硒碲化合物半导体纳米材料的调控合成、结构与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
硒碲化合物半导体纳米材料因其优异的光、电、磁性能,具有广阔的应用前景。如何在合成过程中实现对它们的晶体结构、维度、形貌、表面结构和能带结构的调控,将为实现材料性能的人工剪裁,深入系统研究材料结构与性能的关系具有重要的意义。本论文在硒碲化合物半导体纳米材料的化学合成新途径及其调控合成方法等方面做了很多有益的探索性研究。
    在合成新途径的探索方面,从发现了水热元素直接反应法,发展到亚硒酸盐水热还原法,提出了化学调控合成的新概念,为液相中金属硒碲化合物的合成提供了可能的动力学调控手段和方法。在实验上,选用络合剂络合金属离子,通过筛选合适的络合剂、调节反应温度、反应物比例等条件,成功地实现了对CdSe晶体结构、维度、尺寸和形貌等的选择性调控合成,并详细讨论了调控机制,为半导体纳米材料的调控合成开辟了新的途径。
    在化学调控合成思想的指导下,运用已取得的调控合成的成功经验,利用MnSeO3沉淀缓释放出Mn2+源和硒源,在调节反应温度的基础上,于同一反应体系成功地合成了MnSe2和MnSe的立方体和球形微米晶,实现了产物组成和维度的调控,并对它们的磁行为进行了研究。用亚碲酸盐代替亚硒酸盐,上述方法被成功应用到金属碲化物的动力学调控合成中,通过共还原反应机理,利用新生的元素Co、Ni与活性碲,于水溶液中合成了CoTe和NiTe的一维纳米线。亚硒(碲)酸盐还原水热法为金属硒碲化合物的调控合成提供了一个强有力的手段,进一步发展和完善了化学调控合成的方法,丰富了调控合成思想。
    以ZnO22-阴离子提供锌源,利用它在强碱性溶液中缓慢释放出Zn2+,并与Se2-之间的电荷排斥作用,成功地调节了反应动力学,获得了尺寸和分散性都非常均匀的微米级ZnSe空心球,并实现了空心球内部粒子尺寸的调控,提出了新颖的气液界面团聚机理。进行了ZnSe微球自组装的尝试,并初步获得了微球排列紧密的二维ZnSe片和三维紧密堆积结构,展现了很好的自组装前景。最后通过置换反应法对ZnSe微球的表面进行了修饰,成功制备了多种核壳结构,为材料性能的“剪裁”打下了良好的基础。
Nanoscale semiconductor metal selenides and tellurides have attracted substantial research interests during the past years. It has been demonstrated that the optical, electrical and magnetic properties of them could be tailored in a controllable way by altering their structure, morphology, dimension, or composition. In this dissertation, valuable researches have been carried out to the exploration of new synthetic methods in solution phase, and controlled syntheses of metal selenides and tellurides. The main point can be summarized as follows:
    A low-temperature elemental-direct-reaction route to nanocrystalline CdSe and ZnSe, and further more, by using the newly produced Se with high reactivity as reactant, a controllable synthetic route named "selenite reduction hydrothermal method" have been developed. Various chemical strategies have been introduced to the system to affect the dynamics of reaction, and thus, to adjust the nucleation and growth process. By using appropriate complexing agents as controlling reagents and adjusting the reaction temperature, both morphologies (nanorods and fractals) and structural phases (zinc blende or wurtzite structures) of CdSe nanocrystals can be easily controlled.
    A precipitate slow-release controlled method was designed in the synthesis of manganese selenides. High quality cube-like MnSe2 and sphere-like (-MnSe micro-crystals have been obtained in aqueous solution at low temperatures (100(C~180(C). By using tellurite as reactant, uniform CoTe and NiTe nanocluster wires were successfully synthesized through a co-reduction process.
    Through the competition of ionization equilibrium of ZnO22- and precipitation reaction, the nucleation and growth process of ZnSe have been adjusted, and monodispersed ZnSe semiconductor hollow microspheres are obtained. These microspheres were found to form through aggregation of small ZnSe nanocrystals sizes of which could be finely tuned by temperature control. A novel gas-liquid interface aggregation mechanism was proposed and this idea might be generalized in other systems. Optical characterization showed interesting photonic properties and attempts to assemble them into 2D and 3D arrays were carried out. The core/shell structures of ZnSe/MSe (M=Ag, Cu, Pb, Cd) microspheres were also synthesized by a simple substitution reaction.
引文
[1] 张立德,牟季美. 纳米材料和纳米结构. 北京:科学出版社,2001. 16~19
    [2] Klein D L, Roth R, Lim A K L, et al. A single-electron transistor made from a cadmium selenide nanocrystal. Nature 1997, 389:699~701
    [3] Alivisatos A P. Perspectives on the physical chemistry of semiconductor nanocrystals. J. Phys. Chem. 1996, 100:13226~13239
    [4] Hu J T, Li L S, Alivisatos A P, et al. Linearly polarized emission from colloidal semiconductor quantum rods. Science 2001, 292:2060~2063
    [5] Nirmal M, Brus L. Luminescence photophysics in semiconductor nanocrystals. Acc. Chem. Res. 1999, 32:407~414
    [6] Alivisatos A P. Semiconductor clusters, nanocrystals, and quantum dots. Science 1996, 271:933~937
    [7] Landes C, Burda C, El-sayed M A, et al. Photoluminescence of CdSe nanoparticles in the presence of a hole acceptor: n-butylamine. J. Phys. Chem. B 2001, 105:2981~2986
    [8] Takagahara T. Effects of dielectric confinement and electron-hole exchange interaction on excitonic states in semiconductor quantum dots. Phys. Rev. B 1993, 47(8):4569~4584
    [9] Pool R. The Smallest Chemical Plants. Science 1994, 263:1698~1699
    [10] Brus L E. Quantum crystallites and nonlinear optics. Appl. Phys. A 1991, 53:465~474
    [11] Ge J P, Li Y D. Ultrasonic synthesis of nanocrystals of metal selenides and tellurides. J. Mater. Chem. 2003, 13:911~915
    [12] Sander M S, Gronsky R, Sands T, et al. Structure of bismuth telluride nanowire arrays fabricated by electrodeposition into porous anodic alumina templates. Chem. Mater. 2003, 15:335~339
    [13] Zhu P W, Jia X, Chen H Y, et al. Giant improved thermoelectric properties in PbTe by HPHT at room temperature. Chem. Phys. Lett. 2002, 359:89~94
    [14] Foos E E, Stroud R M, Berry A D. Synthesis and characterization of nanocrystalline bismuth telluride. Nano Lett. 2001, 1:693~695
    [15] Yang Z, Chen Y H, Sou I K. Observation of ZnSe/GaAs interface states by photomodulation reflectance difference spectroscopy. Appl. Phys. Lett. 1999, 75:528~530
    [16] Gerke R R, Dubrovina T G, Dmitrikov P A, et al. Obtaining holographic diffraction gratings on light-sensitive layers of chalcogenide glasses by dry etching. J. Opt. Tech. 1997, 64:1008~1012
    [17] Huynh W U, Dittmer J J, Alivisatos A P. Hybrid nanorod-polymer solar cells. Science 2002, 295:2425~2427
    [18] Huynh W U, Peng X G, Alivisatos A P. CdSe nanocrystal rods/poly(3-hexylthiophene) composite photovoltaic devices. Adv. Mater. 1999, 11:923~927
    [19] De-Melo O, Santana G, Melendez-Lira M, et al. Observation of the photovoltaic effect in n-ZnSe/p-GaAs heterostructures. J. Cryst. Growth 1999, 201:971~974
    [20] Talapin D V, Poznyak S K, Gaponik N P, et al. Synthesis of surface-modified colloidal semiconductor nanocrystals and study of photoinduced charge separation and transport in nanocrystal-polymer composites. Physica E 2002, 14:237~241
    [21] Boyle D S, Hearne S, Johnson D R, et al. A study of impurities in some CdS/CdTe photovoltaic cells prepared by wet-chemical methods using secondary ion mass spectrometry and X-ray photoelectron spectroscopy. J. Mater. Chem. 1999, 9:2879~2884
    [22] GomezDaza O, Garcia V M, Nair M T S, et al. Highly photosensitive CdSe coatings by screen printing and sintering technique. Appl. Phys. Lett. 1996, 68:1987~1989
    [23] Smyntyna V A, Gerasutenko V, Kashulis S, et al. The causes of thickness dependence of CdSe and CdS gas-sensor sensitivity to oxygen. Sensor Actuat. B-Chem. 1994, 19:464~465
    [24] Yang J, Xue C, Qian Y T, et al. General synthesis of semiconductor chalcogenide nanorods by using the monodentate ligand n-butylamine as a shape controller. Angew. Chem. Int. Edit. 2002, 41:4697~4700
    [25] Zhu J J, Xu S, Chen H Y, et al. Sonochemical synthesis of CdSe hollow spherical assemblies via an in-situ template route. Adv. Mater. 2003, 15:156~159
    [26] Yang Q, Tang K B, Qian Y T, et al. PVA-assisted synthesis, and characterization of CdSe and CdTe nanowires. J. Phys. Chem. B 2002, 106:9227~9230
    [27] Jun Y W, Koo J E, Cheon J. One-step synthesis of size tuned zinc selenide quantum dots via a temperature controlled molecular precursor approach. Chem. Commun. 2000, 1243~1244
    [28] Quinlan F T, Kuther J, Tremel W, et al. Reverse micelle synthesis and characterization of ZnSe nanoparticles. Langmuir 2000, 16:4049~4051
    [29] Xiao J P, Xie Y, Tang R, et al. Template-based synthesis of nanoscale Ag2E (E = S, Se) dendrites. J. Mater. Chem. 2002, 12:1148~1151
    [30] Munoz V, Lasbley A, Klotz S, et al. Synthesis and growth of PbTe crystals at low temperature and their characterization. J. Cryst. Growth 1999, 196:71~76
    [31] Henglein A. Small-particle research: physicochemical properties of extremely small colloidal metal and semiconductor particles. Chem. Rev. 1989, 89:1861~1873
    [32] Brus L. Electronic wave functions in semiconductor clusters: experiment and theory. J. Phys. Chem. 1986, 90:2555~2560
    [33] Bandaranayake R J, Wen G W, Lin J Y, et al. Structural phase-behavior in II-VI semiconductor nanoparticles. Appl. Phys. Lett. 1995, 67:831~833
    [34] 徐毓龙. 氧化物与化合物半导体基础. 陕西:西安电子科技大学出版社,1991. 4
    [35] Fiederling R, Keim M, Reuscher G, et al. Injection and detection of a spin-polarized current in a light-emitting diode. Nature 1999, 402:787~790
    [36] Ohno Y, Young D K, Beschoten B, et al. Electrical spin injection in a ferromagnetic semiconductor heterostructure. Nature 1999, 402:790~792
    [37] Dietl T, Ohno H, Matsukura F, et al. Zener model description of ferromagnetism in zinc-blende magnetic semiconductors. Science 2000, 287:1019~1022
    [38] Heulings-IV H R, Huang X Y, Li J. Mn-substituted inorganic-organic hybrid materials based on ZnSe: Nanostructures that may lead to magnetic semiconductors with a strong quantum confinement effect. Nano Lett. 2001, 1:521~525
    [39] You J K, Yang Y, Chen X G, et al. In-situ study of the electrochemical deposition process of CdTe and HgxCd1-xTe using laser-scanning photoelectrochemical microscopy. J. Electroanal. Chem. 1996, 405:233~237
    [40] Tonnis D, Bacher G, Forchel A, et al. Optical study of interdiffusion in CdTe and ZnSe based quantum-wells. J. Cryst. Growth 1994, 138:362~366
    [41] Lee K, Seo W S, Park J T. Synthesis and optical properties of colloidal tungsten oxide nanorods. J. Am. Chem. Soc. 2003, 125:3408~3409
    [42] Shi H T, Qi L M, Ma J M, et al. Polymer-directed synthesis of penniform BaWO4 nanostructures in reverse micelles. J. Am. Chem. Soc. 2003, 125:3450~3451
    [43] Xia Y N, Yang P D, Sun Y G, et al. One-dimensional nanostructures: Synthesis, characterization, and applications. Adv. Mater. 2003, 15:353~389
    [44] Xia Y N, Yang P D. Guest Editorial: Chemistry and physics of nanowires. Adv. Mater. 2003, 15:351~352
    [45] Wang J W, Li Y D. Rational synthesis of metal nanotubes and nanowires from lamellar structures. Adv. Mater. 2003, 15:445~447
    [46] Li X L, Liu J F, Li Y D. Large-scale synthesis of tungsten oxide nanowires with high aspect ratio. Inorg. Chem. 2003, 42:921~924
    [47] Kondo Y, Takayanagi K. Synthesis and characterization of helical multi-shell gold nanowires. Science 2000, 289:606~608
    [48] Morales A M, Lieber C M. A laser ablation method for the synthesis of crystalline semiconductor nanowires. Science 1998, 279:208~211
    [49] Hong B H, Bae S C, Lee C W, et al. Ultrathin single-crystalline silver nanowire arrays formed in an ambient solution phase. Science 2001, 294:348~351
    [50] Calvert P. Materials science - Rough guide to the nanoworld. Nature 1996, 383:300~301
    [51] Iijima S. Helical microtubules of graphitic carbon. Nature 1991, 354:56~58
    [52] Leon R, Petroff P M, Leonard D, et al. Spatially Resolved Visible Luminescence of Self-Assembled Semiconductor Quantum Dots. Science 1995, 267:1966~1968
    [53] Peng X G, Schlamp M C, Alivisatos AP, et al. Epitaxial growth of highly luminescent CdSe/CdS core/shell nanocrystals with photostability and electronic accessibility. J. Am. Chem. Soc. 1997, 119:7019~7029
    [54] Xu L, Huang XF, Zhu JM, et al. Reduced photo-instability of luminescence spectrum of core-shell CdSe/CdS nanocrystals. J. Mater. Sci. 2000, 35:1375~1378
    [55] Schreder B, Schmidt T, Ptatschek V, et al. CdTe/CdS clusters with "core-shell" structure in colloids and films: The path of formation and thermal breakup. J. Phys. Chem. B 2000, 104:1677~1685
    [56] Malik M A, O'Brien P, Revaprasadu N. A simple route to the synthesis of core/shell nanoparticles of chalcogenides. Chem. Mater. 2002, 14:2004~2010
    [57] Sashchiuk A, Langof L, Chaim R, et al. Synthesis and characterization of PbSe and PbSe/PbS core-shell colloidal nanocrystals. J. Cryst. Growth 2002, 240:431~438
    [58] Hao E C, Sun H P, Zhou Z, et al. Synthesis and optical properties of CdSe and CdSe/CdS nanoparticles. Chem. Mater. 1999, 11:3096~3102
    [59] Ranade M R, Elder S H, Navrotsky A. Energetics of nanoarchitectured TiO2-ZrO2 and TiO2-MoO3 composite materials. Chem. Mater. 2002, 14:1107~1114
    [60] Palinginis P, Wang H L. High-resolution spectral hole burning in CdSe/ZnS core/shell nanocrystals. Appl. Phys. Lett. 2001, 78:1541~1543
    [61] Cao Y W, Banin U. Growth and properties of semiconductor core/shell nanocrystals with InAs cores. J. Am. Chem. Soc. 2000, 122:9692~9702
    [62] Peng X G, Manna L, Yang W D, et al. Shape control of CdSe nanocrystals. Nature 2000, 404:59~61
    [63] Peng X G. Mechanisms for the shape-control and shape-evolution of colloidal semiconductor nanocrystals. Adv. Mater. 2003, 15:459~463
    [64] Jun Y W, Koo J E, Cheon J. One-step synthesis of size tuned zinc selenide quantum dots via a temperature controlled molecular precursor approach. Chem. Commun. 2000, 14:1243~1244
    [65] Ozin G A, Steele M R, Holmes A J. Intrazeolite topotactic MOCVD-3-dimensional structure-controlled synthesis of II-VI semiconductor nanoclusters. Chem. Mater. 1994, 6:999~1010
    [66] 姚凤仪,郭德威,桂明德. 无机化学丛书,第五卷:氧硫硒分族. 北京:科学出版社,1990. 333
    [67] Roof L C, Kolis J W. New developments in the coordination chemistry of inorganic selenide and telluride ligands. Chem. Rev. 1993, 93:1037~1080
    [68] Chuprakov I S, Dahmen K H, CVD of metal chalcogenide films. J. Phys. IV 1999, 9:313~319
    [69] Bayaz A A, Giani A, Foucaran A, et al. Elaboration and characterization of Bi2Se3 thin films using ditertiarybutylselenide as a precursor by MOCVD system. J. Cryst. Growth 2002, 243:444~449
    [70] Malik M A, Revaprasadu N, O'Brien P. Air-stable single-source precursors for the synthesis of chalcogenide semiconductor nanoparticles. Chem. Mater. 2001, 13:913~920
    [71] Cheng Y, Emge T J, Brennan J G. Pyridineselenolate complexes of copper and indium: Precursors to CuSex and In2Se3. Inorg. Chem. 1996, 35:7339~7344
    [72] Afzaal M, Aucott S M, Crouch D, et al. Deposition of MSe (M = Cd, Zn) films by LP-MOCVD from novel single-source precursors M[(SePPh2)2N]2. Adv. Mater. 2002, 14:A187
    [73] Murray C B, Norris D J, Bawendi M G. Synthesis and characterization of nearly monodisperse CdE (E=S, Se, Te) semiconductor nanocrystallites. J. Am. Chem. Soc. 1993, 115:8706~8715
    [74] Manna L, Scher E C, Alivisatos A P. Synthesis of soluble and processable rod-, arrow-, teardrop-, and tetrapod-shaped CdSe nanocrystals. J. Am. Chem. Soc. 2000, 122:12700~12706
    [75] Ohtani T, Nonaka T, Araki M. Sonochemical synthesis of copper and silver chalcogenides. J. Solid State Chem. 1998, 138:131~134
    [76] Dhas N A, Zaban A, Gedanken A. Surface synthesis of zinc sulfide nanoparticles on silica microspheres: Sonochemical preparation, characterization, and optical properties. Chem. Mater. 1999, 11:806~813
    [77] Ramesh S, Koltypin Y, Gedanken A. Sonochemical deposition and characterization of nanophasic amorphous nickel on silica microspheres. Chem. Mater. 1997, 9:546~551
    [78] Grisaru H, Palchik O, Gedanken A, et al. Preparation of Cd1-xZnxSe using microwave-assisted polyol synthesis. Inorg. Chem. 2001, 40:4814~4815
    [79] Zhu J J, Palchik O, Gedanken A, et al. Microwave assisted preparation of CdSe, PbSe, and Cu2-xSe nanoparticles. J. Phys. Chem. B 2000, 104:7344~7347
    [80] Ge X W, Ni Y H, Liu H R, et al. (-Irradiation preparation of cadmium selenide nano-particles in ethylenediamine system. Mater. Res. Bull. 2001, 36:1609~1613
    [81] Xie Y, Qiao Z P, Chen M, et al. (-irradiation route to nanocrystalline lead selenide. Chem. Lett. 1999, 9:875~876
    [82] 徐如人,庞文琴. 无机合成与制备化学. 北京:高等教育出版社,2001. 128~165
    [83] Li Y D, Duan X F, Qian Y T, et al. Solvothermal co-reduction route to the nanocrystalline III-V semiconductor InAs. J. Am. Chem. Soc. 1997, 119:7869~7870
    [84] Li Y D, Liao H W, Qian Y T, et al. Nonaqueous synthesis of CdS nanorod semiconductor. Chem. Mater. 1998, 10:2301~2303
    [85] Qian X F, Xie Y, Qian Y T. Solventothermal synthesis and morphological control of nanocrystalline FeS2. Mater. Lett. 2001, 48:109~111
    [86] Xie Y, Li B, Su H L, et al. Solvothermal route to CoTe2 nanorods. Nanostruct. Mater. 1999, 11:539~544
    [87] Yang J, Cheng G H, Qian Y T, et al. Shape control and characterization of transition metal diselenides MSe2 (M = Ni, Co, Fe) prepared by a solvothermal-reduction process. Chem. Mater. 2001, 13:848~853
    [88] Su H L, Xie Y, Qian Y T, et al. Formation of Cu2-xSe(en)2 in a solvothermal process and conversion to nanocrystalline Cu2-xSe. Mater. Res. Bull. 2000, 35:1129~1135
    [89] Jiang Y, Wu Y, Qian Y T, et al. Room temperature growth of rod-like nanocrystalline Ag2Te in mixed solvent. J. Cryst. Growth 2001, 224:1~4
    [90] Yu S H, Han Z H, Yang J, et al. Solvothermal preparation of silver chalcogenides Ag2E(E=S,Se,Te). Chem. Lett. 1998, 11:1111~1112
    [91] Li B, Xie Y, Huang JX, et al. Solvothermal route to tin monoselenide bulk single crystal with different morphologies. Inorg. Chem. 2000, 39:2061~2064
    [92] Yu D B, Wang D B, Meng Z Y, et al. Synthesis of closed PbS nanowires with regular geometric morphologies. J. Mater. Chem. 2002, 12:403~405
    [93] Chen M, Xie Y, Yao Z Y, et al. A novel solvent-directed shape control technique for preparation of rod-shaped PbS crystals. Mater. Chem. Phys. 2002, 74:109~111
    [94] Yang J, Zeng J H, Yu S H, et al. Pressure-controlled fabrication of stibnite nanorods by the solvothermal decomposition of a simple single-source precursor. Chem. Mater. 2000, 12:2924~2929
    [95] Li Y D, Ding Y, Qian Y T, et al. A solvothermal elemental reaction to produce nanocrystalline ZnSe. Inorg. Chem. 1998, 37:2844~2845
    [96] Li Y D, Liao H W, Ding Y, et al. Solvothermal elemental direct reaction to CdE (E = S, Se, Te) semiconductor nanorod. Inorg. Chem. 1999, 38:1382~1387
    [97] Li Y D, Ding Y, Liao H W, et al. Room-temperature conversion route to nanocrystalline mercury chalcogenides HgE (E = S,Se,Te). J Phys. Chem. Solids 1999, 60:965~968
    [98] Liao H W, Wang Y F, Zhang S Y, et al. A solution low-temperature route to MoS2 fiber. Chem. Mater. 2001, 13:6~8
    [99] Lu J, Qi P F, Peng Y Y, et al. Metastable MnS crystallites through solvothermal synthesis. Chem. Mater. 2001, 13:2169~2172
    [100] Jiang Y, Wu Y, Mo X, et al. Elemental solvothermal reaction to produce ternary semiconductor CuInE2 (E = S, Se) nanorods. Inorg. Chem. 2000, 39:2964~2965
    [101] Hu J Q, Lu Q Y, Tang K B, et al. Solvothermal reaction route to nanocrystalline semiconductors AgMS2 (M=Ga, In). Chem. Commun. 1999, 1093~1094
    [102] Huang Y, Duan X F, Lieber C M, et al. Directed assembly of one-dimensional nanostructures into functional networks. Science 2001, 291:630~633
    [103] Fan S S, Chapline M G, Franklin N R, et al. Self-oriented regular arrays of carbon nanotubes and their field emission properties. Science 1999, 283:512~514
    [104] Ren Z F, Huang Z P, Xu W J, et al. Synthesis of larger arrays of wall-aligned carbon nanotubes on glass. Science 1998, 282:1105~1107
    [105] Park G S, Choi W B, Kim J M, et al. Structural investigation of gallium oxide (beta-Ga2O3) nanowires grown by arc-discharge. J. Cryst. Growth 2000, 220:494~500
    [106] Han W Q, Kohler-Redlich P, Ernst F, et al. Growth and microstructure of Ga2O3 nanorods. Solid State Commun. 2000, 115:527~529
    [107] Yu D P, Xing Y J, Tence M, et al. Microstructural and compositional characterization of a new silicon carbide nanocables using scanning transmission electron microscopy. Physica E 2002, 15:1~5
    [108] Han W Q, Redlich P, Ernst F, et al. Synthesis of GaN-carbon composite nanotubes and GaN nanorods by arc discharge in nitrogen atmosphere. Appl. Phys. Lett. 2000, 76:652~654
    [109] Sapp S A, Lakshmi B B, Martin C R. Template synthesis of bismuth telluride nanowires. Adv. Mater. 1999, 11:402~404
    [110] Xu D S, Shi X S, Guo G L, et al. Electrochemical preparation of CdSe nanowire arrays. J. Phys. Chem. B 2000, 104:5061~5063
    [111] Dai H J, Wong E W, Lieber C M, et al. Synthesis and characterization of carbide nanorods. Nature 1995, 375:769~772
    [112] Han W Q, Fan S S, Li Q Q, et al. Synthesis of gallium nitride nanorods through a carbon nanotube-confined reaction. Science 1997, 277:1287~1289
    [113] Moran KL, Harrison WTA, Kamber I, et al. Synthesis, characterization and tunable electronic/optical properties of II-VI semiconductor species included in the sodalite structure. Chem. Mater. 1996, 8:1930~1943
    [114] Cheetham A K, Ferey G, Loiseau T. Open-framework inorganic materials. Angew. Chem. Int. Edit. 1999, 38:3269~3292
    [115] Qi L M, Ma J M, Cheng H M, et al. Reverse micelle based formation of BaCO3 nanowires. J. Phys. Chem. B 1997, 101:3460~3463
    [116] Gates B, Yin Y D, Xia Y N. A solution-phase approach to the synthesis of uniform nanowires of crystalline selenium with lateral dimensions in the range of 10-30 nm. J. Am. Chem. Soc. 2000, 122:12582~12583
    [117] Mayers B, Gates B, Xia Y N, et al. Large-scale synthesis of monodisperse nanorods of Se/Te alloys through a homogeneous nucleation and solution growth process. Adv. Mater. 2001, 13:1380~1384
    [118] Li Y D, Wang J W, Deng Z X, et al. Bismuth nanotubes: A rational low-temperature synthetic route. J. Am. Chem. Soc. 2001, 123:9904~9905
    [119] Sun X M, Chen X, Li Y D. Large-scale synthesis of sodium and potassium titanate nanobelts. Inorg. Chem. 2002, 41:4996~4998
    [120] Li X L, Liu J F, Li Y D. Low-temperature synthesis of large-scale single-crystal molybdenum trioxide (MoO3) nanobelts. Appl. Phys. Lett. 2002, 81:4832~4834
    [121] Chen X, Sun X M, Li Y D. Self-assembling vanadium oxide nanotubes by organic molecular templates. Inorg. Chem. 2002, 41:4524~4530
    [122] Wang X, Li Y D. Selected-control hydrothermal synthesis of alpha- and beta-MnO2 single crystal nanowires. J. Am. Chem. Soc. 2002, 124:2880~2881
    [123] Wang X, Li Y D. Rational synthesis of alpha-MnO2 single-crystal nanorods. Chem. Commun. 2002, 764~765
    [124] Wang X, Li Y D. Synthesis and formation mechanism of manganese dioxide nanowires/nanorods. Chem. Eur. J. 2003, 9:300~306
    [125] Wang X, Li Y D. Synthesis and characterization of lanthanide hydroxide single-crystal nanowires. Angew. Chem. Int. Edit. 2002, 41:4790~4793
    [126] Wang C, Zhang W X, Qian X F, et al. An aqueous approach to ZnSe and CdSe semiconductor nanocrystals. Mater. Chem. Phys. 1999, 60:99~102
    [127] Zhu J J, Liao X H, Zhao X N, et al. Photochemical synthesis and characterization of CdSe nanoparticles. Mater. Lett. 2001, 47:339~343
    [128] Peng Q, Dong Y J, Li Y D, et al. Low-temperature elemental-direct-reaction route to II-VI semiconductor nanocrystalline ZnSe and CdSe. Inorg. Chem. 2001, 40:3840~3841
    [129] Chen C C, Chao C Y, Lang Z H. Simple solution-phase synthesis of soluble CdS and CdSe nanorods. Chem. Mater. 2000, 12:1516~1518
    [130] Wagner R S, Ellis W C. Vapor-liquid-solid mechanism of single crystal growth. Appl. Phys. Lett. 1964, 4:89~90
    [131] Ishii T, Sato T, Sekikawa Y, et al. Growth of whiskers of hexagonal boron nitride. J. Cryst. Growth 1981, 52:285~289
    [132] Chen Y J, Li J B, Wei Q M, et al. Preparation and growth mechanism of TaCx whiskers. J. Cryst. Growth 2001, 224:244~250
    [133] Trentler T J, Hickman K M, Goel S C, et al. Solution-liquid-solid growth of crystalline III-V semiconductors-an analogy to vapor-liquid-solid growth. Science 1995, 270:1791~1794
    [134] Wang M, Ming N B, Bennema P, et al. Formation of a mesh-like electrodeposit induced by electroconvection. Nature 1994, 367:438~441
    [135] Halsey T C, Duplantier B, Honda K. Multifractal dimensions and their fluctuations in diffusion-limited aggregation. Phys. Rev. Lett. 1997, 78:1719~1722
    [136] Liu X Y, Wang M, Li D W, et al. Nucleation-limited aggregation of crystallites in fractal growth. J. Cryst. Growth 2000, 208:687~695
    [137] Wang M, Liu X Y, Strom CS, et al. Fractal aggregations at low driving force with strong anisotropy. Phys. Rev. Lett. 1998, 80:3089~3092
    [138] Li J, Chen Z, Wang X X, et al. A novel two-dimensional mercury antimony telluride: low temperature synthesis and characterization of RbHgSbTe3. J. Alloy Compd. 1997, 262:28~33
    [139] Patel A A, Wu F X, Zhang J Z, et al. Synthesis, optical spectroscopy and ultrafast electron dynamics of PbS nanoparticles with different surface capping. J. Phys. Chem. B 2000, 104:11598~11605
    [140] Wang Y, Herron N. Nanometer-sized semiconductor clusters: materials synthesis, quantum size effects, and photophysical properties. J. Phys. Chem. 1991, 95:525~532
    [141] Ennaoui A, Fiechter S, Jaegermann W, et al. Photoelectrochemistry of highly quantum efficient single-crystalline n-FeS2 (pyrite). J. Electrochem. Soc. 1986, 133:97~106
    [142] Jarrett H S, Cloud W H, Bouchard R J, et al. Evidence for Itinerant d-Electron Ferromagnetism. Phys. Rev. Lett. 1968, 21:617~620
    [143] Norris D J, Yao N, Charnock F T, et al. High-quality manganese-doped ZnSe nanocrystals. Nano Letters 2001, 1:3~7
    [144] Levy L, Feltin N, Ingert D, et al. Three dimensionally diluted magnetic semiconductor clusters Cd1-yMnyS with a range of sizes and compositions: Dependence of spectroscopic properties on the synthesis mode. J. Phys. Chem. B 1997, 101:9153~9160
    [145] Suyver J F, Wuister S F, Kelly J J, et al. Synthesis and photoluminescence of nanocrystalline ZnS:Mn2+. Nano Letters 2001, 1:429~433
    [146] Heimbrodt W, Goede O, Tschentscher I, et al. Optical study of octahedrally and tetrahedrally coordinated MnSe. Physica B 1993, 185:357~361
    [147] Tomasini P, Haidoux A, Tedenac J C, et al. Methylpentacarbonylmanganese as organometallic precursor for the epitaxial growth of manganese selenide heterostructures. J. Cryst. Growth 1998, 193:572~576
    [148] Decker D L, Wild R L. Optical Properties of (-MnSe. Phys. Rev. B 1971, 4:3425~3437
    [149] 谢高阳,俞练民,刘本耀. 无机化学丛书,第九卷:锰分族铁系铂系. 北京:科学出版社,1996. 72
    [150] Escuer A, Cano J, Goher M A S, et al. Synthesis, structural characterization, and Monte Carlo simulation of the magnetic properties of two new alternating Mn-II azide 2-D honeycombs. Study of the ferromagnetic ordered phase below 20 K. Inorg. Chem. 2000, 39:4688~4695
    [151] Kanoun M B, Sekkal W, Aourag H, et al. Molecular-dynamics study of the structural, elastic and thermodynamic properties of cadmium telluride. Phys. Lett. A 2000, 272:113~118
    [152] Pal R, Gopal V, Kumar V. Evaluation of processing induced variations in a mercury cadmium telluride photoconductive (PC) array. Infrared Physics & Technology 1998, 39:315~321
    [153] Schnyders H S, Saboungi M L, Rosenbaum T F. Magnetoresistance in n- and p-type Ag2Te: Mechanisms and applications. Appl. Phys. Lett. 2000, 76:1710~1712
    [154] Peng Q, Dong Y J, Li Y D, et al. Selective synthesis and characterization of CdSe nanorods and fractal nanocrystals. Inorg. Chem. 2002, 41:5249~5254
    [155] Boulouz A, Giani A, Pascal-Delannoy F, et al. Preparation and characterization of MOCVD bismuth telluride thin films. J. Cryst. Growth 1998, 194:336~341
    [156] Stuczynski S M, Brennan J G, Steigerwald M L. Formation of metal-chalcogen bonds by the reaction of metal-alkyls with silyl chalcogenides. Inorg. Chem. 1989, 28:4431~4432
    [157] Wang J W, Deng Z X, Li Y D. Solvothermal reduction route to bismuth telluride nanocrystals. Main Group Met. Chem. 2001, 24:793~796
    [158] Sander M S, Prieto A L, Gronsky R, et al. Fabrication of high-density, high aspect ratio, large-area bismuth telluride nanowire arrays by electrodeposition into porous anodic alumina templates. Adv. Mater. 2002, 14:665~667
    [159] Li Y D, Li L Q, Liao H W, et al. Preparation of pure nickel, cobalt, nickel-cobalt and nickel-copper alloys by hydrothermal reduction. J. Mater. Chem. 1999, 9:2675~2677
    [160] Lee G H, Huh S H, Park J W, et al. Arrays of ferromagnetic iron and cobalt nanocluster wires. 2002, 106:2123~2126
    [161] Dong Y J, Peng Q, Li Y D, et al. Synthesis and characterization of an open framework gallium selenide: Ga4Se7(en)2-(enH)2. Inorg. Chem. 2003, 42:1794~1796
    [162] Peng Q, Dong Y J, Li Y D, et al. Selective synthesis and magnetic properties of alpha-MnSe and MnSe2 uniform microcrystals. J. Phys. Chem. B 2002, 106:9261~9265
    [163] Matijevic E. Monodispersed metal (hydrous) oxides - a fascinating field of colloid science. Acc. Chem. Res. 1981, 14:22~29
    [164] Matijevic E. Uniform inorganic colloid dispersions. Achievements and challenges. Langmuir 1994, 10:8~16
    [165] Xia Y N, Gates B, Yin Y D, et al. Monodispersed colloidal spheres: Old materials with new applications. Adv. Mater. 2000, 12:693~713
    [166] Park S H, Xia Y N. Assembly of mesoscale particles over large areas and its application in fabricating tunable optical filters. Langmuir 1999, 15:266~273
    [167] Gates B, Yin Y D, Xia Y N. Fabrication and characterization of porous membranes with highly ordered three-dimensional periodic structures. Chem. Mater. 1999, 11:2827~2836
    [168] Yablonovitch E. Inhibited Spontaneous Emission in Solid-State Physics and Electronics. Phys. Rev. Lett. 1987, 58:2059~2062
    [169] Ozbay E, Abeyta A, Tuttle G, et al. Measurement of a three-dimensional photonic band gap in a crystal structure made of dielectric rods. Phys. Rev. B 1994, 50:1945~1948
    [170] Lin S Y, Fleming J G, Hetherington D L, et al. A three-dimensional photonic crystal operating at infrared wavelengths. Nature 1998, 394:251~253
    [171] Tarhan I I, Watson G H. Photonic band structure of fcc colloidal crystals. Phys. Rev. Lett. 1996, 76:315~318
    [172] Bogomolov V N, Gaponenko S V, Germanenko I N, et al. Photonic band gap phenomenon and optical properties of artificial opals. Phys. Rev. E 1997, 55:7619~7625
    [173] Caruso F. Nanoengineering of particle surfaces. Adv. Mater. 2001, 13:11~22
    [174] Zhong Z Y, Yin Y D, Xia Y N, et al. Preparation of mesoscale hollow spheres of TiO2 and SnO2 by templating against crystalline arrays of polystyrene beads. Adv. Mater. 2000, 12:206~209
    [175] Prior K. The development of II-VI semiconductors for blue diode lasers. Contemp. Phys. 1996, 37:345~358
    [176] Richter H, Wang Z P, Ley L. The one phonon raman spectrum in microcrystalline silicon. Solid State Commun. 1981, 39:625~629
    [177] Sarigiannis D, Peck J D, Mountziaris T J, et al. Characterization of vapor-phase-grown ZnSe nanoparticles. Appl. Phys. Lett. 2002, 80:4024~4026
    [178] Ocana M, Rodriguezclemente R, Serna C J. Uniform colloidal particles in solution- formation mechanisms. Adv. Mater. 1995, 7:212~216
    [179] Morales M P, Gonzalez-Carren T, Serna C J. The formation of (-Fe2O3 monodispersed particles in solution. J. Mater. Res. 1992, 7:2538~2545
    [180] Wickman H H, Korley J N. Colloid crystal self-organization and dynamics at the air/water interface. Nature 1998, 393:445~447
    [181] Dimitrov A S, Miwa T, Nagayama K. A comparison between the optical properties of amorphous and crystalline monolayers of silica particles. Langmuir 1999, 15:5257~5264
    [182] Dimitrov A S, Nagayama K. Continuous convective assembling of fine particles into two-dimensional arrays on solid surfaces. Langmuir 1996, 12:1303~1311
    [183] Trau M, Saville D A, Aksay I A. Field-induced layering of colloidal crystals. Science 1996, 272:706~709
    [184] Davis K E, Russel W B, Glantschnig W J. Disorder-to-Order Transition in Settling Suspensions of Colloidal Silica: X-ray Measurements. Science 1989, 245:507~510
    [185] Dosho S, Ise N, Ito K, et al. Recent study of polymer latex dispersions. Langmuir 1993, 9:394~411
    [186] Averitt R D, Sarkar D, Halas N J. Plasmon resonance shifts of Au-coated Au2S nanoshells: Insight into multicomponent nanoparticle growth. Phys. Rev. Lett. 1997, 78:4217~4220
    [187] Oldenburg S J, Averitt R D, Westcott S L, et al. Nanoengineering of optical resonances. Chem. Phys. Lett. 1998, 288:243~247
    [188] Guo X C, Dong P. Multistep coating of thick titania layers on monodisperse silica nanospheres. Langmuir 1999, 15:5535~5540
    [189] Marinakos S M, Novak J P, Brousseau L C, et al. Gold particles as templates for the synthesis of hollow polymer capsules. Control of capsule dimensions and guest encapsulation. J. Am. Chem. Soc. 1999, 121:8518~8522
    [190] MincevaSukarova B, Najdoski M, Grozdanov I, et al. Raman spectra of thin solid films of some metal sulfides. J. Mol. Struct. 1997, 410:267~270
    [191] Kozicki M N, Mitkova M, Zhu J, et al. Nanoscale phase separation in Ag-Ge-Se glasses. Microelectron. Eng. 2002, 63:155~159
    [192] Peng Q, Dong Y J, Li Y D. ZnSe Semiconductor Hollow Microspheres, Angew. Chem. Int. Ed. 2003, in press.
    [193] Peng Q, Dong Y J, Li Y D. Synthesis of Uniform CoTe and NiTe Semiconductor Nanocluster Wires through a Novel Co-Reduction Method, Inorg. Chem. 2003, 42:2174~2175.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700