碳微球表面二苯并噻吩分子印迹聚合材料的制备及性能
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
分子印迹聚合物(MIP)是一种具有分子识别能力的新型高分子材料,由于它具有预定性、识别性和实用性三大特点,因此近年来发展非常迅速,已在分离、萃取、富集、酶模拟以及生物模拟传感器等领域展现出广泛的应用前景。本论文在碳微球(CMSs)制备基础上,对其表面进行化学修饰,然后经接枝、聚合、分子模板交联等步骤,得到一类对油品中二苯并噻吩化合物优先识别和吸附的新型表面分子印迹材料,此材料对油品的深度脱硫具有重要意义。
     本论文中,首先利用化学气相沉积法(CVD),分别以脱油沥青和乙炔为碳源制备了CMSs;然后对CMSs进行了KMnO_4、KMnO_4/HNO_3、KMnO_4/H_2SO_4化学修饰的研究,得到MnO_2/CMSs复合物和氧化CMSs;最后初步探索了在CMSs表面接枝聚甲基丙烯酸(PMAA)和制备二苯并噻吩表面分子印迹聚合物。采用场发射扫描电子显微镜、高分辨透射电子显微镜、X-射线衍射分析、热重分析和红外分析等手段对产物进行表征和分析。结果如下:
     1. CVD法合成了直径约为350nm的CMSs,然后将CMSs进行了KMnO_4、KMnO_4/HNO_3、KMnO_4/H_2SO_4化学修饰,在CMSs的表面原位生成并包覆了MnO_2,得到MnO_2/CMSs复合材料,有望用于高效电容器;修饰后的CMSs用过量草酸进行洗涤,得到氧化CMSs,在水中分散效果较好,且在乙醇中也有一定分散性。氧化后CMSs的表面存在活性位点,达到了改善CMSs表面惰性的目的,为CMSs的进一步修饰奠定基础;
     2.在氧化CMSs的基础上,使用偶联剂γ-(甲基丙烯酰氧)丙基三甲氧基硅烷对氧化CMSs进行了表面化学改性,将双键引至CMSs表面;然后用热引发和光引发的方式,成功地将PMAA接枝到CMSs表面,为制备表面分子印迹材料奠定了实验和理论基础。
     3.以二苯并噻吩为模板分子、MAA为单体、氯仿为溶剂、偶氮二异丁腈为引发剂、二甲基丙烯酸乙二醇酯为交联剂,在CMSs表面制得了二苯并噻吩表面分子印迹材料。通过吸附实验测得此印迹材料达到吸附平衡的吸附时间为5h,吸附量为0.595mmol/g。与非印迹聚合物相比,MIP表现出对二苯并噻吩有较好的吸附性能,此MIP有望用于油品的深度脱硫。
Molecularly imprinted polymer (MIP) is a new kind of macromolecular material with high molecular recognition characteristics. Owing to predetermined property with specific recognition capability and wide practicability, it has developed quickly in recent years, exhibiting extensive application potentials in separation, extraction, enrichment, enzyme mimic, biomimic sensor and other fields. In this paper, the surface chemical modification of carbon microspheres (CMSs) was firstly carried out. Then the new surface molecular imprinted materials with priority recognition and adsorption were gained through grafting, polymerization, and molecular template crosslinking steps. It is very important for deep desulfurization of oils.
     In this paper, first of all, CMSs were synthesized by chemical vapor deposition method (CVD), using deoiled asphalt and acetylene as carbon sources. Subsequently, the surface chemical modification of CMSs was carried out in KMnO_4, the mixture of KMnO_4 and HNO_3, and the mixture of KMnO_4 and H_2SO_4, and MnO_2-coated CMSs and oxidized-CMSs were obtained separately. In addition, polymethyl acrylic acid (PMAA) was grafted onto the surface of modified-CMSs, and dibenzothiophene molecularly imprinted polymers on CMSs were prepared. The morphologies and surface microstructures of different products were characterized by field emission scanning electron microscopy, high resolution transmission electron microscopy, X-ray diffraction, thermogravimetry and fourier transformation infra-red spectrometry. The results are as follows:
     1. CMSs with the diameter 350 nm were prepared by CVD. KMnO_4, KMnO_4/HNO_3, KMnO_4/H_2SO_4 solution were used to modify the CMSs. The obtained products were MnO_2-coated CMSs particles. The MnO_2/CMSs composites are expected to be efficient candidate for supercapacitor. And then H_2C2O_4 solution was used to wash MnO_2-modified CMSs, forming oxidized CMSs. The oxidized CMSs had good dispersion in water and ethanol. After the CMSs were oxidized, some active sites were formed on the surface of CMSs, which was effective to change the inert nature of the surface of CMSs, thus laying the foundation for further modification.
     2. The oxidized CMSs were modified using the coupling agent 3-methacryloxypropyl trimethoxysilane, so as to introduce C=C bonds on the surface of CMSs. PMAA was grafted on the surface of CMSs by photo-initiating or thermal-initiating approach. This laid an experimental and theoretical foundation for the preparation of molecular imprinting materials.
     3. Surface molecular imprinting polymers were prepared on the surface of CMSs using dibenzothiophene as template, MAA as functional monomer, chloroform as solvent, azobisisobutyronitrile as initiator, ethylene glycol dimethacrylate as crosslinking agent. The adsorption behavior of MIP showed that the adsorption equilibrium time was about 5h and the adsorption amount was 0.595mmol/g. Compared with blank polymers, MIP possessed a better adsorption property toward dibenzothiophene, showing its portential for deep desulfurization.
引文
[1] Jacobsen R L, Tritt T M, Guth J R, et al. Mechanical properties of vapor-grown carbon fiber [J]. Carbon, 1995, 33(9): 1217-1221.
    [2] Endo M, Kim Y A, Hayashi T, et al. Vapor-grown carbon fibers (VGCFs): Basic properties and their battery applications [J]. Carbon, 2001, 39(9): 1287-1297.
    [3] Miyagawa H, Rich M J, Drzal L T. Thermo-physical properties of epoxy nanocomposites reinforced by carbon nanotubes and vapor grown carbon fibers [J]. Thermochimica Acta, 2006, 442(1-2): 67-73.
    [4] Al-Saleh M H, Sundararaj U. A review of vapor grown carbon nanofiber/polymer conductive composites [J]. Carbon, 2009, 47(1): 2-22.
    [5] Coleman J N, Khan U, Blau W J, et al. Small but strong: A review of the mechanical properties of carbon nanotube–polymer composites [J]. Carbon, 2006, 44(9): 1624-1652.
    [6] Zeng Q, Li Z H, Zhou Y H. Synthesis and Application of Carbon Nanotubes [J]. Journal of Natural Gas Chemistry, 2006, 15(3): 235-246.
    [7] Popov V N. Carbon nanotubes: properties and application [J]. Materials Science and Engineering: R: Reports, 2004, 43(3): 61-102.
    [8] Ye J S, Liu X, Cui H F, et al. Electrochemical oxidation of multi-walled carbon nanotubes and its application to electrochemical double layer capacitors [J]. Electrochemistry Communications, 2005, 7(3): 249-255.
    [9]沈曾民.新型碳材料[M].北京:化学工业出版社, 2004: 1-309.
    [10] Guo J J, Yang X W, Yao Y L, et al. Pt/onion-like fullerenes as catalyst for direct methanol fuel cell [J]. Rare Metals, 2006, 25(6): 305-308.
    [11] Yao Y L, Wang X M, Guo J J, et al. Tribological property of onion-like fullerenes as lubricant additive [J]. Materials Letters, 2008, 62(16): 2524-2527.
    [12] Kroto H W, Heath J R, O'Brien S C, et al. C60: Buckyminister-fullerenes [J]. Nature, 1985, 318(6042): 162-163.
    [13] Iijima S, Helical microtubules of graphitic carbon [J]. Nature, 1991, 354(6348): 56-58.
    [14] Wang Y G, Korai Y, Mochida I. Carbon disc of high density and strength prepared fromsynthetic pitch-derived mesocarbon microbeads [J]. Carbon, 1999, 37(7): 1049-1057.
    [15] Liu Y C, Qiu X P, Huang Y Q, et al. Methanol electro-oxidation on mesocarbon microbead supported Pt catalysts [J]. Carbon, 2002, 40(13): 2375-2380.
    [16]吕永根,凌立成,刘朗等.中间相炭微球的活化[J].煤炭转化, 1999, 22(2): 66-70.
    [17] Alcantara R, Fernandez M F J, Lavela P, et a1. Characterisation of mesocarbon microbeads (MCMB) as active electrode material in lithium and sodium cells [J]. Carbon, 2000, 38(7): 1031-1041.
    [18] Yamada Y, Imamura T, Kakiyama H, et al. Characteristics of meso-carbon microbeads separated from pitch [J]. Carbon, 1974, 12(3): 307-319.
    [19] Wang Y G, Egashira M, Ishida S, et al. Microstructure of mesocarbon microbeads prepared from synthetic isotropic naphthalene pitch in the presence of carbon black [J]. Carbon, 1999, 37(2): 307-314.
    [20]李宝华,吕永根,李开喜等.中间相沥青碳微球的制备及其嵌锂行为的研究[J].宇航材料工艺, 2001, (6): 27-30.
    [21] Kodama M, Fujirua T, Esumi K, et al. Preparation of meso-carbon microbeads with a narrow size distribution [J]. Carbon, 1988, 26(4): 595-598.
    [22] Kodama M, Fujiura T, Ikawa E, et al. Characterization of mesocarbon microbeads prepared by emulsion method [J]. Carbon, 1991, 29(1): 43-49.
    [23] Lu Y G, Ling L C, Oh S, et al. Preparation of carbon microbeads from pitch and resin by suspension [J]. New Carbon Materials, 2001, 16(3): 1-5.
    [24] Mehraban Z, Farzaneh F, Dadmehr V. Catalytic chemical vapour deposition synthesis of carbon spheres [J]. Materials Letters, 2009, 63(20): 1653-1655.
    [25] Miao J Y, Dennis W H, Chang C C, et al. Uniform carbon spheres of high purity prepared on kaolin by CCVD [J]. Diamond & Related Materials, 2003, 12(8): 1368-1372.
    [26]杨永珍.重油残渣定向转化新型碳功能材料的研究[D].山西:太原理工大学, 2007.
    [27] Jin Y Z, Gao C, Hsu W K, et al. Large-scale synthesis and characterization of carbon spheres prepared by direct pyrolysis of hydrocarbons [J]. Carbon, 2005, 43(9): 1944-1953.
    [28] Mondal K C, Cele L M, Witcomb M J, et al. Carbon microsphere supported Pd catalysts for the hydrogenation of ethylene [J]. Catalysis Communications, 2008, 9(4): 494-498.
    [29] Zhen H W, Qiang W, Qian Z, et al. Hollow carbon spheres with wide size distribution as anode catalyst support for direct methanol fuel cells [J]. Electrochemistry Communi- cations, 2007, 9(8): 1867-1872.
    [30]刘红艳.沥青基气相生长碳材料的表面修饰[D].山西:太原理工大学, 2009.
    [31]张春一.脱油沥青基气相生长碳微球的制备、改性及吸附性能研究[D].山西:太原理工大学, 2008.
    [32] Lordi V, Yao N, Wei J. Method for supporting platinum on single-walled carbon nanotubes for a selective hydrogenation catalyst [J]. Chem Mater, 2001, 13(3): 733-737.
    [33] Raghuveer M S, Agrawal S, Bishop N, et al. Microwave-assisted single-step functionalization and in situ derivatization of carbon nanotubes with gold nanoparticles [J]. Chem Mater, 2006, 18(6): 1390-1393.
    [34] Qu L T, Dai L M. Substrate-enhanced electroless deposition of metal nanoparticles on carbon nanotubes [J]. J Am Chem Soc, 2005, 127(31): 10806-10807.
    [35] Mu Y Y, Liang H P, Hu J S, et al. Controllable Pt nanoparticle deposition on carbon nanotubes as an anode catalyst for direct methanol fuel cells [J]. J Phys Chem B, 2005, 109(47): 22212-22216.
    [36] Bottini M, Cerignoli F, Dawson M I, et al. Full-length single-walled carbon nanotubes decorated with streptavidin-conjugated quantum dots as multivalent intracellular fluorescent nanoprobes [J]. Biomacromolecules, 2006, 7(8): 2259-2263.
    [37] Hwang S H, Moorefield C N, Wang P S, et al. Dendron-tethered and templated CdS quantum dots on single-walled carbon nanotubes [J]. J Am Chem Soc, 2006, 128(23): 7505-7509.
    [38] Li W W, Gao C, Qian H F, et al. Multiamino-functionalized carbon nanotubes and their applications in loading quantum dots and magnetic nanoparticles [J]. J Mater Chem, 2006, 16, 1852-1859.
    [39] Planeix J M, Coustel N, Coq B, et al. Application of carbon nanotubes as supports in heterogeneous catalysis [J]. J Am Chem Soc, 1994, 116(17): 7935-7936.
    [40] Wang Y, Xu X, Tian Z Q, et al. Selective heterogeneous nucleation and growth ofsize-controlled metal nanoparticles on carbon nanotubes in solution [J]. Chem Eur J, 2006, 12(9): 2542-2549.
    [41] Xu B S, Guo J J, Jia H S, et al. Electrocatalytic properties of platinum on hard carbon spherules derived from deoiled asphalt for methanol oxidation [J]. Catal Today, 2007, 125(3-4): 169-172.
    [42]许并社,罗秋苹,杨永珍等.银/碳微球复合材料的制备和表征[J].中国材料进展, 2009, 28(2): 35-38.
    [43] Lee J Y, Liang K, Ana K H, et al. Nickel oxide/carbon nanotubes nanocomposite for electrochemical capacitance [J], Synth Met, 2005, 150(2) : 153-157.
    [44] Wang G X, Zhang B L, Yu Z L, et al. Manganese oxide/MWNTs composite electrodes for supercapacitors [J]. Solid State Ionics, 2005, 176(11-12): 1169-1174.
    [45] Subramanian V, Zhu H W, Wei B Q. Synthesis and electrochemical characterizations of amorphous manganese oxide and single walled carbon nanotube composites as supercapacitor electrode materials [J]. Electrochem Commun, 2006, 8(5): 827-832.
    [46] Arabale G, Wagh D, Kulkarni M, et al. Enhanced supercapacitance of multiwalled carbon nanotubes functionalized with ruthenium oxide [J]. Chem Phys Lett, 2003, 376 (1-2): 207-213.
    [47] Fan Z, Chen J H, Wang M Y, et al. Preparation and characterization of manganese oxide/CNT composites as supercapacitive materials [J]. Diamond and Related Materials, 2006, 15(9): 1478-1483.
    [48] Wu M Q, Snook G A, Chen G Z, et al. Redox deposition of manganese oxide on graphite for supercapacitors [J]. Electrochem Commun, 2004, 6(5): 499-504.
    [49] Xie X F, Gao L. Characterization of a manganese dioxide/carbon nanotube composite fabricated using an in situ coating method [J]. Carbon, 2007, 45(12): 2365-2373.
    [50] Chai S P, Zein S H S, Mohamed A R. Synthesizing carbon nanotubes and carbon nanofibers over supported-nickel oxide catalysts via catalytic decomposition of methane [J]. Diamond and Related Materials, 2007, 16(8): 1656-1664.
    [51]田艳红,王海滨.由碳还原KMnO4制备氧化锰/碳超级电容材料[J].北京化工大学学报, 2007, 34(2): 150-153.
    [52] Fernando K A S, Lin Y, Sun Y P. High aqueous solubility of functionalized single-walledcarbon nanotubes [J]. Langmuir, 2004, 20(11): 4777-4778.
    [53] Hamon M A, Chen J, Hu H, et al. Dissolution of single-walled carbon nanotubes [J]. Adv Mater, 1999, 11(10): 834-840.
    [54] Chen J, Rao A M, Lyuksyutov S, et al. Dissolution of full-length single-walled carbon nanotubes [J]. J Phys Chem B, 2001, 105(13): 2525-2528.
    [55] Riggs J E, Walker D B, Carroll D L, et al. Optical limiting properties of suspended and solubilized carbon nanotubes [J]. J Phys Chem B, 2000, 104(30): 7071-7076.
    [56] Pompeo F, Resasco D E. Water solubilization of single-walled carbon nanotubes by functionalization with glucosamine [J]. Nano lett, 2002, 2(4): 369-373.
    [57] Kong J, Dai H J. Full and modulated chemical gating of individual carbon nanotubes by organic amine compounds [J]. J Phys Chem B, 2001, 105(15): 2890-2893.
    [58] Adeli M, Mirab N, Alavidjeh M S, et al. Carbon nanotubes-graft-polyglycerol: Biocompatible hybrid materials for nanomedicine [J]. Polymer, 2009, 50(15): 3528-3536.
    [59] Viswanathan G, Chakrapani N, Yang H, et al. Single-step in situ synthesis of polymer-grafted single-wall nanotube composites [J]. J Am Chem Soc, 2003, 125(31): 9258-9259.
    [60] Pantarotto D, Hoebeke J, Graff R, et al. Synthesis, structural characterization, and immunological properties of carbon nanotubes functionalized with peptides [J]. J Am Chem Soc, 2003, 125(20): 6160-6164.
    [61] Liu Y X, Zhang C, Du Z J, et al. The preparation of multi-walled carbon nanotubes encapsulated by poly (3-acrylaminopropylsiloxane) with silica nanospheres on the polymer surface [J]. Carbon, 2008, 46(13): 1670-1677.
    [62] Sobkowicz M J, Dorgan J R, Gneshin K W, et al. Controlled dispersion of carbon nanospheres through surface functionalization [J]. Carbon, 2009, 47(3): 622-628.
    [63] Vlatakis G, Andersson L I, Mosbach K, et al. Drug assay using antibody mimics made by molecular imprinting [J]. Nature, 1993, 361: 645-647.
    [64]王妍,荆涛,包学伟等.本体聚合法制备2-氯酚分子印迹聚合物及其性能评价[J].分析科学学报, 2008, 24(5): 531-534.
    [65] Ansell R J, Mosbach K. Molecularly imprinted polymers by suspension polymerisation in perfluorocarbon liquids, with emphasis on the influence of the porogenic solvent [J].Journal of Chromatography A, 1997, 787(1-2): 55-66.
    [66] Matsui J, Fujiwara K, Ugata S, et al. Solid-phase extraction with a dibutylmelamine-imprinted polymer as triazine herbicide-selective sorbent [J]. Journal of Chromatography A, 2000, 889(1-2): 25-31.
    [67]尹俊发,杨更亮,张轶华等.原位聚合那格列奈分子印迹手性固定相的分子识别特性研究[J].化学学报, 2004, 62(19): 1922-1926.
    [68]黄晓冬,邹汉法,毛希琴等.分子印迹手性整体柱的制备及对非对映异构体的分离[J].色谱, 2002, 20(5): 436-438.
    [69]杜振霞.表面分子印迹聚合物的制备及表征[D].北京:北京化工大学, 2006.
    [70]汪剑,高保娇,郭浩鹏等.硅胶表面抗蚜威分子印迹聚甲基丙烯酸的制备及识别特性[J].功能高分子学报, 2008, 21(1): 44-49.
    [71] Kan X W, Zhao Y, Geng Z R, et al. Composites of multiwalled carbon nanotubes and molecularly imprinted polymers for dopamine recognition [J]. J Phys Chem C, 2008, 112(13): 4849-4854.
    [72] Lee E, Park D W, Lee J O, et al. Molecularly imprinted polymers immobilized on carbon nanotube [J]. Colloids and Surface A, 2008, 313-314, 202-206.
    [73] Ma S B, Ahn K Y, Lee E S, et al. Synthesis and characterization of manganese dioxide Spontaneously coated on carbon nanotubes [J]. Carbon, 2007, 45(2): 375-382.
    [74] Lee H Y, Goodenough J B. Supercapacitor behavior with KCl electrolyte [J]. Journal of Solid State Chemistry, 1999, 144(1): 220-223.
    [75]邓梅根,张治安,胡永达等.超级电容器碳纳米管与二氧化锰复合电极材料的研究[J].硅酸盐学报, 2004, 32(4): 411-415.
    [76] Khomenko V, Raymundo-Pi?ero E, Béguin F. Optimisation of an asymmetric manganese oxide/activated carbon capacitor working at 2 V in aqueous medium [J]. J Power sources, 2006, 153(1): 183-190.
    [77]王琴,梁晓怿,刘朝军等.二苯并噻吩在球形活性炭上的吸附平衡和动力学研究[J].功能材料, 2008, 11(39): 1867-1870.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700