碳纳米管修饰电极的电化学、光电化学行为
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
碳纳米管具有独特的优异性质,如:良好的电子转移能力,高的长径比,大的比表面积以及强的吸附能力等。本论文就是利用其良好的性能,对其进行衍生化后,进行了一系列的研究。
     制备了Fe3O4纳米球修饰的的多壁碳纳米管(Fe304/MWCNTs)。然后,通过循环伏安法对Fe3O4/MWCNTs修饰电极的化学行为进行了研究,同时考察了该电极对H2O2的敏感性。结果表明,Fe3O4/MWCNTs修饰电极对H202具有很高的灵敏度,最低检测限可达到1.6×10-9mol.dm-3。其中,多壁碳纳米管的高长径比和特殊的电子结构起到了很重要的作用。这个结果表明基于碳纳米管的生物传感器具有良好的发展前景。
     合成了L-丙氨酸乙酯修饰的多壁碳纳米管(MWCNT-Ala),并利用傅立叶转换红外光谱对其进行了表征。通过循环伏安法对D-,L-色氨酸在MWCNT-Ala修饰电极上的电化学行为进行了探讨。同时,为了更深入地理解电化学过程的机理,分别对D,L-色氨酸在裸露的玻碳电极和MWNT-COOHs修饰电极上的电化学行为进行了考察。发现MWCNT-Ala修饰电极能够识别L/D-色氨酸的手性异构体。这主要应归因于在多壁碳纳米管上引入了手性的L-丙氨酸乙酯,而碳纳米管所起作用主要是提供了一个有效的电子通道。此外,MWNT-Ala修饰电极的选择性与溶液的pH值和扫描速率有关。结果表明在pH=6.4时,其选择性最好。并且随着扫描速率增大,其选择性也增强。
     通过碳纳米管与卟啉大环之间的π-π相互作用,制备了四苯基卟啉(TPP)和四苯基卟啉锌(ZnTPP)修饰的多壁碳纳米管(TPP-CNTs和ZnTPP-CNTs),并考察了其紫外、荧光以及红外光谱。利用循环伏安法、交流阻抗等手段,分别对TPP-CNTs修饰电极和ZnTPP-CNTs修饰电极的电化学行为和光电化学行为进行了研究。同时,为了为更好地探讨其机理,对碳纳米管修饰电极的电化学和光电化学行为也进行了考察。通过比较得知,TPP-CNTs中的电荷转移效率比ZnTPP-CNTs更高。一个可能的解释是,由于中心金属离子的影响,引起ZnTPP的平面性下降,卟啉分子与碳纳米管之间的π-π相互作用减弱,从而导致二者之间的电子转移效率降低。由此我们可以推测卟啉分子空间几何结构对于卟啉修饰碳纳米管中的光电子转移过程具有很大的影响。
Carbon nanotubes have exceptional good properties, such as:good electron transport capability, high aspect ratio, large surface area and strong adsorption ability. We make use of their good performance to conduct a series of studies on the carbon nanotubes derivaties.
     The electrodes modified with multiwalled carbon nanotubes carrying Fe3O4 beads (Fe3O4/MWCNTs) were fabricated and their electrochemical behavior was investigated by cyclic voltammetry. Meanwhile, the sensitivity to H2O2 (aq) of these electrodes was also explored. The results indicated that the electrodes coated with Fe3O4/MWCNTs exhibit high sensitivity to H2O2 (aq) with a detectable concentration of 1.6×10-9 mol·dm-3, multi-wall carbon nanotubes of high aspect ratio and the special electronic structure plays a very important role, The results implied carbon nanotubes-based biosensing devices was promising for the development of biosensing devices.
     Alanine ethyl ester modified multi-walled carbon nanotubes (MWNT-Ala) were prepared and characterized with a Fourier transform infra-red (FT-IR) spectrometer. The electrochemical behavior of D-and L-tryptophan on the electrodes coated with MWNT-Ala was investigated by cyclic voltammetry. Meanwhile, in order to further understand the mechanism of electrochemical process, the electrochemical behavior of D-and L-tryptophan on the bare glassy carbon electrodes and the electrodes coated with multi-walled carbon nanotubes possessing carboxyl groups (MWNT-COOH) was also discussed, respectively. The results show that the electrodes coated with MWNT-Ala can recognize the L/D-tryptophan chiral isomer, which is due to the introduction of chrical alanine ethyl ester moieties on the multi-walled carbon nanotubes. Furthermore, the enantioselectivity of the electrodes coated with MWNT-Ala was studied as a function of pH of the solution and the scan rate. Its selectivity is best at pH=6.4, and with the scan rate increased, the selectivity also increased.
     TPP-CNTs and ZnTPP-CNTs were prepared using theπ-πinteration of porphyrin macrocycle and CNTs, and characterized with UV-vis absorption spectra, fluorescence spectra and IR. The electrochemical and photoelectrochemical behaviors of TPP-CNTs and ZnTPP-CNTs modified electrodes were investigated by cyclic voltammetry and impedance. Meanwhile, in order to understand the mechanism, the electrochemical and photoelectrochemical behaviors of CNTs modified with electrodes were also discussed respectively. The result showed that TPP-CNTs modified with electrode had better charge-transfer ability than that of the ZnTPP-CNTs modified with electrodes. This may be ascribed to the influence of the central metal ion, which leads to worse planarity. Therefore, theπ-πinteraction between porphyrin molecules and carbon nanotubes is weakened, leading to the efficiency of electron transfer lower. We can speculate the geometric structure of porphyrin molecule may play an important role in the electron transfer process of the porphyrin modified carbon nanotubes.
引文
[1]王升高,汪建华等,碳纳米管的制备——微波等离子体的应用.化学工业出版社.2008.4:27-34
    [2]张立德,解思深.纳米材料和纳米结构一国家重大基础研究项目新进展.北京:化学工业出版社,2005,12-46
    [3]Journet C, Maser W. K., Bernier P.. Large—scale production of single—walled carbon nanotubes by the electricarc technique. Nature.1997,388:756-758
    [4]郭连权,宋开颜,武鹤楠,马贺,李大业,非手性型单壁碳纳米管的对称性分析,人工晶体学报.2008,37:950-954
    [5]马如飞,李铁虎,赵廷凯,王大为,碳纳米管应用研究进展,炭素技术.2009,28:35-39
    [6]麦亚潘,刘忠范。碳纳米管——科学与应用.北京:科学出版社.2007,121-123
    [7]Yang H-S., ZhouX., Zhang Q-W.. Studies on preparation and properties of polyaniline/fractionized carbon nanotube composites. Acta Polymerica Sinica.2004,5: 766-769
    [8]Liu J., Rinzler A.G., Dai H., Hafner J. H., Bradley R. K., Boul P. J., Lu A., Iverson T., Shelimov K., Huffman C. B., Rodriguez-Macias F., Shon Y. S., Lee T. R., Colbert D. T., Smalley R. E.. Fullerene pipes. Science.1998,280:1253-1256
    [9](a) Banerjee S., Wong S. S.. Rational sidewall functionalization and purification of single-walled carbon nanotubes by solution-phase ozonolysis. J. Phys. Chem. B.2002, 106:12144-12151 (b) Banerjee S., Hemraj-Benny T., Balasubramanian M., Fischer D. A., Misewich J. A., Wong S. S.. Ozonized single-walled carbon nanotubes investigated using NEXAFS spectroscopy. Chem. Commun..2004,772-773 (c) Banerjee S., Wong S. S.. Demonstration of diameter-selective reactivity in the sidewall ozonation of swnts by resonance Raman spectroscopy. Nano Lett..2004,4:1445-1450
    [10]Hu H., Zhao B., Hamon M.A., Kamaras K., Itkis M. E., Haddon R. C. Sidewall functionalization of single-walled carbon nanotubes by addition of dichlorocarbene. J. Am. Chem. Soc.2003,125:14893-14900
    [11]Dimitrios T., Nikos T., Alberto B., and Maurizio P.. Chemistry of carbon nanotubes. Chem. Rev..2006,106:1105-1136
    [12]Tagmatarchis N., Georgakilas V., Prato M., Shinohara H.. Sidewall functionalization of single-walled carbon nanotubes through electrophilic addition. Chem. Commun..2002, 2010-2011
    [13](a) Basiuk E.V., Monroy-Pelaez M., Puente-Lee I., Basiuk V.A.. Direct solvent-free amination of closed-cap carbon nanotubes:a link to fullerene chemistry. Nano Lett.. 2004,4:863-866 (b) Chen S., Shen W., Wu G., Chen D., Jiang M. A new approach to the functionalization of single-walled carbon nanotubes with both alkyl and carboxyl groups. Chem. Phys. Lett..2005,402:312-317
    [14]Pekker S., Salvetat J.-P., Jakab E., Bonard J.-M., Forro L.. Hydrogenation of carbon nanotubes and graphite in liquid ammonia. J. Phys. Chem. B.2001,105(33):7938-7943
    [15]Barthos R., Mehn D., Demortier A., Pierard N., Morciaux Y., Demortier G., Fonseca A., Nagy J. B.. Functionalization of single-walled carbon nanotubes by using alkyl-halides. Carbon.2005,43:321-325
    [16]Chen Q., Dai L., Gao M., Huang S., Mau A.. Plasma activation of carbon nanotubes for chemical modification. J. Phys. Chem. B.2001,105:618-622
    [17](a) Riggs J. E., Guo Z., Carroll D. L., Sun Y.-P.. Strong luminescence of solubilized carbon nanotubes. J. Am. Chem. Soc..2000,122,5879-5880 (b) Czerw R., Guo Z., Ajayan P. M., Sun Y.-P., Carroll D. L.. Organization of polymers onto carbon nanotubes: a route to nanoscale assembly. Nano Lett..2001,1:423-427
    [18]Li, X.; Liu, L.; Qin, Y.; Wu, W.; Guo, Z.-X.; Dai, L.; Zhu, D.. C60 modified single-walled carbon nanotubes. Chem.Phys. Lett..2003,377:32-36.
    [19]Vostrowsky O., Hirsch S.. Molecular peapods as supramolecular carbon allotropes. Angew. Chem. Int. Ed..2004,43:2326-2329
    [20](a) Tsang S. C., Davis J. J., Green M. L. H., Hill H. A. O., Leung Y. C., Sadler P.. Immobilization of small proteins in carbon nanotubes:high-resolution transmission electron microscopy study and catalytic activity. J. Chem. Commun..1995,1803-1804 (b) Davis J. J., Green M. L. H., Hill H. A. O., Leung Y. C, Sadler P. J., Sloan J., Xavier A. V., Tsang S. C. The immobilisation of proteins in carbon nanotubes. Inorg. Chim. Acta. 1998,272:61-266
    [21]Ito T., Sun L., Crooks R. M.. Observation of DNA transport through a single carbon
    nanotube channel using fluorescence microscopy. Chem. Commun..2003,13:1482-1483
    [22]Burteaux B., Claye A., Smith B. W., Monthioux M., Luzzi D. E., Fischer J. E.. Abundance of encapsulated C60 in single-wall carbon nanotubes. Chem. Phys. Lett.. 1999,310,21-24
    [23]马如飞,李铁虎,赵廷凯,王大为,CNTs应用研究进展,炭素技术,2009,28:35-39.
    [24]Calvert P. D.. Nanotube composites-a recipe for strength. Nature.1999,399:210-211
    [25]Li J., Liu Q., Liu Y., Liu S., Yao S.. DNA biosensor based on chitosan film doped with carbon nanotubes. Anal. Biochem..2005,346:107-114
    [26]Wang Z., Xiao S., Chen Y.. Electrocatalytic and analytical response of β-cyclodextrin incorporated carbon nanotubes-modified electrodes toward guanine. Electroanalysis. 2005,17:2057-2061
    [27]Ye Y., Ju H., Rapid detection of ssDNA and RNA using multi-walled carbon nanotubes modified screen-printed carbon electrode. Biosens. Bioelectron..2005,21:735-741
    [28]Xu Q., Wang S.F.. Electrocatalytic oxidation and direct determination of L-Tyrosine by square wave voltammetry at multi-wall carbon nanotubes modified glassy carbon electrodes. Microchim. Acta.2005,151:47-52
    [29]Zhai X., Wei W., Zeng J., Gong S., Yin J.. Layer-by-layer assembled film based on chitosan/carbon nanotubes, and its application to electrocatalytic oxidation of NADH. Microchim. Acta.2006,154:315-320
    [30]Zeng Y., Zhu Z.H., Wang R.-X., Lu G.-H.. Electrochemical determination of bromide at a multiwall carbon nanotubes-chitosan modified electrode. Electrochim. Acta.2006,51: 649-654
    [31]Yin T., Wei W., Zeng J.. Selective detection of dopamine in the presence of ascorbic acid by use of glassy-carbon electrodes modified with both polyaniline film and multi-walled carbon nanotubes with incorporated β-cyclodextrin. Anal. Bioanal. Chem.. 2006,386:2087-2094
    [32]Wang Y., Li Q., Hu S.. A multiwall carbon nanotubes film-modified carbon fiber ultramicroelectrode for the determination of nitric oxide radical in liver mitochondria. Bioelectrochemistry.2005,65:135-142
    [33]Tang H., Chen J., Nie L., Yao S., Juang Y.. Electrochemical oxidation of glutathione at well-aligned carbon nanotube array electrode. Electrochim. Acta.2006,51:3046-3051
    [34]Zhang R., Wang X., Chen C. Electrochemical biosensing platform using carbon nanotube activated glassy carbon electrode. Electroanalysis.2007,19:1623-1627
    [35]Yadegari H., Jabbari A., Heli H., Moosavi-Movehedi A.A., Karimian K., Khodadadi A. Electrocatalytic oxidation of deferiprone and its determination on a carbon nanotube-modified glassy carbon electrode. Electrochim. Acta.2008,53:2907-2916
    [36]Jo S., Jeong H., Bae S.R., Jeon S.. Modified platinum electrode with phytic acid and single-walled carbon nanotube:Application to the selective determination of dopamine in the presence of ascorbic and uric acids. Microchem. J..2008,88:1-6
    [37]Zhang H., Wu K.. Sensitive adsorption stripping voltammetric determination of reserpine by a glassy carbon electrode modified with multi-wall carbon nanotubes. Microchim. Acta.2005,14973-14978
    [38]Zhu Y.H., Zhang Z.L., Pang D.W.. Electrochemical oxidation of theophylline at multi-wall carbon nanotube modified glassy carbon electrodes. J. Electroanal. Chem.. 2005,581:303-309
    [39]Abbaspour A., Mirzajani R.. Electrochemical monitoring of piroxicam in different pharmaceutical forms with multi-walled carbon nanotubes paste electrode. J. Pharm.
    Biomed. Anal..2007,44:41-48
    [40]Zhuang Q., Chen J., Lin X.. Electrocatalytical properties of bergenin on a multi-wall carbon nanotubes modified carbon paste electrode and its determination in tablets. Sens. Actuators B.2008,128:500-506
    [41]He J.B., Lin X.Q., Pan J.. Multi-wall carbon nanotube paste electrode for adsorptive stripping determination of quercetin:a comparison with graphite paste electrode via voltammetry and chronopotentiometry. Electroanalysis.2005,17:1681-1686
    [42]Zeng B., Wei S., Xiao F., Zhao F.. Voltammetric behavior and determination of rutin at a single-walled carbon nanotubes modified gold electrode. Sens. Actuators B.2006,115: 240-246
    [43]Li C.. Voltammetric determination of 2-chlorophenol using a glassy carbon electrode coated with multi-wall carbon nanotube-dicetyl phosphate film. Microchim. Acta.2007, 157:21-26
    [44]Peng C., Jin J., Chen G.Z.. A comparative study on electrochemical co-deposition and capacitance of composite films of conducting polymers and carbon nanotubes. Electrochim. Acta.2007,53:525.
    [45]Hrapovic S., Liu E.Y., Male K., Luong J.H.T.. Metallic nanoparticle-carbon nanotube composites for electrochemical determination of explosive nitroaromatic compounds. Anal. Chem..2006,78:5504-5512
    [46]Yang P., Wei W., Tao C. Determination of trace thiocyanate with nano-silver coated multi-walled carbon nanotubes modified glassy carbon electrode. Anal. Chim. Acta. 2007,585:331-336
    [47]Hrapovic S., Majid E., Liu Y., Male K.,. Luong J.H.T.. Metallic nanoparticle-carbon nanotube composites for electrochemical determination of explosive nitroaromatic compounds. Anal. Chem..2006,78:5504-5512
    [48]Lin X., Li Y.. A sensitive determination of estrogens with a Pt nano-clusters/multi-walled carbon nanotubes modified glassy carbon electrode. Biosens. Bioelectron..2006,22: 253-259
    [49]Chang Z., Fan H., Zhao K., Chen M., He P., Fang Y.. Electrochemical DNA biosensors based on palladium nanoparticles combined with carbon nanotubes. Electroanalysis. 2008,20:131-136
    [50]Cheng Y., Liu Y, Huang J., Li K., Xian Y, Zhang W, Jin L.. Amperometric tyrosinase biosensor based on Fe3O4 nanoparticles-coated carbon nanotubes nanocomposite for rapid detection of coliforms. Electrochimica Acta.2009,54 (9),2588-2594
    [51]Qu S., Wang J., Kong J., Yang P., Chen G. Magnetic loading of carbon nanotube/nano-Fe3O4 composite for electrochemical sensing. Talanta.2007,71(3): 1096-1102
    [52]Qu F., Yang M., Jiang J., Shen G., Yu R.. Amperometric biosensor for choline based on layer-by-layer assembled functionalized carbon nanotube and polyaniline multilayer film. Anal. Biochem..2005,344:108-114
    [53]Yin Y.J., Lu Y.F., Wu P.. Direct electrochemistry of redox proteins and enzymes promoted by carbon nanotubes. Sensors.2005,5:220-234
    [54]Wang M.K., Shen Y, Liu Y. Direct electrochemistry of microperoxidase 11 using carbon nanotube modified electrodes. J. Electroanal. Chem..2005,578:121-127
    [55]Chicharro M., Sanchez A., Bermejo E., Zapardiel A., Rubianes M.D., Rivas G.A., Carbon nanotubes paste electrodes as new detectors for capillary electrophoresis. Anal. Chim. Acta.2005,543:84-91
    [56]Chicharro M., Arribas A.S, Moreno M., Bermejo E., Zapardiel A.. Comparative study of multi walled carbon nanotubes-based electrodes in micellar media and their application to micellar electrokinetic capillary chromatography. Talanta.2007,74:376-386
    [57]朱宏伟,吴德海,徐才录.碳纳米管.机械工业出版社.2003,50-70
    [58]Jiang Q., Qu M.Z., Zhou G.M., Zhang B.L., Yu Z.L.. A study of activated carbon nanotubes as electrochemical super capacitors electrode materials. Materials Letters. 2002,57:988-991
    [59]Liu C, Fang H., Li F., Liu M., Cheng H., Single-walled carbon nanotubes modified by electrochemical treatment for application in electrochemical capacitors. J. Power Sources. 2006,160:758-761
    [60]He Y, Huang L., Cai J., Zheng X. and Sun S.. Structure and electrochemical performance of nanostructured Fe3O4/carbon nanotube composites as anodes for lithium ion batteries. Electrochimica Acta.2010,55(3):1140-1144
    [61]Ou Y., Lin J., Fang S., Liao D.. MWNT-TiO2:Ni composite catalyst:A new class of catalyst for photocatalytic H2 evolution from water under visible light illumination. Chem. Phys. Lett..2006,429:199-203
    [62]Li Q., Chen L., Lu G.X.. Visible-light-induced photocatalytic hydrogen generation on dye-sensitized multiwalled carbon nanotube/Pt catalyst. J. Phys. Chem. C.2007,111: 11494-11499
    [63]Cha S.I., Koo B.K., Seo S.H., Lee D.Y.. Pt-free transparent counter electrodes for dye-sensitized solar cells prepared. J. Mater. Chem..2010,20:659-662
    [64]Journet C, Maser W. K., Bernier P., Loiseau A., Lefrant S., Deniard P., Lee R., Fischer J.E.. Large-scale production of Single-walled carbon nanotubes by the electric-arc technique. Nature.1997,388:756-758
    [65]Sarbajit B., Tirandai H.-B., Stanislaus S.W.. Covalent Surface Chemisry of Single-Walled Carbon nanotubes. Adv. Mater..2005,17:17-29
    [66]Jiang L.-C, Zhang W.-D.. Electrodeposition of TiO2 nanoparticles on multiwalled carbon nanotube arrays for hydrogen peroxide sensing. Electroanalysis.2009,21: 988-993
    [67]Wolfbeis O. S., Durkop A., Wu M., Lin Z.. A europium-ion-based luminescent sensing probe for hydrogen peroxide. Angew. Chem. Int. Ed..2002,41:4495-4498
    [68]Lu J., Lau C., Morizono M., Ohta K., Kai M.. A chemiluminescence reaction between hydrogen peroxide and acetonitrile and its applications. Anal. Chem..2001,73: 5979-5983
    [69]Karsten A.F., Miloslav P., George G.G. Recent applications of electrogenerated chemiluminescence in chemical analysis. Talanta.2001,54:531-559
    [70]Camacho C, Matias J.C., Garcia D., Simpson B.K., Villalonga R.. Amperometric enzyme biosensor for hydrogen peroxide via Ugi multicomponent reaction. Electrochem. Commun..2007,9:1655-1660.
    [71]Wei H., Wang E.. Fe3O4 magnetic nanoparticles as peroxidase mimetics and their applications in H2O2 and glucose detection. Anal. Chem..2008,80:2250-2254
    [72]Gao L.Z., Zhuang J., Nie L., Zhang, J.B. Zhang Y, Gu N., Wang T.H., Feng J., Yang D.L., Perrett S., Yan X.Y. Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. Nat. Nanotechnol..2007,2:577-583
    [73]Zhang L., Zhai Y, Gao N., Wen D., Dong S.. Sensing H2O2 with layer-by-layer assembled Fe3O4-PDDA nanocomposite film. Electrochem. Commun..2008,10: 1524-1526
    [74]Qu S., Wang J., Kong J., Yang F., Chen G.. Magnetic loading of carbon nanotube/nano-Fe3O4 composite for electrochemical sensing. Talanta.2007,71: 1096-1102
    [75]Miao Y., Wang H., Shao Y, Tang Z., Wang J., Lin Y. Layer-by-layer assembled hybrid film of carbon nanotubes/iron oxide nanocrystals for reagentless electrochemical detection of H2O2. Sens. Actuators, B.2009,138:182-188
    [76]Jia B., Gao L., Sun J.. Self-assembly of magnetite beads along multiwalled carbon nanotubes via a simple hydrothermal process. Carbon.2007,45:1476-1481
    [77]Chen D-H., Liao M-H.. Preparation and characterization of YADH-bound magnetic nanoparticles. J. Mol. Catal. B.2002,16:283-291
    [78]Jaanus K., Nigel M., Kerstin J., Alison C, Craig E.B.. Single walled carbon nanotubes contain residual iron oxide impurities which can dominate their electrochemical activity. Electrochem. Commun..2007,9:2330-2333
    [79]Xu Z., Chen X., Qu X., Dong S.. Electrocatalytic oxidation of catechol at Multi-Walled carbon nanotubes modified electrode. Electroanalysis.2004,16:684-687
    [80]Switzer J.A., Kothari H.M., Poizot P., Nakanishi S., Bohannan E.W.. Enantiospecific electrodeposition of a chiral catalyst. Nature.2003,425:490-493
    [81]WurtmanT R.J.. Genes, stress, and depression. Metabolism-Clinical and Experimental.. 2005,54:16-19
    [82]Corradini R., Buccella G., Galaverna G., Dossena A., Marchelli R.. Synthesis and chirai recognition properties of L-Ala-Crown(3)-L-Ala capped β-cyciodextrin. Tetrahedron Letters.1999,40:3025-3028
    [83]Lu H.J., Guo Y-L.. Chiral recognition of borneol by association with zinc(II) and 1-tryptophan in the gas phase. Anal. Chim. Acta.2003,482:1-7
    [84]Allenmark S., Bomgren B., Boren H.. Direct liquid chromatographic separation of enantiomers on immobilized protein stationary phases:Ⅲ. Optical resolution of a series of N-aroyl D, L-amino acids by high-performance liquid chromatography on bovine serum albumin covalently bound to silica. J Chromatogr..1983,264:3-8
    [85]Gilpin R. K., Ehtesham S. E., Gregory R. B.. Liquid chromatographic studies of the effect of temperature on the chiral recognition of tryptophan by silica-immobilized bovine albumin. Anal. Chem..1991,63:2825-2828
    [86]Narayanan S. R.. Immobilized proteins as chromatographic supports for chiral resolution. J. Pharm. Biomed. Anal.1992,10:251-262
    [87]Noyori R., Ohkuma T.. Asymmetric catalysis by architectural and functional molecular engineering:practical chemo-and stereoselective hydrogenation of ketones. Angew. Chem. Int. Ed..2001,40,40-73
    [88]Malta L.F.B., Cordeiro Y., Tinoco L.W., Campos C.C., Medeiros M.E., Antunes O.A.C.. A Recognition mechanism of D-and L-tryptophan enantiomers using 2-hydroxypropyl-α-or β-cyclodextrins as chiral selectors. Tetrahedron:Asymmetry. 2008,19:1182-1188
    [89]Stefan R-L, Jacobus F.. Molecular recognition in chiral discrimination. Cryst. Eng.. 2001,4:113-118
    [90]Gerald G., Martin G. S.. Chiral separation by chromatographic and electromigration techniques, a review biopharm. Drug Dispos..2001,22:291-336
    [91]Nugent J.M., Santhanam K.S.V., Rubio A., Ajayan P. M.. Fast electron transfer kinetics on multiwalled carbon nanotube microbundle electrodes. Nano Lett..2001,1(2),87-91
    [92]Santhanam K.S.V., Ajayan P.M.. Carbon nanotube electrode for oxidation of dopamine. Bioelectrochem. Bioenerg..1996,41:121-125
    [93]Musameh M., Wang J., Merkoci A., Lin. Y.. Low-potential stable NADH detection at carbon-nanotube-modified glassy carbon electrodes. Electrochem. Commun..2002,4: 743-746
    [94]Rubianes M.D., Rivas G.A.. Carbon nanotubes paste electrode. Electrochem. Commun.. 2003,5:689-694
    [95]Zhao G-C., Yin Z-Z., Zhang L., Wei X-W.. Direct electrochemistry of cytochrome c on a multi-walled carbon nanotubes modified electrode and its electrocatalytic activity for the reduction of H2O. Electrochem. Commun..2005,7:256-260
    [96]Wang J., Musameh M.. Electrochemical detection of trace insulin at carbon-nanotube-modified electrodes. Analytica Chimica Acta.2004,511:33-36
    [97]Deo R.P., Wang J.. Electrochemical detection of carbohydrates at carbon-nanotube modified glassy-carbon electrodes. Electrochem. Commun..2004,6:284-287
    [98]Prakash P.A., Yogeswaran U., Chen S.-M.. Direct electrochemistry of catalase at multiwalled carbon nanotubes-nafion in presence of needle shaped DDAB for H2O2 sensor. Talanta.2009,78:1414-1421
    [99]Salimi A., Banks C.E., Compton R.G.. Abrasive immobilization of carbon nanotubes on a basal plane pyrolytic graphite electrode:application to the detection of Epinephrine. Analyst.2004,129:225-228.
    [100]Qu W., Wu K., Hu S.. Voltammetric determination of pyridoxine (Vitamin B6) by use of a chemically-modified glassy carbon electrode. J. Pharm. Biomed. Anal..2004,36: 631-635.
    [101]Salimi A., Hallaj R., Khayatian G-R.. Amperometric detection of morphine at preheated glassy carbon electrode modified with multiwall carbon nanotubes. Electroanalysis.2005, 17 (10):873-879
    [102]Fei S., Chen J., Yao S., Deng G., He D., Kuang Y.. Electrochemical behavior of L-cysteine and its detection at carbon nanotube electrode modiWed with platinum. Anal. Biochem..2005,339:29-35
    [103]Qu W.F., Wang F., Hu S.S.. Electrocatalytic properties and voltammetric determination of melatonin at a nanostructured film electrode. Microchim. Acta.2005,150:109-114
    [104]Daryl J.T., Alan M.B., Zhang Q., Donald E.R.. A study of the electrochemistry of tryptophan, peptides containing tryptophan, and related compounds (indoles) at mercury electrodes. J. Electroanal. Chem..1989,261:127-146
    [105]Chen G.N., Zhao Z.F., Wang X.L., Duan J.P., Chen H.Q.. Electrochemical behavior of tryptophan and its derivatives at a glassy carbon electrode modified with hemin. Anal. Chim. Acta.2002,452:245-254
    [106]Wu F.-H., Zhao G.-C, Wei X.-W., Yang Z.-S.. Electrocatalysis of tryptophan at multi-walled carbon nanotube modified electrode. Microchim. Acta.2004,144:243-247
    [107]Domenech A., Alarcon J.. Microheterogeneous electrocatalytic chiral recognition at monoclinic vanadium-doped zirconias:enantioselective detection of glucose. Anal. Chem..2007,79:6742-6751.
    [108]Domenech A., Koshevoy I.O., Penno D., Ubeda M.A.. Electrochemical chiral recognition by microparticle coatings of Pd complexes with bridging cyclometalated phosphines. Electrochim. Acta.2008,53:3416-3426.
    [109]Bustos E., Godinez L.A., Rangel-Reyes G., Juaristi E.. Chiral recognition of alanine across modified carbon electrodes with 3,4-dihydroxyphenylalanine. Electrochim. Acta. 2009,54:6445-6450
    [110]Budnikov G.K., Evtyugin G.A., Budnikova Y.G., Alfonsov V. A.. Covalent surface chemistry of single-walled carbon nanotubes. Adv. Mater..2005,17:17-29
    [111]Budniko G.K., Evtyugin G.A., Budnikova Y.G., Alfonsov V.A.. Chemically modified electrodes with amperometric response in enantioselective analysis. J. Anal. Chem.. 2008,63:2-12
    [112]Wang, Q., Zhi F.P., Wang W.T., Xia X.H, Liu X.H., Meng F.F., Song Y.Y., Yang C., Lu X.Q.. Direct electron transfer of thiol-derivatized tetraphenylporphyrin assembled on gold electrodes in an aqueous solution. J. Phys. Chem. C.2009,113:9359-9367
    [113]Wang, Q., Zhi F.P., Wang W. T., Xia X.H, Liu X.H., Meng F.F., Song, Y.Y., Yang C, Lu X.Q.. Direct electron transfer of thiol-derivatized tetraphenylporphyrin assembled on gold electrodes in an aqueous solution. J. Phys. Chem. C.2009,113:9359-9367
    [114]Imahori H., Umeyama T.. Porphyrin-modified electrodes for solar energy conversion. Journal of Porphyrins And Phthalocyanines.2009,13:1063.
    [115]Hasobe T., Murata H., Kamat P.V.. Photoelectrochemistry of Stacked-Cup Carbon Nanotube Films. Tube-Length Dependence and Charge Transfer with Excited Porphyrin. J. Phys. Chem. C.2007,111:16626-16634
    [116]Guldi D.M., Taieb H., Rahman G. M. A., Tagmatarchis N.. Novel photoactive single-walled carbon nanotube-porphyrin polymer wraps:efficient and long-lived intracomplex charge separation. Adv.Mater..2005,17(7):871-875

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700