共掺体系中稀土离子间的电子转移及光谱特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
稀土离子共掺杂是稀土发光材料中重要的类型。大量的研究表明共掺体系往往会出现电子转移、能量传递等现象,从而产生异常价态稀土离子和敏化作用。而且不同的基质以及不同的合成方法都直接影响材料的发光性质。到目前为止,共掺体系中稀土离子之间的电子转移的相关研究还是很有限的。稀土离子共掺杂的纳米发光材料的研究更为罕见,然而我们可以预计这类材料必定具有优异特性及广泛的应用前景。
     这些具有深远意义的工作也是我们所感兴趣的。在创新性研究中材料体系的选择是至关重要的,仅局限在已有的体系中是不可取的,因此,我们依据以下两条原则建立自己的构想并选择体系:(1)必须避开国外的热门体系和受到专利保护的体系;(2) 选择具有良好开发前景且我们自己已有一定研究基础的化合物体系。为此,我们选择碱金属硼酸盐、碱土金属硼磷酸盐、碱土金属氟化物和复合氟化物作为稀土离子掺杂的基质。通过大量的实验,得到了一些有意义的结论。
     首次采用高温固相法在空气中制备了单掺Eu 的M2B4O7 (M=Li, Na, K)系列荧光体,以及共掺 Eu 和 Tb,Eu、Tb 和 Ce 的 MBPO5 :RE (M=Ca, Sr, Ba)系列荧光体;首次在温和的水热条件下合成了 MBPO5:RE (M=Ca, Sr, Ba)、BaBeF4: RE 和 SrMgF4: RE (RE = Eu,Tb)等系列荧光体;首次采用高分子分散的水热法、微乳液法、微乳法-溶剂热的组合法等方法合成了 BaF2纳米粒子和 BaF2:RE(RE=Eu, Tb, Er, Dy, Pr)纳米粒子,重点研究了在CTAB/正丁醇/正庚烷/水溶液体系中微乳液法和组合法的合成方法。
     采用 X 射线粉末衍射仪(XRD)、扫描电子显微镜(SEM)、热重分析仪(TGA)、傅立叶变换红外光谱仪(FTIR)、电感耦合等离子发射光谱仪(ICP)、荧光光谱仪(LS,PL)等多种测试手段表征了产物的结构特征、研究了产物的发光性质。
     结果表明合成条件对产物的结构、性质有显著的影响,掺杂少量的稀土离子不影响产物的结构。高温固相法可以合成多种单掺、共掺稀土离子的发光材料,物相单一,具有较好的发光性质;水热法的合成条件温和,产物纯净,不仅可以合成共掺稀土离子的MBPO5 含氧酸盐体系的荧光体,而且可以合成含氧量极低的共掺稀土离子的 BaBeF4 和SrMgF4 复合氟化物荧光体系;软化学合成方法是制备稀土掺杂的纳米发光材料的首要选择,其中以微乳液法最具价值,CTAB/正丁醇/正庚烷/水溶液体系是制备 BaF2:RE 纳米粒子的良好的微乳体系,微乳法和溶剂热的组合在制备稀土掺杂的氟化物的纳米粒子中也产生了很好的效果。BaF2:RE 纳米粒子均为晶相良好的单相,呈圆形小球体外形,颗粒分布比较均匀,在产物的表面存在少量的吸附水,以及未被洗去的 NO3 离子,在微 -乳液合成法中还有微量的有机物。
     在共掺 Eu 和 Tb 的体系中,存在着电子转移和能量传递现象,在同一体系中可以同时观察到 Eu3+、Tb3+和 Eu2+的发射。在共掺 Eu、Tb 和 Ce 的体系中,不仅存在着 Eu 和
    
    Tb 之间、Eu 和 Ce 之间的电子转移,而且存在着 Ce3+→Eu2+和 Ce3+→Tb3+之间的能量传递过程,它们之间存在着竞争,在不同的体系中表现出不同的作用方式,Ce 的敏化作用可以调节荧光体的发光性能;通过探讨发光方式和机理,发现性质与结构的关系密切,特别是不同的配位方式对产物的发光性质有决定性的影响。 研究表明可以采用多种方法合成稀土掺杂的纳米 BaF2粒子,不同的方法各具特点,掺杂不同的稀土离子需要采用不同的合成方法。CTAB/n-C4H9OH/n-C7H16/水溶液的相图研究表明不同的体系形成油包水(W/O)反相胶束的范围不同,在组成为 km=1, R=15%的该体系中合成了 BaF2和 BaF2:RE 纳米粒子;BaF2:RE 纳米粒子的发射光谱表明稀土离子均可产生其特征发射并且谱带半高宽都出现宽化现象。 综上所述,本文通过不同的合成方法在不同的基质体系中共掺稀土离子,通过研究其电子转移的特点来研究材料的发光性质,为其在发白光的三基色材料中的应用以及进一步开展理论研究奠定了实验基础;采用多种方法制备氟化物纳米粒子以及不同稀土离子掺杂的氟化物纳米粒子,研究了其发光性质,为其在发光材料特别是光纤通讯中的激光放大方面的应用进行开拓性的工作,为今后更进一步的理论研究和实际应用奠定了可靠的实验基础。
Rare earth luminescent materials are one of the most important types of the functionmaterial. They are attracting much attention due to potential and practical application. Onefound that the rare earth ions not only emit their own characteristic emission but also exhibitelectron transfer and energy transfer among conjugate rare earth ions in the co-doped system,then the abnormal valency rare earth ions and the sensitization are produced. Marcus foundedthe theory of the electron transfer, which provides the base for the theory study on the electrontransfer. So far, the study on the electron transfer between the rare earth ions in the co-dopedsystem is still limited. In this kind of system, the properties of the material are depended onthe matrix and the synthesis method. Nanostructured substances have attracted great interestbecause of their uniquely structural properties and advantage in physics and chemistry as wellas they was used as functional materials. It was a regret that this important kind ofluminescent material, which involved with rare earth ions, was not attached enough. We areinterested in all of these works so that a series of luminescent material which co-doped rareearth ions in the different matrix were prepared by different synthesis method. The opticalproperties of them were investigated through the study on the electron transfer. These resultscan establish credible foundation for further studying the potential applications inwhite-light-emitting trichromatic phosphor. In this thesis, the fluoride nanoparticles and thefluorides with doped rare earth ions nanoparticles were prepared by different methods. Theluminescent properties were investigated and establish credible foundation for furtherstudying the potential applications of fluorides doped rare earth ions in laser amplificationmaterials.
     The phosphors of M2B4O7 : Eu3+(M=Li, Na, K), MBPO5 :RE (M=Ca, Sr, Ba; RE=Eu, Tb,Ce) were synthesized by solid-state reaction for the first time; and the phosphors ofMBPO5:RE (M=Ca, Sr, Ba), BaBeF4: RE and SrMgF4: RE (RE = Eu, Tb) were alsosynthesized by mild hydrothermal method for the first time; furthermore, BaF2 nanoparticlesand BaF2:RE(RE=Eu, Tb, Er, Dy, Pr) nanoparticles were prepared by mild hydrothermalmethod which decentralized by macromolecule, microemulsion, microemulsion- solvothermalmethods. The microemulsions in (CTAB)/n-C4H9OH/n-C7H16/water were studied.
     They were characterized by means of X-ray powder diffraction, scanning electronmicroscopy, thermogravimetric analysis, infrared spectroscopy and inductively coupledplasma- atomic emission spectrometry. The luminescent properties were investigated by theluminescence spectrometer.
     The results show that many luminescent materials can be synthesized by solid-state
    
    reaction method and the optic properties are very well; among the solution processing routes,the hydrothermal process has been proposed to be an effective method not only for preparingdoped rare earth ions in oxide but also for synthesizing doped rare earth ions in complexfluorides, and the oxygenic content is very low in the fluorides; the soft chemical synthesismethods are the first choice for preparing the nanostructure materials with doped rare earthions, the most important method is microemulsion. The conditions were optimized because the synthesis condition effect strongly thestructure and properties. The electron transfer and energy transfer exist in the co-dopedsystem and the competition between them is occurred, which appeared different status in thedifferent system. The results show that the luminescent properties of these samples depend onthe structure, especially the mode of coordination. The results show that the nanoparticles, which doped rare earth ions, can be synthesizedby many techniques, and the method will be changed with the different doped rare earth ions.XRD confirmed that all the products are pure single phase. SEM show that BaF2:REnanoparticles are spherical particles and uniform grain. DTA-TG analysis and IR analysisshow that there are trace water, NO3 ions and
引文
[1] 刘行仁. 我国稀土发光材料科学技术发展回顾与展望[J].世界科技研究与发展, 2003,25(1): 79-84.
    [2] Valerii I Arbuzov. Photostimulated electron transfer between coactivator ions in alkali silicate glasses [J]. J Non-crystalline Solids, 1999, 253: 39-49.
    [3] Happek U, Basun S A, Choi J, et al. Electron transfer processes in the rare earth doped insulators [J]. J Alloys and Compounds, 2000, 303-304: 198-206.
    [4] 高勇, 吴志云, 石春山. Ca5(PO4)3Cl 中铕和铽的电子转移[J]. 无机化学学报, 1998,14(2): 190-193.
    [5] Gao Y, Shi C S. The spectral properties of BaB8O13:Eu, Tb phosphors [J]. J Phys Chem Solids, 1996, 57(9): 1303-1306.
    [6] Gao Y, Shi C S. Luminescent properties of Ba(PO4)2:Eu, Tb phosphors [J]. Chin J Chem,1996, 14(5): 399-403.
    [7] 张献明, 苏海全, 叶泽人, 等. BaY2F8:Ce, Eu 中 Ce3+→Eu2+的能量传递和 Ce3+→Eu3+ 的电子转移[J]. 高等学校化学学报, 2001, 22(3): 358-361.
    [8] Blasse G, Bril A. Study of Energy Transfer from Sb3+, Bi3+, Ce3+ to Sm3+, Eu3+, Tb3+, Dy3+ [J]. J Chem Phys, 1967, 47(6): 1920-1926.
    [9] Reisfeld R, Greenberg E, Velapoldi R. Luminescence quantum efficiency of Gd and Tb in Borate glasses* and the mechanism of energy transfer between them [J]. J Chem Phys, 1972, 56(4): 1698-1705.
    [10] Van Uitert L G, Johnson L F. Energy transfer between rare-earth ions [J]. J Chem Phys, 1966, 44(9): 3514-3522.
    [11] Latourrette B, Guillen F, Fouassier C. Energy transfer from Eu2+ to trivalent rare earth ions in BaY2F8 [J]. Mat Res Bull, 1979, 14: 865-868.
    [12] Tigreat P Y, Doualan J L, Budasca C, et al. Energy transfer processes in (Yb3+, Dy3+) and (Tm3+, Dy3+) codoped LiYF4 and KY3F10 single crystals [J]. J Lumi., 2001, 94-95: 23-27.
    [13] 张献明, 苏海全, 臧春雨, 等. KZnF3 中 Ce3+→Eu2+的能量传递[J]. 高等学校化学学报, 1999, 20(9): 1334-1337.
    [14] 贾志宏, 李竑, 叶泽人, 等. BaLiF3:Eu, Gd 中 Gd3+→Eu2+的能量传递[J]. 高等学校化学学报, 2002, 23(3): 349-352.
    [15] Dexter D L. A theory of sensitized luminescence in solid [J]. J Chem Phys, 1953, 21(5): 836-850.
    
    [16] Marcus R A. Chemical and electrochemical electron-transfer theory [J]. Can J Chem,1959, 37: 155-196.
    [17] 石春山. 稀土元素的价态异常性及其光谱化学表征[C]. 见石春山, 苏锵主编. 变价稀土元素化学与物理. 北京: 科学出版社. 1994. 28-41.
    [18] Wu Y, Shi C S. Observation of Eu2+ and Tb4+ in SrMgF4:Eu3+, Tb3+ [J]. Solid state Commun, 1995, 95(5): 319-322.
    [19] 吴郢, 石春山. 稀土元素价态及变价稀土元素[J]. 稀土, 1994, 15(5): 37-41.
    [20] 郝志然, 蔡强, 高殿昆. 变价稀土离子的研究方法及其进展[C]. 见石春山, 苏锵主 编. 变价稀土元素化学与物理. 北京: 科学出版社. 1994. 52-58.
    [21] Hewes R A, Hoffman M V. 4f 7 -4f 7 emission from Eu2+ in the system MF2 · AlF3 [J]. J Lumin, 1971, 3(4): 261-280.
    [22] Hoffman M V J. AlKaline Earth Aluminum Fluoride Compounds with Eu2+ Activation, [J]. J Electrochem Soc, 1971, 118: 933-936.
    [23] Blasse G. Nature of the europium(2+) ion luminescence [J]. J Phys Status Solidi, 1973, 55(B): K131-132.
    [24] Blasse G. Luminescence of inorganic solids [M]. Plenum Press New York, 1978: 457-462.
    [25] 石春山,叶泽人. 复合氟化物中铕(Ⅱ)f→f 跃迁发射的判据及其应用 [J]. 化学学报, 1989, 47: 1056-1060.
    [26] Van Uitert L G. An empirical relation fitting the position in energy of the lower d-band edge for Eu2+ or Ce3+ in various compounds [J]. J Lumin, 1984, 29(1): 1-9.
    [27] 许禄, 杨翌秋, 胡昌玉. 神经网络和 Eu2+离子在复合氟化物基体中跃迁发射的研究 [J]. 中国稀土学报, 1995, 13(1): 8-14.
    [28] Fouassier C, Latourrette B, Portier J, et al. Luminescence de l'Europium Divalent dans les Fluosilicates MSiF6 (M = Sr, Ba) [J]. Mat Res Bull, 1976,11(8): 933-938.
    [29] 石春山, 叶泽人, 胡宁海, 等. 钙钛矿型 AMF3中 Eu2+的光谱结构与其取代格位 [J]. 科学通报, 1987, 6: 433-436.
    [30] 石春山, 叶泽人, 姚金玉, 等. 铕(Ⅱ)在氟化镁钾基质中的格位取代过程及价态稳定性 [J]. 科学通报,1991, 16: 1227-1230.
    [31] Francini R, Grassano U M, Tomini M. et al. Two-photon excitation spectra of divalent europium in cubic perovskite KMgF3 [J]. Phys Rev, B. 1997, 55(12): 7579-7584.
    [32] Tsuboi T, Scacco A. [J]. J Phys: Condens Int Soc Opt Eng, 1997, 3176 (Tunable solid state lasers): 2-11.
    [33] Tan Y, Shi C S. Optical Spectroscopy Properties and Charge Compensation of BaLiF3 Doped with Ce3+ [J]. J Solid State Chem, 2000,150: 178-182.
    [34] Dexter D L. Theory of concentration quenching in inorganic phophors [J]. J Chem Phys, 1954, 22(6): 1063-1070.
    
    [35] Van der Ziel, et al. Quenching of Tb3+ Luminescence by Direct Transfer and Migration inAluminum Garnets [J]. Phys Rev, 1972, B6: 615-622.
    [36] Kutty T R N, Jagannathan R, Rao R P. Luminescence of Eu2+ in strontium aluminatesprepared by the hydrothermal method [J]. Material Research Bulletin, 1990, 25(11): 1355-1362.
    [37] Kutty T R N, Jagannathan R, Rao R P. Luminescence of Ce3+-doped aluminoborates,M3Al6B8O24 (M = Mg, Ca, Sr, Ba) [J]. Material Research Bulletin, 1990, 25(3): 343-348.
    [38] Kutty T R N, Jagannathan R, Rao R P. Luminescence of Ce3+-sensitized and Dy3+-activated aluminoborates, M3Al6B8O24 (M = Ca, Ba) [J]. Material Research Bulletin, 1990,25(4): 485-493.
    [39] Jagannathan R, Rao R P, Kutty T R N. Eu2+ luminescence in MAl3BO7 aluminoborates(M=Ca, Sr, Ba) [J]. Material Research Bulletin, 1992, 27(4):459-466.
    [40] 蔡少华, 党华, 李沅英, 等. 水热法合成 CaWO4 荧光体的研究[J]. 高等学校化学学报, 1998, 19(5): 693-696.
    [41] 赵春燕, 朱连杰, 冯守华. BaBeF4:Sm3+的温和水热合成与光谱性质研究[J].高等学校化学学报, 1998, 19(7): 1023-1025.
    [42] 程虎民, 焦静, 马季铭, 等.水热条件下形成的 PLZT 固溶体的 X 射线分析[J]. 高等学校化学学报, 1996, 17(8): 1253-1257.
    [43] 施展, 冯守华. 复合氟化物 Li2BeF4 的水热合成、晶化动力学研究及结构表征[J]. 高等学校化学学报, 1999, 20(2): 172-175.
    [44] Morimo R, Matac K. Preparation of Zn2SiO4:Mn phosphors by alkoxide method [J]. Mat.Res. Bull., 1989, 24(2): 175-179.
    [45] 蒋洪川, 杨仕清, 张文旭. 溶胶-凝胶法合成 Y3Al5O12: Ce3+, Tb3+稀土荧光粉的研究[J]. 无机材料学报, 2001, 16(4): 720-722.
    [46] Zhang W W, Xie P B, et al. Preparation and site selective luminescence of Eu3+ intriclinic GdBO3 [J]. Chin J Chem Phys, 2001, 14(3): 323-329.
    [47] Chu P, Dwyer F G, Vartuli J C. Crystallization method using microwave radiation [P]. 美国专利, USP 4,778,666. 1988.
    [48] Mingos D M P, Baherst D R. Application of microwave dielectric heating effects tosynthetic problems in chemistry [J]. Chem Soc Rev, 1991, 20: 1-47.
    [49] 张迈生, 李君君, 严纯华. 微波场下 CaS:Eu2+的快速合成及荧光光谱特性[J]. 光谱学与光谱分析, 2001, 21(3): 304-307.
    [50] 张迈生, 臧李纳. Ce3+,Sb3+供激活的亚超细磷光体的微波快速合成和发光特性[J].稀有金属材料与工程, 2002, 31(1): 69-72.
    [51] 张秀凤, 张迈生, 涂华民. 低价铈复盐微波辐射化学氧化还原合成法[J]. 中国稀土学报, 2002, 20(专辑): 122-124.
    
    [52] Blasse G. Thermal quenching of characteristic fluorescence [J]. J Chem Phys, 1969, 51(8): 3529-3530.
    [53] Sardar D K, Sibley W A, Alcala R. Optical absorption and emission from irradiatedRbMgF3:Eu2+and KMgF3:Eu2+ [J]. J Lumin, 1982, 27: 401-411.
    [54] Gao Y, Shi C S, Wu Y. Luminescence properties of SrB4O7: Eu, Tb phosphors [J].Material Research Bulletin, 1996,31(5): 439-444.
    [55] 吴郢, 石春山. MMgF4 (M=Ca, Sr, Ba)体系中 Eu 和 Tb 的电荷转移[J]. 化学学报,1996, 54: 468-474.
    [56] Park S H, Mho S. Observation of Eu2+ in Y2O2S:Eu3+ and Y2O2S:Eu3+,Tb3+ [J]. SolidState Commun, 1992, 83(1): 47-52.
    [57] Chen W, Sammynaiken R, Huang Y N. Photoluminescence and photostimulatedluminescence of Tb3+ and Eu3+ in zeolite-Y [J]. J Appl Phys, 2000, 88(3): 1424-1431.
    [58] F?rster T. 10TH spiers memorial lecture transfer mechanisms of electronic excitation,Dicuss Faraday Soc, 1959, (27): 7-17.
    [59] Inokuti M, Hirayama F. Influence of energy transfer by the exchange mechanism ondonor luminescence [J]. J Chem Phys, 1965, 43(6): 1978-1989.
    [60] Wells J P R, Jones G D, Reeves R J. Energy Transfer and Laser Spectroscopy of Eu3+co-doped CaF2:Sm3+[J]. J Lumin, 1997, 72-74: 977-979.
    [61] Tan Y, Shi C. Ce3+→Eu2+ Energy Transfer in BaLiF3 Phosphor[J]. J Phys Chem Solids,1999, 60: 1805-1810.
    [62] 张献明, 苏海全, 臧春雨, 等. KZnF3 中 Ce3+→Eu2+的能量传递[J], 高等学校化学学报, 1999, 20(9): 1334-1337.
    [63] 刘应亮, 石春山. Eu2+在 BaF2-xYF3 体系中的光谱性质及其对 Tb3+的能量传递[J].应用化学, 1994, 11(1): 38-41.
    [64] Siegel R W, Hahn H. Current trends in the physics of materials [M]. Singapore: WorldScientific, 1987: 403-404.
    [65] Ayyb P, Multani M, Barma M. Size-induced structural phase transition and hyperfineproperties of microcrystalline Fe2O3 [J]. J phys, 1988, 21: 2229-2231.
    [66] Brus L E. Electron-electron and electron-hole interactions in small semiconductorcrystallines [J]. J Chem Phys, 1984, 80: 4403-4409.
    [67] 邱关明, 耿秀娟, 陈永杰, 等. 纳米稀土发光材料的光学特性及软化学制备[J]. 中国稀土学报, 2001, 21(2): 109-114.
    [68] 谢平波, 段昌奎, 张慰萍, 等. 纳米晶 Y2SiO5:Eu 的浓度猝灭研究[J]. 发光学报.1998, 19(1): 19-23.
    [69] 张立德, 牟季美著. 纳米材料和纳米结构[M]. 北京: 科学出版社, 2001, 59-60.
    [70] Guo X Y, Zhong B, Brault P. Growth and ripening of two-dimensional palladium islandson Ni (Ⅲ) surface [J]. Surf Soi, 1998, 409: 452-457.
    
    [71] 郭向云, 王建国. 纳米微粒生长过程的分子动力学研究[J]. 燃料化学学报, 2001,29(增刊): 255-258.
    [72] 李强, 高濂, 严东生. 纳米 Y2O3:Eu3+的荧光特性[J]. 无机材料学报, 1997, 12(2):237-241.
    [73] 方小红, 董强, 沈玉华, 等. 单分散球形 Sm 掺杂的 CeO2 分体的均相沉淀法制备[J].硅酸盐学报, 2002, 30(增刊): 22-25.
    [74] 马多多, 刘行仁, 孔祥贵. 立方 Gd2O3:Eu 纳米晶及光谱性质[J]. 中国稀土学报,1999, 17(2): 176-179.
    [75] 翁端, 丁红梅, 吴晓东, 等. LaMnO3 稀土纳米材料及催化性能[J]. 物理化学学报,2001, 17(3): 248-251.
    [76] 王介强, 陶珍东, 孙旭东. 无机溶胶凝胶法制取 Y2O3 纳米微粒[J]. 中国稀土学报,2003, 21(1): 15-18.
    [77] Yin M, Zhang W, Xia S, et al. Luminescence of nanometric scaleY2SiO5:Eu [J]. JLumin, 1996, 68(6): 335-339.
    [78] Zhang W, Yan K, Yan K, et al. Luminescent properties and concentrantion quenchingof nanocrystalline Y2-xSi2O7:Eux [J]. Chin J Lumin, 1999, 20(2): 97.
    [79] 张希艳, 卢利平, 王晓春. 溶胶-凝胶法制备 SrAl2O4:Eu2+, Dy3+纳米发光材料[J]. 硅酸盐学报, 2003, 31(3): 268-271.
    [80] Hong K S, Melter R S, et al. Spectral hole burning in crystal line Eu2O3 and Y2O3: Eu3+nanoparticles [J]. J Lumin, 1998,76-77:234.
    [81] Tao Y, Zhao G, Zhang W, et al. Combustion synthesis and photoluminescence ofnanocrystallineY2O3:Eu phophors [J]. Mater Res Bull, 1997, 32(5): 501-506.
    [82] 于锡娟, 宋慧宇, 苏庆德, 等. 纳米 CeO2:Er 荧光粉的光声光谱和荧光光谱研究[J].中国稀土学报, 2003, 21(1): 93-97.
    [83] 丁红, 张静娴, 刘应亮,等. 燃烧法合成纳米长余辉发光材料 BaAl2O4:Eu, Nd [J]. 暨南大学学报(自然科学版), 2002, 23(3): 70-74.
    [84] Haase M, Riwotzki K, Meyssamy H, et al. Synthesis and properties of colloidallanthanide-doped nanocrystals [J]. J Alloys & Compds, 2000, 303-304: 191-197.
    [85] Meyssamy H, Riwotzki K, Kornowski A, et al. Wet chemical synthesis of doped colloidalnanomaterials: Particles and fibers of LaPO4: Eu, LaPO4:Ce and LaPO4:Ce, Tb [J]. Adv Mater,1999, 11(10): 840-844.
    [86] 由芳田, 王颖霞, 林建华,等. NaGdF4:Eu3+的结构和 VUV 荧光性质[J]. 无机化学学报, 2001, 17(1): 27-31.
    [87] Qiu S, Dong J, Chen G. Synthesis of CeF3 Nanoparticles from Water-in-OilMicroemulsion [J]. Powder Technology, 2000, 113: 9-13.
    [88] Bender C M, Burlitch J M, Barber D, et al. Synthesis and Fluorescence of Neodymium-Doped Barium Fluoride Nanoparticles [J]. Chem Mater, 2000, 12: 1969-1976.
    
    [89] 华瑞年. 低氧含量氟化物的溶剂热合成及纳米粒子的制备[D]: [博士学位论文]. 长春: 东北师范大学化学学院, 2003.
    [90] 张迈生, 祁家雄. Sol-gel 法和微波辐射法合成亚纳米级 Zn2SiO4:Mn2+,Er3+高效绿色荧光体[J]. 发光学报, 1999, 20(3): 258-261.
    [91] Cao M H, Wang Y H, Qi Y J, et al. Synthesis and characterization of MgF2 and KMgF3nanorods [J]. J. Solid State Chem., 2004, 177: 2205-2209.
    [92] Ireland T G, Silver J, Gibbons C, et al. Facile self-assembly of yttrium oxide europiumphosphor from solution using a sacrificial micellar phase [J]. Electronchem Solid State Lett,1999, 2(1): 52-54.
    [93] Wakefield G, Keron H A, Dobson P J, et al. Structural and optical properties of terbiumoxide nanoparticles [J]. J Phys and Chem Solid, 1999, 60(4): 503-508.
    [94] Hoar T P, Schulman J H. Transparent water in oil dispersions: Oleopathic hydromicelle[J]. Nature, 1943, 152: 102-106.
    [95] Boitonnét M, Kizling J, Stenins P, et al. The preparation of monodisperse colloidal metalparticles from microemulsions [J]. Colloids and Surfaces, 1982, 5(3): 209-225.
    [96] Prince L M. Microemulssions Theory and Practice [M]. New York: Academic Press,1977, 145-147.
    [97] Jeng J, Miller C. Surfacetant in Solution [M]. New York: Plenum Press, 1984,1829-1831.
    [98] Fendler J H. Atomic and Molecular Clusters in Membrane Mimetic Chemistry [J]. ChemRev, 1987, 87: 877-899.
    [99] 邵庆辉, 古国榜, 沈培康, 等. 微乳体系相行为研究及铂纳米微粒的制备[J]. 化工新型材料, 2002, 30(2): 31-33.
    [100] 麦振洪, 赵永男. 微乳液技术制备纳米材料[J]. 物理, 2001, (2): 106-110.
    [101] Overbeek J Th G, Verhoeckx G J, De Bruyn P L, et al. On Understanding Micro-emulsion II. Thermodynamics of Droplet-Type Microemulsion [J]. J Colloid and InterfaceSci, 1987, 119: 422-441.
    [102] Dillmann A, Meier G E A. A Refined Droplet Approach to the Problem of Homo-geneous Nucleation from the Vapor Phase [J]. J Chem Phys, 1991, 94(5): 3872-3884.
    [103] Knoll B, Keilmann F. Near-field probing of vibrational absorption for chemicalicroscopy [J]. Nature, 1999, 399: 134-137.
    [104] Wessels T, Baerlochen C, Mc Cusker L B. Single-crystal-like diffraction data frompolycrystalline materials [J]. Science, 1999, 284: 477-479.
    [105] 薛群基, 徐康. 纳米化学[J]. 化学进展, 2000, 12(4): 431-444.
    [106] Cohen R. E. Origin of Ferroelectricity in Perovskite Oxides [J]. Nature, 1992, 358:136-138.
    [107] Gao Y , Shi C S. Electron Transfer between Eu3+and Tb3+in BaB4O7Matrix [J]. J. Solid State Chem., 1996, 122(2): 436-438.
    
    [108] 张巍巍, 谢平波, 张慰萍, 等. 稀土正硼酸盐 Ln1-xBO3:Eux(Ln=Y, Gd)的结构与发光性质[J]. 无机材料学报, 2001, 16(1):9-16.
    [109] 赫泓, 梁宏斌, 陶冶,等. La2CaB10O19:Ce3+在 VUV-Vis 范围的发光性质研究[J]. 高等学校化学学报, 2003, 24(9): 1541-1543.
    [110] Pei Z W, Su Q, Zhang J Y. J The valence change from RE3+ to RE2+ (RE=Eu, Sm, Yb)in SrB4O7: RE prepared in air and the spectral properties of RE2+ [J]. Alloys and Compds,1993, 198:51-54.
    [111] Blasse G. Concentration Quenching of Eu3+ Fluorescence [J]. J Chem Phys, 1967, 46(7):2583-2585.
    [112] Krogh-Moe J. Refinement of the crystal structure of lithium diborate, Li2O·2B2O3 [J].Acta Cryst B24, 1968: 179-181.
    [113] Krogh-Moe J. The crystal structure of sodium diborate, Na2O·2H2O3 [J]. Acta Cryst,B30, 1974: 578-582.
    [114] Krogh-Moe J. The crystal structure of potassium diborate, K2O·2B2O3 [J]. Acta Cryst,B28, 1972: 3089-3093.
    [115] Gao Y, Shi C S, Li D C. Luminescent properties of Eu and Tb in SrB6O10 matrix [J].Chinese Science Bulletin, 1997, 42(5): 388-390.
    [116] 苏锵, 曾庆华, 裴治武. 在空气下制备掺二价稀土的硼酸盐及二价稀土离子(RE2+=Sm, Eu, Yb)的光谱特征[J]. 无机化学学报, 2000, 16(2): 293-298.
    [117] Cohen R E. Origin of Ferroelectricity in Perovskite Oxides [J]. Nature, 1992, 358:136-138.
    [118] Rouda C R. Rare earth phosphors: Fundamentals and application [J]. J. Alloys andCompounds, 1998, 275-277: 669-676.
    [119] Vaughey J T, William T A, Harrison W T, et al. Hydrothermal Syntheses, Structures, andProperties of Two New Potassium Vanadium Phosphates: K3(VO)(V2O3)(PO4) andK3(VO)(HV2O3)(PO4)2(HPO4) [J]. J. Solid State Chemistry, 1994, 110(2): 305-313.
    [120] Bontchev R P, Sevov S C. Co5BP3O14: The First Borophosphate with Planar BO3 GroupConnected to PO4 Tetrahedra [J]. Inorg Chem, 1996. 35(24): 6910-6912.
    [121] Ben-ali A, Taibi M, Aride J, et al. Optical and Dielectric Properties of BorophosphatesA1-xEuxBPO5 (A=Ca, Sr, Ba and Pb) [J]. J Alloys and Compounds, 2001, 323-324: 673-677.
    [122] Ternane R, Cohen-Adad M Th, Panczer G, et al. Structural and Luminescent Propertiesof New Ce3+ Doped Calcium Borophosphate with Apatite Structure [J]. Solid State Sciences,2002, 4(1): 53-59.
    [123] Wu Y, Shi C S. Electron transfer between Eu and Tb in complex fluorides [J]. J. Alloysand Compounds, 1995, 224: 177-180.
    [124] 苏锵,曾庆华,裴治武,等. 利用不等价取代法在空气中合成掺二价稀土 RE2+的发光材料(RE=Sm, Eu, Tm, Yb)[J]. 武汉大学学报(自然科学版). 2000, 46(化学专刊):194-195.
    
    [125] Dieke G. Spectra and Energy Level of Rare Earth Ions in Crystals [M]. New York:Wileg, 1968, 242.
    [126] Blasse G, Brid A. Energy Transfer in Tb3+-Activated Cerium(III) Compounds [J]. JChem Phys, 1969, 51(8): 3252-3254.
    [127] Blasse G, Bril A, De Vries J. Luminescence of alkaline-earth borate-phosphatesactivated with divalent europium [J]. J Inorg Nucl Chem, 1969, 31(2): 568-570.
    [128] Blasse G. Energy Transfer in Oxidic Phosphors [J]. Philips Res Repts, 1969, 24: 131–144.
    [129] van Schaik W, Lizzo S, Smit W, et al. Influence of Impurities on the LuminescenceQuantum Efficiency of (La, Ce, Tb)PO4 [J]. J Electrochem Soc, 1993, 140(1): 216-221.
    [130] 刘应亮, 石春山. 氟化物中 Eu2+,Ce3+的浓度猝灭及其机理[J]. 无机材料学报, 1994,9(1): 27-32.
    [131] Bourcet J C, Fong F K. Quantum efficiency of diffusion limited energy transfer inLa_(1-x-y)Ce_xTb_yPO_4 [J]. J Chem Phys, 1974, 60(1): 34-39.
    [132] 尤洪鹏, 石春山. MF2: Eu, Ce (M=Ca, Sr, Ba)中稀土离子的价态变化[J]. 科学通报,1995, 40(18): 1667-1669.
    [133] Wegh R T, Donker H, Oskam K D, et al. Visible quantum cutting in LiGdF4 : Eu3+through downconversion [J]. Science, 1999,283: 663-666.
    [134] Rouhi M. Photon splitting for fluorescent lighting [J]. Chemical & Engineering News,1999, 77(6): 37-38.
    [135] Geller S. Crystallographic studies of perovskite-like compounds. V. Relative ionic sizes[J]. Acta Crystallogr, 1957, 10: 248-251.
    [136] Ramadass N. ABO3-type oxides—Their structure and properties—A bird's eye view[J]. Mater Sci Eng, 1978, 36(2): 231-239.
    [137] Sardar D K, Sibley W A, Alcala R. Optical absorption and emission from irradiatedRbMgF_3:Eu~(2+) and KMgF_3:Eu~(2+)[J]. J Lumin, 1982, 27(4): 401-411.
    [138] West A R. Solid state chemistry and its application [M], Wiley, New York, 1984, 338.
    [139] Heaton R A, Chun C L. Electronic energy-band structure of the KMgF3 crystal [J]. PhysRev B, 1982, 25(6): 3538-3549.
    [140] Meijerink A. Spectroscopy and vibronic transitions of divalent europium in LiBaF3 [J].J Lumin, 1993,55(3): 125-138.
    [141] Tan Y, Shi C. Optical Spectroscopy Properties and Charge Compensation of BaLiF3Doped with Ce3+ [J]. J Solid State Chem, 2000,150(1): 178-182.
    [142] Somaiah K, Narayana M V, Brixner L H. Vk centers, energy transfer and thermo-luminescence of europium activated LiBaF3 [J]. Mater Chem Phys, 1990, 24(4): 353-362.
    [143] Zhao C, Feng S, Xu R, et al. Hydrothermal synthesis and lanthanide doping of complexfluorides, LiYF4, KYF4 and BaBeF4 under mild conditions [J]. Chem Commum, 1997, 945 -946.
    
    [144] Hua R, Jia Z, Xie D, et al. Solvothermal synthesis of the complex fluorides KMgF3 andKZnF3 with the Perovskite structures [J]. Mater Res Bull, 2002, 37(6): 1189-1195.
    [145] Zhao C, Feng S, Chao Z, et al. Hydrothermal synthesis of the complex fluorides LiBaF3and KMgF3 with perovskite structures under mild conditions [J]. Chem Commum, 1996,1641-1642.
    [146] Estermann M, Mccusker L B, Baerlocher C, et al. A synthetic gallophosphate molecularsieve with a 20-tetrahedral-atom pore opening [J]. Nature, 1991, 352: 320-323.
    [147] Xun X, Feng S, Xu R. Hydrothermal Synthesis of Complex Fluorides LiHoF4 andLiErF4 with Scheelite Structures under Mild Conditions [J]. Material Research. Bulletin, 1998,33(3): 369-375.
    [148] Blasse G, Bril A, Nieuwpoort W C. On the Eu3+ fluorescence in mixed metal oxides :Part I—The crystal structure sensitivity of the intensity ratio of electric and magnetic dipoleemission [J]. J Phy Chem Solids, 1966, 27(10): 1587-1592.
    [149] Blasse G, Bril A. Structure and Eu3+-fluorescence of lithium and sodium lanthanidesilicates and germanates [J]. J Inorg Nucl Chem, 1967, 29(9): 2231-2241.
    [150] 尤洪鹏, 石春山. MMgF4:Eu(M=Ca, Sr, Ba)体系中铕离子的发光中心及价态[J]. 发光学报, 1995, 16(9): 224-227.
    [151] Hagenmuller P. Inorganic Solid Fluorides-Chemistry and Physics [M]. Academic Press,Inc. Orlando, Florida, 1985.
    [152] Stalder M, Chai B H T, Bass M. Flashlamp Pumped Cr:LiSrAlF6 Lasesr [J]. Appl PhysLett, 1991, 58(3):216-218.
    [153] Walling J C, Heller D F, Smaelson H, et al. Tunable Alexandrite Lasers: Developmentand Performance [J]. IEEE J Quantum Electron, 1985, QE-21(10):1568-1581.
    [154] Payne S A, Chase L L, Newkirk H W, et al. LiCaAlF6:Cr3+: A promising NewSolid-State Laser Material [J]. IEEE J Quantum Electron, 1988, 24(11): 2243-2252.
    [155] Sarukura N, Liu Z, Segawa Y. Ce3+:LuLiF4 as a Broadband Ultraviolet AmplificationMedium[J]. Opt Lett, 1995, 20(3): 294-296.
    [156] Maroni P, Palatella L, Toncelli A, et al. Fluoride Crystals: 2μm Ho3+ Laser Emissionand Energy Transfer Mechanisms in Er3+[J]. J Crystal Growth, 2001, 229: 497-500.
    [157] Tan Y, Shi C. Optical Spectroscopy Properties and Charge Compensation of BaLiF3Doped with Ce3+ [J]. J Solid State Chem, 2000,150: 178-182.
    [158] Dominiak-Dzik G, Sokolska I, Golab S, et al. Preliminary Report on Growth, Structureand Optical Properties of K5LaLi2F10:Ln3+ (Ln3+—Pr3+, Nd3+, Er3+) Crystals [J] J. Alloys andCompounds, 2000, 300-301: 254-260.
    [159] Dexpert-Ghys J, Ribeiro S J L, Dugat P, et al. Spectroscopic Studies of the Eu3+ andEr3+ Ions in the Fluorozirconate LaZr2F11 Matrix [J]. Spectrochimica Acta part A, 2000, 56: 475- 483.
    
    [160] Beecroft L L, Ober C K. Nanocomposite Materials for Optical Applications [J]. ChemMater, 1997, 9: 1302-1317.
    [161] 莫春生. 半微分电分析研究 CTAB/n-C_4H_9OH/n-C_7H_(16)/H_2O 微乳结构[J]. 化学学报,2002, 60(7): 1179-1185.
    [162] 高善民, 孙树声, 崔得良, 等. 苯热合成 GaP 纳米微晶介质中水氧对反应过程的影响[J]. 化学学报, 2000, 58(6): 643-646.
    [163] Hegarty J, Huber D H, Yen Y M. Fluorescence quenching by cross relaxation inLaF_3:Pr~(3+) [J]. Phys Rev B, 1982, 25(9): 5638-5645.
    [164] de Mello Donega C, Lambaerts H, Meijerink A, et al. The vibronic spectroscopy of Pr~(3+)in YOCl and LaOCl [J]. J Phys Chem Solids, 1993, 54(8): 873-881.
    [165] Wang Xiao-Jun, Huang S H, Reeves R, et al. Studies of the spectroscopic properties ofPr~(3+) doped LaF_3 nanocrystals / glass [J]. J Lumin, 2001, 94-95:229-233.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700