluminescent Detection of Enhancers of the Luminol-H2O2-Peroxidase System[J]. Journal of Chromatography A,1996,742(1-2):411-415
    [49]Xu X. R., Gu J. D. Elucidation of Methyl Tert-butyl Ether Degradation with Fe2+/H2O2 by Purge-and-trap Gas Chromatography-mass Spectrometry[J]. Microchemical Journal,2004, 77(1):71-77
    [50]Madiha K., Pala I., Wasio N., Bandyopadhyay K. Functionalized Surface as Template for in Situ Generation of Two-dimensional Metal Nanoparticle Assembly[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects,2009,348(1-3):263-269
    [51]Hebert M., Rochefort D. Electrode Passivation by Reaction Products of the Electrochemical and Enzymatic Oxidation of P-phenylenediamine[J]. Electrochimica Acta,2008,53(16): 5272-5279
    [52]Ehrenberg M. S., Friedman A. E., Finkelstein J. N., Oberdorster G., McGrath J. L. The Influence of Protein Adsorption on Nanoparticle Association with Cultured Endothelial Cells[J]. Biomaterials,2009,30(4):603-610
    [53]Hasegawa D., Yang H. T., Ogawa T., Takahashi M. Challenge of Ultra High Frequency Limit of Permeability for Magnetic Nanoparticle Assembly with Organic Polymer-Application of Superpara Magnetism[J]. Journal of Magnetism and Magnetic Materials,2009,321(7):746-749
    [54]Lee D. W., Yun K. S., Ban H. S., Choe W., Lee S. K., Lee K. Y., Preparation and Characterization of Chitosan/Polyguluronate Nanoparticles for siRNA Delivery[J]. Journal of Controlled Release,2009,139(2):146-152
    [55]杨海朋,陈仕国,李春辉,陈东成,戈早川,纳米电化学生物传感器[J].化学进展,2009,21(1):210-216
    [56]Penn S. G., He L., Natan M. J. Nanoparticles for Bioanalysis[J]. Current Opinion in Chemical Biology,2003,7(5):609-615
    [57]Wang J., Nanomaterial-Based Electrochemical Biosensors[J]. Analyst,2005,130(4): 421-426
    [58]Hsieh C. T., Lin J. Y., Wei J. L. Deposition and Electrochemical Activity of Pt-based Bimetallic Nanocatalysts on Carbon Nanotube Electrodes[J]. International Journal of Hydrogen Energy,2009,34(2):685-693.
    [59]Kadirgan F., Kannan A. M., Atilan T., Beyhan, S. Ozenler S. S., Suzer S., Yoriir A., Carbon Supported Nano-sized Pt-Pd and Pt-Co Electrocatalysts for Proton Exchange Membrane Fuel Cells[J]. International Journal of Hydrogen Energy,2009,34(23):9450-9460
    [60]French R. W., Milsom E. V., Moskalenko A. V., Gordeev S. N., Marken F., Assembly, Conductivity, and Chemical Reactivity of Sub-monolayer Gold Nanoparticle Junction Arrays [J]. Sensors and Actuators B:Chemical,2008,129(2):947-952
    [61]Charradi K., Gondran C., Ben A., Amara H., Prevot V., Mousty C. H2O2 Determination at Iron-rich Clay Modified Electrodes[J].Electrochimica Acta.2009,54(17):4237-4244
    [62]Xu J. M., Li W., Yin Q. F. Direct Electron Transfer and Bioelectrocatalysis of Hemoglobin on Nano-Structural Attapulgite Clay-Modified Glassy Carbon Electrode[J]. Journal of Colloid and Interface Science,2007,315(1):170-176
    [63]Xu H. F, Dai H:, Chen G. N. Direct Electrochemistry and Electrocatalysis of Hemoglobin Protein Entrapped in Graphene and Chitosan Composite Film[J]. Talanta,2010,81(1-2):
    334-338
    [64]Zhou K. F., Zhu Y. H., Yang X. L., Luo J., Li C. Z., Luan S. R. A Novel Hydrogen Peroxide Biosensor Based on Au-graphene-HRP-chitos an Biocomposites[J]. Electrochimica Acta. 2010,55(9):3055-3060
    [65]Huang H. P., Zhu J. J. DNA Aptamer-based QDs Electrochemiluminescence Biosensor for the Detection of Thrombin[J]. Biosensors and Bioelectronics,2009,25(4):927-930
    [66]Wu Z.Y., Zhao Y. L., Qiu F. P., Li Y. P, Wang S. W., Yang B. H., Chen L., Sun J. H., Wang J. Y. Forming Water-soluble CdSe/ZnS QDs Using Amphiphilic Polymers, Stearyl Methacrylate/Methylacrylate Copolymers with Different Hydrophobic Moiety Ratios and their Optical Properties and Stability[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects,2009,350(1-3):121-129
    [67]Wang Z., Xu Q., Wang H. Q., Yang Q., Yu J. H., Zhao Y. D., Hydrogen Peroxide Biosensor Based on Direct Electron Transfer of Horseradish Peroxidase with Vapor Deposited Quantum Dots[J]. Sensors and Actuators B:Chemical,2009,138(1):278-282
    [68]Lu Q., Hu S. S., Pang D. W., He Z. Direct Electrochemistry and Electrocatalysis with Hemoglobin in Water-Soluble Quantum Dots Film on Glassy Carbon Electrode[J]. Chemical Communications,2005,20,2584-2585
    [69]Xu H., Wu J. E., Chen C. H., Zhang L. H., Yang K. L., Detecting Hydrogen Sulfide by using Transparent Polymer with Embedded CdSe/CdS Quantum Dots [J]. Sensors and Actuators B: Chemical,2010,143(2):535-538
    [70]Jie G. F., Li L. L., Chen C., Xuan J., Zhu J. J., Enhanced Electrochemiluminescence of CdSe Quantum Dots Composited with CNTs and PDDA for Sensitive Immunoassay[J]. Biosensors and Bioelectronics,2009,24(11):3352-3358
    [71]Zhang Y. Z., Pan Y., S Su., Zhang L. P., Li S. P., Shao M., A Novel Functionalized Single-wall Carbon Nanotube Modified Electrode and Its Application in Determination of Dopamine and Uric Acid in the Presence of High Concentrations of Ascorbic Acid[J]. Electroanalysis,2007,19(16):1695-1701
    [72]Dong S. J., Xu Z. A., Gao N., Chen H. J., Biopolymer and Carbon Nanotubes Interface Prepared by Self-assembly for Studying the Electrochemistry of Microperoxidase-11[J]. Langmuir,2005,21(23):10808-10813
    [73]Baughman R. H., Zakhidov A. A., Heer W. A., Carbon Nanotubes-the Route Toward Applications[J]. Science,2002,297(5582):787-792
    [74]Shi L. H., Liu X. Q., Niu W. X., et al. Hydrogen Peroxide Biosensor Based on Direct Electrochemistry of Soybean Peroxidase Immobilized on Single-walled Carbon Nanohorn Modified Electrode[J]. Biosensors and Bioelectronics,2009,24(5):1159-1163
    [75]Chen S. H., Yuan R., Chai Y. Q., Yin B., Li W. J. Ligen Min Amperometric Hydrogen Peroxide Biosensor Based on the Immobilization of Horseradish Peroxidase on Core-shell Organosilica@chitosan Nanospheres and Multiwall Carbon Nanotubes Composite[J].
    Electrochimica Acta,2009,54:3039-3046
    [76]Zou Y. J., Sun L. X., Xu F. Prussian Blue Electrodeposited on MWNTs-PANI Hybrid Composites for H2O2 Detection[J]. Talanta,2007,72(2):437-442
    [77]Zhang H., Fan L. Z., Yang S. H., Significantly Accelerated Direct Electron-Transfer Kinetics of Hemoglobin in a C60-MWCNT Nanocomposite Film[J]. Chemistry-A European Journal, 2006,12(27):7161-7166
    [78]Lee S. H., Lee C. K., Shin S. R., Gu B. K., Kim S. I., Kang T. M., Kim S. J. Enhanced Actuation of PPy/CNT Hybrid Fibers Using Porous Structured DNA Hydrogel[J]. Sensors and Actuators B:Chemical,2010,145(1):89-92
    [79]Xu H., Xiong H. Y., Zeng Q. X., Jia L., Wang Y., Wang S. Direct Electrochemistry and Electrocatalysis of Heme Proteins Immobilized in Single-Wall Carbon Nanotubes-Surfactant Films in Room Temperature Ionic Liquids[J]. Electrochemistry Communications,2009,11(2):286-289.
    [80]Tang H., Yan F., Tai Q. D, Chan H. L. W. The Improvement of Glucose Bioelectrocatalytic Properties of Platinum Electrodes Modified with electrospun TiO2 Nanofibers[J]. Biosensors and Bioelectronics,2010,25(7):1646-1651
    [81]Ma W., Tian D. B. Direct Electron Transfer and Electrocatalysis of Hemoglobin in ZnO Coated Multiwalled Carbon Nanotubes and Nafion composite matrix[J]. Bioelectrochemistry, 2010,78(2):106-112
    [82]Qiu J. D., Peng H. P., Liang R. P., Xia X. H. Facile Preparation of Magnetic Core-shell Fe3O4@Au Nanoparticle/myoglobin Biofilm for Direct Electrochemistry[J]. Biosensors and Bioelectronics,2010,25(6):1447-1453
    [83]Lai G. S., Zhang H. L., Ha D. Y. A Novel Hydrogen Peroxide Biosensor Based on Hemoglobin Immobilized on Magnetic Chitosan Microspheres Modified Electrode[J]. Sensors and Actuators B:Chemical, 2008,129(2):497-503
    [84]Deng Z. F, Gong Y. C., Luo Y. P, Tian Y. WO3 Nanostructures Facilitate Electron Transfer of Enzyme:Application to Detection of H2O2 with High Selectivity [J]. Biosensors and Bioelectronics,2009,24(8):2465-2469
    [85]Batchelor M. C., Du Y., G. Wildgoose G., Compton G. R. The Use of Copper(Ⅱ) Oxide Nanorod Bundles for the Non-enzymatic Voltammetric Sensing of Carbohydrates and Hydrogen Peroxide[J]. Sensors and Actuators B:Chemical,2008,135(1):230-235
    [86]Xiang C. L., Zou Y. J., Sun L. X., Xu F. Direct Electrochemistry and Enhanced Electrocatalysis of Horseradish Peroxidase Based on Flower Like ZnO-Gold Nanoparticle-Nafion Nanocomposite[J]. Sensor and Actuators B:Chemcial.2009,136(1): 158-162
    [87]Hynninen P. H., Kaartinen V., Kolehmainen E. Horseradish Peroxidase-catalyzed Oxidation of Chlorophyll a with Hydrogen Peroxide:Characterization of the Products and Mechanism of the Reaction[J]. Biochimica et Biophysica Acta(BBA)-Bioenergetics,2010,1797(5):
    531-542
    [88]Jiang H. J., Yang H., Akins D. L. Direct Electrochemistry and Electrocatalysis of Catalase Immobilized on a SWCNT-Nanocomposite Film[J]. Journal of Electroanalytical Chemsitry, 2008,623(2):181-186
    [89]Bayramoglu G., Arica M. Y. Reversible Immobilization of Catalase on Fibrous Polymer Grafted and Metal Chelated Chitosan Membrane[J]. Journal of Molecular Catalysis B: Enzymatic,2010,62(3-4):297-304
    [90]Sawai H., Yoshioka S., Uchida T., Hyodo M., Hayakawa Y., Ishimori K., Aono S. Molecular Oxygen Regulates the Enzymatic Activity of a Heme-containing Diguanylate Cyclase (HemDGC) for the Synthesis of Cyclic di-GMP[J]. Biochimica et Biophysica Acta (BBA)-Proteins & Proteomics,2010,1804(1):166-172
    [91]Wei Z. L., Li Z. J, Sun X. L., Fang Y. J., Liu J. K. Synergistic Contributions of Fullerene, Ferrocene, Chitosan and Ionic Liquid towards Improved Performance for a Glucose Sensor[J]. Biosensors and Bioelectronics,2010,25(6):1434-1438
    [92]Ali S. M. U., Nur O., Willander M., Danielsson B. A Fast and Sensitive Potentiometric Glucose Microsensor Based on Glucose Oxidase Coated ZnO Nanowires Grown on a Thin Silver Wire[J]. Sensors and Actuators B:Chemical,2010,145(2):869-874
    [93]Li Y., Gao Y. F., Zhou Y., Liu Y. C., Liu J. R. Glucose Oxidase-Tm2O3 Nanoparticle-modified Electrode for Direct Electrochemistry and Glucose Sensing[J]. Journal of Electroanalytical Chemistry,2010,642(1):1-5
    [94]Zhang L., Zhang J., Zhang C. H. Electrochemical Synthesis of Polyaniline Nano-Network on a-Alanine Functionalized Glassy Carbon Electrode and Its Application for the Direct Electrochemistry of Horse Heart Cytochrome C[J]. Biosensors and Bioelectronics,2009, 24(7):2085-2090
    [95]Wu J. F., Xu M. Q., Zhao G. C. Graphene-based modified electrode for the direct electron transfer of Cytochrome c and biosensing[J]. Electrochemistry Communications,2010,12(1): 175-177
    [96]Semedo M. C., Karmali A., Barata P. D., Prata J. V. Extraction of Hemoglobin with Calixarenes and Biocatalysis in Organic Media of the Complex with Pseudoactivity of Peroxidase[J]. Journal of Molecular Catalysis B:Enzymatic,2010,62(1):96-103
    [97]Scampicchio M., Arecchi A., Lawrence N. S., Mannino S. Nylon Nanofibrous Membrane for Mediated Glucose Biosensing[J]. Sensors and Actuators B:Chemical,2010,145(1):394-397
    [98]Isoda N., Yokoyama H., Nojiri M., Suzuki S., Yamaguchi K., Electroreduction of Nitrite to Nitrogen Oxide by a Copper-containing Nitrite Reductase Model Complex Incorporated into Collagen Film[J].Bioelectrochemistry.2010,77(2):82-88
    [99]Wang S. P., Lei Y., Zhang Y., Tang J., Shen G. L., Yu R. Q. Hydroxyapatite Nanoarray-based Cyanide Biosensor[J]. Analytical Biochemistry,2010,398(2):191-197
    [100]Zhao H.Y., Xu X. X., Zhang J. X., Zheng W., Zheng Y. F. Carbon Nanotube-Hydroxyapatite-Hemoglobin Nanocomposites with High Bioelectrocatalytic Activity[J]. Bioelectrochemistry,2010,78(2):124-129
    [101]Katz E., Willner I., Integrated Nanoparticle-Biomolecule Hybrid Systems:Synthesis, Properties and Applications[J]. Angewandte Chemie, International Edition,2004,43(45): 6042-6108
    [102]Moller R., Powell R. D., Hainfeld J. F., Fritzsche W. Enzymatic Control of Metal Deposition as Key Step for a Low-Background Electrical Detection for DNA Chips[J]. Nano Letter,2005,5(7):1475-1482
    [103]Medintz I. L., Uyeda H. T., Goldman E. R., Mattoussi H. Quantum Dot Bioconjugates for Imaging, Labelling and Sensing[J]. Nature materials,2005,4(6):435-447
    [104]Katz E., Willner I., Wang J., Electroanalytical and Bioelectroanalytical Systems Based on Metal and Semiconductor Nanoparticles[J]. Electroanalysis,2004,16(1-2):19-44
    [105]Willner I., Willner B., Baron R. Biomolecule-Nanoparticle Hybrid Systems for Bioelectronic Applications[J], Bioelectrochemistry,2007,70(1):2-11
    [106]Chen X. J., Xie H., Seow Z. Y., Gao Z.Q. An Ultrasensitive DNA Biosensor Based on Enzyme-catalyzed Deposition of Cupric Hexacyanoferrate Nanoparticles [J]. Biosensors and Bioelectronics.2010,25(6):1420-1426
    [107]Sheng Q. L., Shen Y., Zhang H. F., Zheng J.B. Neodymium (Ⅲ) Hexacyanoferrate (Ⅱ) Nanoparticles Induced by Enzymaticreaction and Their Use in Biosensing of Glucose[J]. Electrochimica Acta,2008(53):4687-4692
    [108]Tan Y., Chu X., Shen G. L., Yu R. Q. A Signal-Amplified Electrochemical Immunosensor for Aflatoxin B1 Determination in Rice[J]. Analytical Biochemistry,2009,387(1):82-86
    [109]Gooding J. J., Hibbert D. B. The Application of Alkanethiol Self-assembled Monolayers to Enzyme Electrodes[J]. Analytical Chemistry,1999,18(8),525-533
    [110]Liu J. Q., Chou A., Rahmat W., Paddon-Row M. N., Gooding J. J. Achieving Direct Electrical Connection to Glucose Oxidase Using Aligned Single Walled Carbon Nanotube Arrays[J]. Electroanalysis,2005,17(1):38-46
    [111]Liu G. Z., Gooding J. J. Towards the Fabrication of Label-free Amperometric Immunosensors using SWCNTs[J]. Electrochemistry Communications,2009,11(10), 1982-1985
    [112]Yu J. X., Shapter J. G., Johnston M. R., Quinton J. S., Gooding J. J. Electron-transfer Characteristics of Ferrocene Attached to Single-walled Carbon Nanotubes (SWCNT) Arrays Drectly Anchored to Silicon[J]. Electrochimica Acta,2007,52(21),6206-6211
    [113]Gooding J. J., Shein J., Lai L. M.H. Using Nanoparticle Aggregation to Give an Ultrasensitive Amperometric Metal Ion Sensor[J]. Electrochemistry Communications,2009, 11(10):2015-2018
    [114]Sheng Q. L., Zheng J. B., Bienzyme System for the Biocatalyzed Deposition of Polyaniline Template by Multiwalled Carbon Nanotubes:A biosensor design[J]. Biosensors and Bioelectronics,2009,24(6):1621-1628
    [115]Gao Z. Q., Rafea S., Lim L. H. Detection of Nucleic Acids Using Enzyme-Catalyzed Template-Guided Deposition of Polyaniline[J]. Advanced Materials,2007,19(4):602-606
    [116]Wang S. P., Lei Y., Zhang Y., Tang J., Shen G.I., Yu R. Q. Hydroxyapatite Nanoarray-based Cyanide Biosensor[J]. Analytical Biochemistry 2010, (398):191-197
    [1]Leger C., Bertrand P. Direct Electrochemistry of Redox Enzymes as a Tool for Mechanistic Studies[J]. Chemical Reviews,2008,108(7):2379-2438
    [2]Penn S. G., He L., Natan M. J. Nanoparticles for Bioanalysis[J]. Current Opinion inl Bio Chemicaogy,2003,7(5):609-615
    [3]Wang J. Nanomaterial-Based Electrochemical Biosensors[J]. Analyst,2005,130(4):421-426
    [4]黄辉,张文魁,纳米碳管空气电极在氧还原反应中的电催化性能.应用化学,2002,19(8):759-763
    [5]Zhuo Y., Yu R. J., Yuan R., Chai Y. Q., Hong C. L. Enhancement of Carcinoembryonic Antibody Immobilization on Gold Electrode Modified by Gold Nanoparticles and SiO2/Thionine Nanocomposite[J]. Journal of Electroanalytical Chemistry,2009,628(1-2): 90-96
    [6]Denisov I. G., Grinkova Y. V., McLean M. A. et al. The One-Electron Autoxidation of Human Cytochrome P450 3A4[J]. Journal of Biological Chemistry,2007,282(37): 26865-26873
    [7]Lenfant C., Ways P., Aucutt C., Cruz J. Effect of chronic hypoxic hypoxia on the O2-Hb Dissociation Curve and Respiratory Gas Transport in Man[J]. Respiration Physiology,1969, 7(1):7-29
    [8]Liang X. D., Gan L., Yang S. W., Sun J. Facile Synthesis and Shape Evolution of Single-Crystal Cuprous Oxide[J]. Adv. Mater,2009,21:2068-2071
    [9]Tsuruoka T., Furukawa S., Takashima Y., Yoshida K., Isoda S., Kitagawa S. Nanoporous Nanorods Fabricated by Coordination Modulation and Oriented Attachment Growth[J]. Angewandte Chemie International Edition,2009,48(26):4739-4743
    [10]Jia J. B., Wang B. Q., Wu A., Cheng G. J., Li Z., Dong S. J. A Method to Construct a Third-Generation Horseradish Peroxidase Biosensor:Self-Assembling Gold Nanoparticles to Three-Dimensional Sol-Gel Network[J]. Analytical Chemistry,2002,74(9):2217-2223
    [11]Elumalai P., Vladimir V. P., Fujio Y. Miura N. Highly Sensitive and Selective Stabilized Zirconia-Based Mixed-Potential-Type Propene Sensor Using NiO/Au Composite Sensing-Electrode[J]. Sensors and Actuators B:Chemical,2010,144(1):215-219
    [12]Decher G. Fuzzy Nanoassemblies:Toward Layered Polymeric Multicomposites[J]. Seience, 1997,277(5330):12-32
    [13]Anzai J., Chen Q. Selective Permeation of Hydrogen Peroxide through Polyelectrolyte Multilayer Films and Its Use for Amperomeric Biosensors. Analaytical Chemistry[J]. Analytical Chemistry,2001,73:5310-5315
    [14]Xu X. H., Han B., Chen Q., Preparation of Chitosan/Glucose Oxidase Nanolayered Films for Electrode Modification by the Technique of Layer-by-layer Self-assembly[J]. J. of Mat.Sci. Lett,2003,22:695-697
    [15]汪尔康,21世纪的分析化学[M].北京:科学出版社,2001
    [16]Palmisano F., Zambonin P. G., A Disposable, Reagentless, Third-Generation Glucose Biosensor Based on Over Oxidized Poly(pyrrole)/Tetrathiafulvalene-Tetracyanoquinodimethane Composite[J]. Anal. Chem,2002,74(23):5913-5918
    [17]Mazzi L. D., Tibbon S. M., Katz E., Willner I. Photosvvitchable Electrical Communication of Glucose Oxidase and Glutathione Reductase with Electrode Surfaces through Photoisomerizable Redox Mediators[J]. Angewandte Chemie,1995,34(15):1600-1606
    [18]曹黎明,陈欢林酶的定向固定化方法及其对酶生物活性的影响.中国生物工程杂志[J].2003,23(1):22-29
    [19]J. Li, Wang J. Q., Gavalas V. G., Atwood D. A., Bachas L. G. Alumina-Pepsin Hybrid Nanoparticles with Orientation-Specific Enzyme Coupling[J]. Nano Letters,2003,3(1): 55-58
    [20]Hrapovic S., Liu Y. L., Male K. B., Luong J. H. T. Electrochemical Biosensing Platforms Using Platinum Nanoparticles and Carbon Nanotubes[J]. Analytical Chemistry,2004,76(4): 1083-1088
    [21]Pang J. T.,Fan C. H.,Liu X. J.,Chen T. Li G. X., A Nitric Oxide Biosensor Based on the Multi-Assembly of Hemoglobin/Montmorillonite/Polyvinyl Alcohol at a Pyrolytic Graphite Electrode[J]. Biosensors and Bioelectronics,2003,19(5):441-445
    [22]Zhang Z. H., Hu Y. F., Zhang H. B., Yao S. Z. Novel Layer-by-Layer Assembly Molecularly Imprinted Sol-Gel Sensor for Selective Recognition of Clindamycin based on Au Electrode Decorated by Multi-all Carbon anotube[J]. Journal of Colloid and Interface Science,2010, 344(1):158-164
    [23]Qu Y. H., Sun Q., Xiao F., Shi G. Y., Jin L. T. Layer-by-Layer Self-Assembled Acetylcholinesterase/PAMAM-Au on CNTs Modified Electrode for Sensing Pesticides[J]. Bioelectrochemistry,2010,77(2):139-144
    [24]Yang Y. J., Hu S. S. Electrodeposited MnO2/Au Composite Film with mproved Electrocatalytic Activity for Oxidation of Glucose and Hydrogen Peroxide[J]. Electrochimica Acta,2010,55(10):3471-3476
    [25]Guo S. J., Wen D., Dong S. J., Wang E. Gold Nanowire Assembling Architecture for H2O2 Electrochemical Sensor[J]. Talanta,2009,77(4):1510-1517
    [26]Zhang J., Li J., Yang F., Zhang B. L., Yang X. R. Pt Nanoparticles-Assisted Electroless Deposition of Prussian Blue on the Electrode:Detection of H2O2 with Tunable Sensitivity[J]. Journal of Electroanalytical Chemistry,2010,638(1):173-177
    [27]Shan D., Cheng G. X., Zhu D. B., Xue H. G., Serge C. Ding S. N. Direct Electrochemistry of Hemoglobin in Poly(Acrylonitrile-co-Acrylic Acid) and Its Catalysis to H2O2[J]. Sensors and Actuators B:Chemical,2009,137(1):259-265
    [28]Zanardi C., Terzi F., Zanfrognini B., Pigani L., Seeber R., Lukkari J., Aarita T. Effective Catalytic Electrode System based on Polyviologen and Au Nanoparticles Multilayer[J]. Sensors and Actuators B:Chemical,2010,144(1):92-98
    [29]Hrapovic S., Liu Y. L., Male K. B., Luong J. H. T. Electrochemical Biosensing Platforms Using Platinum Nanoparticles and Carbon Nanotubes[J]. Anal. Chem.,2004,76(4): 1083-1088
    [30]Hsieh C. T., Lin J. Y., Wei J. L. Deposition and Electrochemical Activity of Pt-based Bimetallic Nanocatalysts on Carbon Nanotube Electrodes[J]. International Journal of Hydrogen Energy,2009,34(2):685-693
    [31]Kadirgan F., Kannan A. M., Atilan T., Beyhan S., Ozenler S. S., Suzer S., Yorur A. Carbon Supported Nano-Sized PtPd and PtCo Electrocatalysts for Proton Exchange Membrane Fuel Cells[J]. International Journal of Hydrogen Energy,2009,34(23):9450-9460
    [32]Fox E. B., Colon M. H. R., Effect of pretreatment on Pt-Co/C Cathode Catalysts for the Oxygen Reduction Reaction[J]. International Journal of Hydrogen Energy,2010,1-7
    [33]Zhou G. J., Wang G., Xu J. J. Chen H. Y., Reagentless Chemiluminescence Biosensor for Determination of Hydrogen Peroxide Based on the Immobilization of Horseradish Peroxidase on Biocompatible Chitosan Membrane[J]. Sensors and Actuators B:Chemical, 2002,81(2-3):334-339
    [34]Li M. Y., Huang S. S., Zhu P. S., Kong L. M., Peng B., Gao H. A Novel DNA Biosensor based on ssDNA/Cytc/l-Cys/GNPs/Chits/GCE[J]. Electrochimica Acta,2009,54(8): 2284-2289
    [35]Chen Q. P., Ai S. Y., Zhu X. B., Yin H. S., Ma Q. Qiu Y. Y. A Nitrite Biosensor Based on the Immobilization of Cytochrome c on Multi-Walled Carbon Nanotubes-PAMAM-Chitosan Nanocomposite Modified Glass Carbon Electrode [J]. Biosensors and Bioelectronics,2009, 24(10):2991-2996
    [36]Tiwari A., Gong S. Q. Electrochemical Detection of a Breast Cancer Susceptible Gene using cDNA Immobilized Chitosan-co-Polyaniline Electrode [J]. Talanta,2009,77(3):1217-1222
    [37]Xu Q., Mao C., Liu N. N. Direct Electrochemistry of Horseradish Peroxidase Based on Biocompatible Carboxymethyl Chitosan-Gold Nanoparticle Nanocomposite[J]. Biosensors and Bioelectronics,2006,22(5):768-773
    [38]Feng Y. Y., Yang T., Zhang W. Enhanced Sensitivity for Deoxyribonucleic Acid Electrochemical Impedance Sensor:Gold Nanoparticle/Polyaniline Nanotube Membranes[J]. Analytica Chimica Acta,2008,616 (2):144-151
    [39]Ozdemir C., Yeni F., Odaci D. Electrochemical Glucose Biosensing by Pyranose Oxidase Immobilized in Gold Nanoparticle-Polyaniline/AgCl/Gelatin Nanocomposite Matrix[J]. Food Chemistry,2010, (119):380-385
    [40]Gao F. X., Yuan R., Chai Y. Q. Amperometric Third-Generation Hydrogen Peroxide Biosensor Based on Mmobilization of Hb on Gold Nanoparticles/Cysteine/Poly(P-Aminobenzene Sulfonic Acid)-Modified Platinum Disk Electrode [J]. Colloids and Surfaces A:Physicochem. Eng. Aspects,2007, (295):223-227
    [41]Zheng W., Li J. Zheng Y. F. An Amperometric Biosensor Based on Hemoglobin Immobilized in Poly(ε-Caprolactone) Filmand Its Application[J]. Biosensors and Bioelectronics,2008,23(10):1562-1566
    [42]牟志刚,Pt/Au纳米双金属簇的制备及表征[J].江苏技术师范学院学报,2007,13(2):44-47
    [43]Pang L. L., Li J. S., Jiang J. H., Yuan L., Guo L. S., Yu R. Q. A Novel Detection Method for DNA Point Mutation using QCM based on Fe3O4/Au Core/Shell Nanoparticle and DNA Ligase Reaction[J]. Sensors and Actuators B:Chemical,2007,127(2):311-316
    [44]Tackett R., Sudakar C., Naik R., Lawes G., Rablau C. Vaishnava P. P. Magnetic and Optical Response of Tuning the Magnetocrystalline Anisotropy in Fe3O4 Nanoparticle Ferrofluids by Co Doping[J]. Magnetism and Magnetic Materials,2008,320(21):2755-2759
    [45]Qiu J. D., Peng H. P., Liang R. P. Xia X. H. Facile Preparation of Magnetic Core-Shell Fe3O4@Au Nanoparticle/Myoglobin Biofilm for Direct Electrochemistry[J]. Biosensors and Bioelectronics,2010,25(6):1447-1453
    [46]Hayashi K., Sakamoto W., Yogo T. Magnetic and Rheological Properties of Monodisperse Fe3O4 Nanoparticle/Organic Hybrid[J]. Magnetism and Magnetic Materials,2009,321(5): 450-457
    [47]Pan C. L., Hu B., Li W., Sun Y., Ye H. Zeng X. X. Novel and Efficient Method for Immobilization and Stabilization of β-d-galactosidase by Covalent Attachment onto Magnetic Fe3O4-Chitosan Nanoparticles[J]. Molecular Catalysis B:Enzymatic,2009, 61(3-4):208-215
    [48]Yu W., Xie H. Q., Chen L. F., Li Y. Enhancement of Thermal Conductivity of Kerosene-Based Fe3O4 Nanofluids Prepared via Phase-Transfer Method[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects,2010,355(1-3):109-113
    [49]Lu Z. Y., Dai J., Song X. N., Wang G., Yang W. S. Facile Synthesis of Fe3O4/SiO2 Composite Nanoparticles from Primary Silica Particles[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects,2008,317(1-3):450-456
    [50]Yan A., Liu X. H., Qiu G. Z., Wu H. Y., Yi R., Zhang N. Xu J. Solvothermal Synthesis and Characterization of Size-Controlled Fe3O4 Nanoparticles[J]. Alloys and Compounds,2008, 458(1-2):487-491
    [51]Qu J. M., Liu G., Wang Y. M., Hong R. Y. Preparation of Fe304-Chitosan Nanoparticles used for Hyperthermia[J]. Advanced Powder Technology,2010, doi:10.1016/j.apt.2010.01.008
    [52]Wang S. H., Wang C., Zhang B., Sun Z. Y., Li Z. Y., Jiang X. K., Bai X. D. Preparation of Fe3O4/PVA Nanofibers via Combining in-situ Composite with Electrospinning[J]. Materials Letters,2010,64(1):9-11
    [53]Lu W. S., Y Shen. H., Xie A. J. Zhang W. Q. Green Synthesis and Characterization of Superparamagnetic Fe3O4 Nanoparticles[J]. Magnetism and Magnetic Materials,2010, 322(13):1828-1833
    [54][54] Mahdavian A. R., Sehri Y., Mobarakeh H. S. Nanocomposite Particles with Core-Shell Morphology Ⅱ. An Investigation into the Affecting Parameters on Preparation of Fe3O4-Poly (butyl acrylate-styrene) Particles via Miniemulsion Polymerization [J]. European Polymer Journal,2008,44(8):2482-2488
    [55]Yan H., Zhang J. C., You C. X., Song Z. W., Yu B. W., Shen Y. Surface Modification of Fe3O4 Nanoparticles and Their Magnetic Properties, International Journal of Minerals[J]. Metallurgy and Materials,2009,16(2):226-229
    [56]Yang L. Q., Ren X. L., Tang F. Q., Zhang L. A Practical Glucose Biosensor based on Fe3O4 Nanoparticles and Chitosan/Nafion Composite Film[J]. Biosensors and Bioelectronics,2009, 25(4):889-895
    [57]Guo H. F., Zhu H., Lin H.Y., Zhang J. Q. Polyaniline/Fe3O4 Nanocomposites Synthesized under the Direction of Cationic Surfactant[J]. Materials Letters,2008,62(14):2196-2199
    [58]Lv Y. D., Wang H., Wang X. F., Bai J. B. Synthesis, Characterization and Growing Mechanism of Monodisperse Fe3O4 Microspheres[J]. Journal of Crystal Growth,2009, 311(13):3445-3450
    [59]Shen Y. F., Tang J., Nie Z. H., Wang Y. D., Ren Y., Zuo L. Preparation and Application of Magnetic Fe3O4 Nanoparticles for Wastewater Purification[J]. Separation and Purification Technology,2009,68(3):312-319
    [60]Sun H. W., Zhu X. J., Zhang L. Y., Zhang Y., Wang D. Q. Capture and Release of Genomic DNA by PEI Modified Fe3O4/Au Nanoparticles[J]. Materials Science and Engineering C, 2010,30(2):311-315
    [61]Yu Q. Z. Polyaniline/Au&Fe3O4@Au Sub-Microcables Fabricated by Electrospinning and Electroless Deposition[J]. Materials Science and Engineering B,2010,167(1):26-30
    [62]Lee H. Y., Rwei S. P., Wang L., Chen P. H. Preparation and Characterization of Core-Shell Polyaniline-Polystyrene Sulfonate@Fe3O4 Nanoparticles[J]. Materials Chemistry and Physics,2008,112(3):805-809
    [63]Lin H. L., Chen Z., Lu Q. Z., Q. Cai Y., Grimes C. A. A Wireless and Sensitive Sensing Detection of Polycyclic Aromatic Hydrocarbons Using Humic Acid-Coated Magnetic Fe3O4 Nanoparticles as Signal-Amplifying Tags[J]. Sensors and Actuators B, Chemical,2010, 146(1):154-159
    [64]Kaushik A., Khan R., Solanki P. R., Pandey P., Alam J., Ahmad S., Malhotra B.D. Iron Oxide Nanoparticles-Chitosan Composite based Glucose Biosensor[J]. Biosensors and Bioelectronics,2008,24(4):676-683
    [65]Zhu A. P., Yuan L. H., Jin W. J., Dai S., Wang Q. Q., Xue Z. F., Qin A. J. Polysaccharide surface Modified Fe3O4 Nanoparticles for Camptothecin Loading and Release[J]. Acta Biomaterialia,2009,5(5):1489-1498
    [66]Rani M., Ramachandran R., Kabilan S. A Facile Synthesis and Characterization of Semiconducting P-Phenylenediamine-Aniline Copolymer[J]. Synthetic Metals,2010, 160(7-8):678-684
    [67]Hebert M., Rochefort D. Electrode Passivation by Reaction Products of the Electrochemical and Enzymatic Oxidation of P-Phenylenediamine[J]. Electrochimica Acta,2008,53(16): 5272-5279
    [68]Hao Q. L., Sun B. M., Yang X. J., Lu L. D. Wang X. Synthesis and Characterization of Poly (o-phenylenediamine) Hollow Multi-Angular Microrods by Interfacial Method[J]. Materials Letters,2009,63(2):334-336
    [69]Wang Q., Tang H., Xie Q. J., Jia X. E., Zhang Y. Y., Tan L., Yao S. Z. The preparation and Characterization of Poly(o-phenylenediamine)/Gold Nanoparticles Interface for Immunoassay by Surface Plasmon Resonance and Electrochemistry [J]. Colloids and Surfaces B:Biointerfaces,2008,63(2):254-261
    [70]Zhang L., Shi Z.G., Lang Q. H., Pan J. Electrochemical Synthesis of Belt-Like Polyaniline Network on P-Phenylenediamine Functionalized Glassy Carbon Electrode and Its Use for the Direct Electrochemistry of HorseHeart Cytochrome c[J]. Electrochimica Acta,2010,55(3): 641-647
    [71]Meyer A., Blomeke B., Fischer K. Determination of P-Phenylenediamine and Its Metabolites MAPPD and DAPPD in Biological Samples Using HPLC-DAD and Amperometric Detection[J]. Journal of Chromatography B,2009,877(16-17):1627-1633
    [72]LI X. G., Wei D., Huang M. R. et al. A Soluble Lladder Copolymer From M 2 Phenylenediamine and Ethoxyaniline[J]. Polymer,2003,44:5579-5595
    [73]滕凯玲,葛小芳,碱性介质中对苯二胺在铂微电极上的电化学聚合研究[J].浙江工业大学学报,2007,35(6):636-639
    [74]黄美荣,马小立,李新贵聚苯二胺与贵金属纳米复合物的研究进展[J].河南化工,2008,25(6):1-6
    [1]Wildman K. A. H., Lei M., Thai V., Kerns S. J. A Hierarchy of Timescales in Protein Dynamics is Linked to Enzyme Catalysis[J]. Nature,2007,450:913-916
    [2]Lotzbeyer T., Schuhmann W., Schmidt H. Electron transfer principles in Amperometric Biosensors:Direct Electron Transfer between Enzymes and Electrode Surface[J]. Sensors and Actuators B:Chemical,1996,33(1-3):50-54
    [3]Gooding J. J., Hibbert D. B. The Application of Alkanethiol Self-assembled Monolayers to Enzyme Electrodes[J]. Analytical Chemistry,1999,18(8):525-533
    [4]Schuhmann W., Amperometric Enzyme Biosensors Based on Optimized Electron-transfer Pathways and Non-manual Immobilisation Procedures[J]. Molecular Biotechnology,2002, 82(4):425-441
    [5]Liu J. Q., Chou A., Rahmat W., Paddon R. M. N., Gooding J. J. Achieving Direct Electrical Connection to Glucose Oxidase using Aligned Single Walled Carbon Nanotube Arrays[J]. Electroanalysis,2005,17(1):38-46
    [6]Chen C. C., Gu Y. S. Enhancing the Sensitivity and Stability of HRP/PANI/Pt Electrode by Implanted Bovine Serum Albumin[J]. Biosensors and Bioelectronics,2008,23(6):765-770
    [7]Sheng Q. L., Zheng J. B. Bienzyme System for The Biocatalyzed Deposition of Polyaniline Template by Multiwalled Carbon Nanotubes:A biosensor design[J]. Biosensors and Bioelectronics,2009,24(6):1621-1628
    [8]Sheng Q. Luo L., K., Zheng J. B., Zhang H. F. Enzymatically Induced Formation of Neodymium Hexacyanoferrate Nanoparticles on the Glucose Oxidase/chitosan Modified Glass Carbon Electrode for The Detection of Glucose[J]. Biosensors and Bioelectronics, 2008,24(3):429-434
    [9]Chen D., Wang G., Li J. H. Interfacial Bioelectrochemistry:Fabrication, Properties and Applications of Functional Nanostructured Biointerfaces[J]. The Journal of Physical Chemistry C,2007,111(6):2351-2367
    [10]Zhong J., Song L., Meng J., Gao B., Chu W. S., Xu H. Y., Luo Y., Guo J. H., Marcelli A., Xie S., Wu Z. Bio-nano Interaction of Proteins Adsorbed on Single-walled Carbon Nanotubes[J]. Carbon,2009,47(4):967-973
    [11]Katz E., Willner I. Integrated Nanoparticle-Biomolecule Hybrid Systems:Synthesis, Properties and Applications [J]. Angewandte Chemie, International Edition,2004,43(45): 6042-6108
    [12]Moller R., Powell R. D., Hainfeld J. F., Fritzsche w., Enzymatic Control of Metal Deposition as Key Step for a Low-Background Electrical Detection for DNA Chips[J]. Nano Letter, 2005,5(7):1475-1482
    [13]Medintz I. L., Uyeda H. T., Goldman E. R.,Mattoussi H., Quantum Dot Bioconjugates for Imaging, Labelling and Sensing[J]. Nature materials,2005,4(6):435-447
    [14]Katz E., Willner I., Wang J., Electroanalytical and Bioelectroanalytical Systems Based on Metal and Semiconductor Nanoparticles[J]. Electroanalysis,2004,16(1-2):19-44
    [15]Willner I., Willner B., Baron R. Biomolecule-Nanoparticle Hybrid Systems for Bioelectronic Applications[J]. Bioelectrochemistry,2007,70(1):2-11
    [16]Zhang Y. Z., Pan Y., Su S., Zhang L. P., Li S. P., Shao M. A novel Functionalized Single-wall Carbon Nanotube Modified Electrode and Its Application in Determination of Dopamine and Uric Acid in the Presence of High Concentrations of Ascorbic Acid[J]. Electroanalysis,2007,19(16):1695-1701
    [17]Dong S. J., Xu Z. A., Gao N., Chen H. J. Biopolymer and Carbon Nanotubes Interface Prepared by Self-assembly for Studying the Electrochemistry of Microperoxidase-11[J]. Langmuir,2005,21(23):10808-10813
    [18]Baughman R. H., Zakhidov A. A., Heer W. A. Carbon Nanotubes-the Route toward Applications[J]. Science,2002,297(5582):787-792
    [19]Yunus S., Attout A., Bertrand P. Controlled Aniline Polymerization Strategies for Polyaniline Micro and Nano Self-assembling into Practical Electronic Cevices[J]. Langmuir,2009,25(3): 1851-1854
    [20]Matharu Z., Sumana G., Arya S. K., Singh S. P., Gupta V., Malhotra B. D. Polyaniline Langmuir Blodgett Film Based Cholesterol Biosensor[J]. Langmuir,2007,23(26): 13188-13192
    [21]Paterno L. G., Soler M. A. G., Fonseca F. J., Sinnecker J. P., Sinnecker E. H. C. P., Lima E. C. D., Novak M. A., Morais P. C. Layer-by-layer Assembly of Bifunctional Nanofilms: Surface-functionalized Maghemite Hosted in Polyaniline[J]. The Journal of Physical Chemistry C,2009,113(13):5087-5095
    [22]Wang L., Wang J. X., Zhou F. M. Direct Electrochemistry of Catalase at a Gold Electrode Modified with Single-wall Carbon Nanotubes[J]. Electroanalysis,2004,16(8):627-632
    [23]Iijima S., Ichihashi T. Single-shell Carbon Nanotubes of 1-nm Diameter[J]. Nature,1993, 363:603
    [24]Wang Y. D., Joshi P. P., Hobbs K. L., Johnson M. B., Schmidtke D. W. Nanostructured Biosensors Built by Layer-by-Layer Electrostatic Assembly of Enzyme-coated Single-walled Carbon Nanotubes and Redox Polymers[J]. Langmuir,2006,22 (23):9776-9783
    [25]Shim M., Kam N. W. S., Chen R. J., Li Y., Dai H. Functionalization of Carbon Nanotubes for Biocompatibility and Biomolecular Recognition[J]. Nano letters,2002,2(4):285-288
    [26]Zhao C., Song Y. J., Ren J. S., Qu X. G. A DNA Nanomachine Induced by Single-walled Carbon Nanotubes on Gold Surface[J]. Biomaterials,2009,30(9):1739-1745
    [27]Rao F., Zhou Y. X., Li T., Wang Y. L. Synthesis of Radially Aligned Single-walled Carbon Nanotubes on a SiO2/Si Substrate by Introducing Sodium Chloride[J]. Carbon,2009,47(10): 2548-2552
    [28]Liu G. Z., Gooding J. J. Towards the Fabrication of Label-free Amperometric Immunosensors using SWCNTs[J]. Electrochemistry Communications,2009, 11 (10):1982-1985
    [29]Yu J. X., Shapter J. G., Johnston M. R., Quinton J. S., Gooding J. J. Electron-transfer Characteristics of Ferrocene attached to Single-walled Carbon Nanotubes (SWCNT) Arrays Directly Anchored to Silicon[J]. Electrochimica Acta,2007,52(21):6206-6211
    [30]Azamian B. R., Davis J. J., Coleman K. S., Bagshaw C. B., Green M. L. H. Bioelectrochemical Single-walled Carbon Nanotubes[J]. Journal of the American Chemical Society,2002,124(43):12664-12665
    [31]Poh Z., Flavel B. S., Shearer C. J., Shapter J. G., Ellis A. V. Fabrication and Electrochemical Behavior of Vertically-aligned Carbon Nanotube Electrodes Covalently Attached to P-type Silicon via a Thioester Linkage[J]. Materials Letters,2009,63(9-10):757-760
    [32]Lu W., Qu L. T., Henry K., Dai L. M. High Performance Electrochemical Capacitors from Aligned Carbon Nanotube Electrodes and Ionic Liquid Electrolytes[J]. Journal of Power Sources,2009,189(2):1270-1277
    [33]Jung S. M., Jung H. Y., Suh J. S. A Simple Method to Fabricate Chemical Sensors Using Horizontally Aligned Clean Carbon Nanotubes[J]. Sensors and Actuators B:Chemical,2009, 139(2):425-428
    [34]Tang Q. W., Wu J. H., Sun X. M., Li Q. H., Lin J. M. Shape and Size Control of Oriented Polyaniline Microstructure by a Self-assembly Method[J]. Langmuir,2009,25(9):5253-5257
    [35]Santos L. M., Ghilane J., Fave C., Lacaze P. C., Randriamahazaka H., Abrantes L. M., Lacroix J. C. Electrografting Polyaniline on Carbon through the Electroreduction of Diazonium Salts and the Electrochemical Polymerization of Aniline[J]. The Journal of Physical Chemistry C,2008,112(41):16103-16109
    [36]Prabhakar N., Arora K., Singh H., B. Malhotra D., Polyaniline based Nucleic Acid Sensor[J]. The Journal of Physical Chemistry B,2008,112(15):4808-4816.
    [37]Wang P., Liu M., Kan J. Q. Amperometric Phenol Biosensor Based on Polyaniline[J]. Sensors and Actuators B:Chemical,2009,140(2):577-584
    [38]Diarmid A. G. M. Polyaniline and Polypyrrole:where are we Headed? [J]. Synthetic Metals, 1997,84(1-3):27-34
    [39]Gao Z. Q., Rafea S., Lim L. H. Detection of Nucleic Acids Using Enzyme-catalyzed Template-guided Deposition of Polyaniline[J]. Advanced Materials,2007,19(4):602-606
    [40]Ho H. A., Dore K., Boissinot M., Bergeron M. G., Tanguay R. M., Boudreau D., Leclerc M. Direct Molecular Detection of Nucleic Acids by Fluorescence Signal Amplification[J]. Journal of the American Chemical Society,2005,127(36):12673-12676
    [41]Thiyagarajan M., Samuelson L. A., Kumar J., Cholli A. L. Helical Conformational Specificity of Enzymatically Synthesized Water-soluble Conducting Polyaniline Nanocomposites[J]. Journal of the American Chemical Society,2003,125(38):11502-11503
    [42]Caramyshev A. V., Evtushenko E. G., Ivanov V. F., Barcelo A., Roig M. G., Shnyrov V. L., Huystee R. B., Kurochkin I. N., Vorobiev A. K., Sakharov I. Y. Synthesis of Conducting Polyelectrolyte Complexes of Polyaniline and Poly (2-acrylamido-3-methyl-1-propanesulfonic acid) Catalyzed by pH-stable Palm Tree Peroxidase[J]. Biomacromolecules, 2005,6(3):1360-1366
    [43]Pan X. H., Kan J. Q., Yuan L. M. Polyaniline Glucose Oxidase Biosensor Prepared with Template Process[J]. Sensors and Actuators B:Chemical,2004,102(2):325-330
    [44]Shi L. X., Xiao Y., Willner I. Electrical Contacting of Glucose Oxidase by DNA-templated Polyaniline Wires on Surfaces[J]. Electrochemistry Communications,2004,6(10): 1057-1060

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700