低维氧化物纳米结构化学湿法合成、表征及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
氧化物是自然界中分布最为广泛的一类无机化合物。由于其独特的物理、化学性质和在众多领域的广泛应用,氧化物在工农业生产以及科学研究占有极其重要的位置。如何发现、合成新型结构的氧化物功能材料,并在合成过程中实现对其晶体结构、尺寸、形貌及维度的调控,进而实现对其物理、化学性质的人工剪裁是当前化学、材料科学要完成的历史使命。湿化学合成方法被证明是完成这一使命的非常重要的途径。本论文通过调控溶剂体系、溶液酸碱度、前驱物和添加剂种类等方式在利用湿化学方法合成二元和三元氧化物低维纳米结构方面进行了有益的探索和研究,获得了一些有意义的结果。
    二氧化锆(ZrO2)是一种多晶型的二元氧化物,采用不同的湿化学合成方法成功地合成了不同晶型的ZrO2结构:微波辅助化学湿法合成ZrO2纳米颗粒,在PVA的作用下合成介稳四方相二氧化锆(t-ZrO2);超声波辅助化学湿法合成水合二氧化锆(ZrO2·nH2O),并对其结构进行了表征;醇水体系(EWS)水热合成了单分散单斜相二氧化锆(m-ZrO2)纳米颗粒。氧化镍(NiO)是一种单晶型的二元氧化物,通过水热方法首先合成六方相氢氧化镍(h-Ni(OH)2)的纳米棒状结构,然后在加热条件下,使Ni(OH)2纳米棒转化成为立方相氧化镍(c-NiO)纳米环状颗粒。
    建立了一种简便、普适的水热合成方法制备了系列过渡金属三元氧化物铬酸盐的低维纳米结构。系统深入探讨了溶液的酸碱度(pH)和添加剂(表面活性剂)对于晶体生长中晶型和形貌的影响,这对于湿化学合成中的晶体结构、尺寸和形貌的调控研究具有很高的借鉴价值。对制得的产物的介电、电化学、紫外吸收和荧光性质进行了表征和研究。
    提供了一种新的低温液相合成非金属三元氧化物硼酸盐的一维纳米结构的方法,比传统固相反应方法的反应温度低近700°C ~900°C,显示了湿化学合成的优势。尤其是在醇酮体系下合成了掺杂二价铕(Eu2+)的硼酸盐荧光粉体,同时在纯水溶剂中合成了掺杂三价铕(Eu3+)的硼酸盐荧光粉体,在紫外灯的照射下,荧光体分别发出蓝紫光和粉红色光。并对掺杂荧光体一维纳米结构的热稳定性和其发光性质进行了测试和表征。
Oxide is one type of inorganic compound widely spreading in the nature. Due toits unique chemical and physical properties and broad applications in many fields,oxide is of great importance to the proceedings of industry and agriculture andresearches of science. A history mission in the current chemistry and materialsscience is how to find and produce functional oxide materials with new structures,and how to precisely control the crystal structures, sizes, morphologies anddimensionalities, further to achieve the tailoring of physical/chemical properties ofthe materials. Wet chemistry method proved to be a great way to reach the goal. Inthis dissertation, low-dimensional nanostructures of binary and ternary oxides aresuccessfully synthesized via wet chemistry by modulating the parameters such assolvent, pH, precursor and additive.
    Polymorphous zirconia (ZrO2) is synthesized via wet chemistry method:Polymer-stabilized metastable tetragonal (t-ZrO2) nanopowders have been preparedby microwave-assisted heating in an aqueous solution containing PVA;hydratedzirconia (ZrO2·H2O) nanopowders have been synthesized via sonochemical method;monodispersed monoclinic zirconia (m-ZrO2) nanoparticles have been produced viahydrothermal method in ethanol-water system. Nickel oxide (NiO) nanorings havebeen synthesized by the phase transition from hexagonal Ni(OH)2 to cubic NiO viahydrothermal-annealed method.
    A facile general synthesis route to a family of chromate one-dimensionalnanostructures has been established. The effects of pH and surfactant on phase andmorphology formation in the crystal growth have been systematically investigated.The physical properties, such as dielectric, electrochemical, UV-Vis absorbance, andphotoluminescent properties, of the as-synthesized chromate nanocrystals have alsobeen studied.
    One-dimensional nanostructures of metal borate are successfully synthesized viasolution-phase method at low temperature, approximately 700℃~900℃ less thanthat in conventional solid-state reaction. Eu2+ and Eu3+ doped borate fluorophors havebeen selectively synthesized in the ethanol-acetone solvent and water solvent,respectively. The fluorophor, exposed to UV, emits blue-violet and pink lightrespectively. The thermal stability and PL properties have also been investigated.
引文
[1] 朱裕贞,顾达,黑恩成.现代基础化学.北京:化学工业出版社,1998.1-646
    [2] 郑利民,朱声逾.简明元素化学.北京:化学工业出版社,1999.1-6
    [3] Ryshkewitch E. Oxide ceramics. New York and London: Academic Press, 1960. 3-11
    [4] Samsonov G V. The oxide handbook (second editon). New York: IFI/Plenum Data Company, 1982. 1-458
    [5] Jarzebski Z M. Oxide semiconductor. Oxford: Pergamon Press, 1973.1-265
    [6] Boulessteix C. Oxides. Switzerland: Trans Tech Publications Ltd, 1998. 1-467
    [7] 徐毓龙.氧化物和化合物半导体基础.西安:西安电子科技大学出版社,1991.1-368
    [8] Diggle J W. Oxides and oxide films (Volume 1). New York: Marcel Dekker, INC., 1972. 1-499
    [9] Diggle J W. Oxides and oxide films (Volume 2). New York: Marcel Dekker, INC., 1973. 1-386
    [10] Wingrave J A. Oxide surface. New York: Marcel Dekker, 2001. 1-515
    [11] 《化学发展简史》编写组.化学发展简史.北京:科学出版社,1980.1-349
    [12] 赵匡华.化学通史.北京:高等教育出版社,1990.1-430
    [13] 张立德,牟季美.纳米材料和纳米结构.北京:科学出版社,2001.1-19
    [14] 王佛松,王夔,陈新滋,彭旭明(主编). 展望 21 世纪的化学.北京:化学工业出版社,2000.99-109
    [15] Klabunde K J. Introduction to the nanoworld. In: Klabunde K J, eds. Nanoscale Materials in Chemistry. New York: John Wiley & Sons, Inc., 2001. 1~14
    [16] Klein D L, Roth R, Lim A K L, et al. A single-electron transistor made from a cadmium selenide nanocrystal. Nature 1997, 389:699~701
    [17] Alivisatos A P. Perspectives on the physical chemistry of semiconductor nanocrystals. J. Phys. Chem. 1996, 100:13226~13239
    [18] Alivisatos A P. Semiconductor clusters, nanocrystals, and quantum dots. Science 1996, 271:933~937
    [19] Pool R. The Smallest Chemical Plants. Science 1994, 263:1698~1699
    [20] Hu J T, Li L S, Alivisatos A P, et al. Linearly polarized emission from colloidal semiconductor quantum rods. Science 2001, 292:2060~2063
    [21] Hu J T, Odom T W, Lieber C M. Chemistry and physics in one dimension: Synthesis and properties of nanowires and nanotubes Accounts. Chem. Res. 1999, 32: 435-445
    [22] Xia Y N, Yang P D, Sun Y G, et al. One-dimensional nanostructures: Synthesis, characterization, and applications. Adv. Mater. 2003, 15:353~389
    [23] Xia Y N, Yang P D. Guest Editorial: Chemistry and physics of nanowires. Adv. Mater. 2003, 15:351~352
    [24] 朱静. 纳米材料与器件. 北京:清华大学出版社,2003, 1-448
    [25] Klein D L, Roth R, Lim A K L, et al. A single-electron transistor made from a cadmium selenide nanocrystal. Nature 1997, 389:699-701
    [26] Bjork M T, Ohlsson B J, Sass T, et al. One-dimensional steeplechase for electrons realized Nano Lett. 2002, 2 (2): 87-89
    [27] Zhan J H, Bando Y, Hu J Q, et al. Fabrication of metal-semiconductor nanowire heterojunctions. Angew. Chem. Int. Ed. 2005, 44 (14): 2140-2144
    [28] Duan X F, Niu C M, Sahi V, et al. High-performance thin-film transistors using semiconductor nanowires and nanoribbons. Nature 2003, 425 (6955): 274-278
    [29] Duan X F, Huang Y, Agarwal R, et al. Single-nanowire electrically driven lasers. Nature 2003, 421 (6920): 241-245
    [30] Huang M H, Mao S, Feick H, et al. Room-temperature ultraviolet nanowire nanolasers. Science 2001, 292 (5523): 1897-1899
    [31] Gudiksen M S, Lauhon L J, Wang J, et al. Growth of nanowire superlattice structures for nanoscale photonics and electronics Nature 2002, 415 (6872): 617-620
    [32] Hayden O, Greytak A B, Bell D C. Core-shell nanowire light-emitting diodes. Adv. Mater. 2005, 17 (6): 701
    [33] Xia Y N, Yang P D, Sun Y G, et al. One-dimensional nanostructures: synthesis, characterization, and applications. Adv. Mater. 2003, 15: 353-389
    [34] Wang X, Li Y D. Selected-control hydrothermal synthesis of alpha-and beta-MnO2 single crystal nanowires. J. Am. Chem. Soc. 2002, 124: 2880-2881
    [35] Wang X, Li Y D. Rational synthesis of alpha-MnO2 single-crystal nanorods. Chem. Commun. 2002, 764-765
    [36] Wang X, Li Y D. Synthesis and formation mechanism of manganese dioxide nanowires/nanorods. Chem. Eur. J. 2003, 9: 300-306
    [37] Wang X, Li Y D. Synthesis and characterization of lanthanide hydroxide single-crystal nanowires. Angew. Chem. Int. Edit. 2002, 41:4790-4793
    [38] Li M, Schnablegger H, Mann S. Coupled synthesis and self-assembly of nanoparticles to give structures with controlled organization. Nature 1999, 402: 393-395
    [39] Kwan S, Kim F, Akana J, et al. Synthesis and assembly of BaWO4 nanorods. Chem. Commu. 2001 (5): 447-448
    [40] Urban J J, Yun W S, Gu Q, et al. Synthesis of single-crystalline perovskite nanorods composed of barium titanate and strontium titanate. J. Am. Chem. Soc. 2002, 124(7): 1186-1187
    [41] Cao M H, Hu C W, Wu Q Y, et al. Controlled synthesis of LaPO4 and CePO4 nanorods/nanowires. Nanotech. 2005, 16: 282-286
    [42] Zhou K B, Wang X, Sun X M, et al. Enhanced catalytic activity of ceria nanorods from well-defined reactive crystal planes. J. Catal. 2005, 229 (1): 206-212
    [43] Yang Z X, Woo T K, Hermansson K. Strong and weak adsorption of CO on CeO2 surfaces from first principles calculations. Chem. Phys. Lett. 2004, 396 (4-6): 384-392
    [44] Wu Y Y, Yang P D. Melting and welding semiconductor nanowires in nanotubes. Adv. Mater. 2001, 13 (7): 520
    [45] Wu Y Y, Yang P D. Germanium/carbon core-sheath nanostructures. Appl. Phys. Lett. 2000, 77 (1): 43-45
    [46] Pan Z W, Dai Z R, Xu L, et al. Temperature-controlled growth of silicon-based nanostructures by thermal evaporation of SiO. J. Phys. Chem. B 2001, 105 (13): 2507-2514
    [47] Wong E W, Sheehan P E, Lieber C M. Nanobeam mechanics: elasticity, strength, and toughness of nanorods and nanotubes. Science 1997, 277 (5334): 1971-1975
    [48] Poncharal P, Wang Z L, Ugarte D, et al. Electrostatic deflections and electromechanical resonances of carbon nanotubes. Science 1999, 283 (5407): 1513-1516
    [49] Duan X F, Huang Y, Cui Y, et al. Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices. Nature 2001, 409 (6816): 66-69
    [50] Huang Y, Duan X F, Cui Y, et al. Logic gates and computation from assembled nanowire building blocks. Science 2001, 294 (5545): 1313-1317
    [51] Cobden D H. Molecular electronics -Nanowires begin to shine. Nature 2001, 409 (6816): 32-33
    [52] Tseng G Y, Ellenbogen J C. Nanotechnology -Toward nanocomputers. Science 2001, 294 (5545): 1293-1294
    [53] Service R F. Assembling nanocircuits from the bottom up. Science 2001, 293 (5531): 782-785
    [54] Zhang Z B, Sun X Z, Dresselhaus M S, et al. Electronic transport properties of single-crystal bismuth nanowire arrays. Phys. Rev. B 2000, 61 (7): 4850-4861
    [55] Volz S G, Chen G. Molecular dynamics simulation of thermal conductivity of silicon nanowires. Appl. Phys. Lett. 1999, 75 (14): 2056-2058
    [56] Heremans J, Thrush C M. Thermoelectric power of bismuth nanowires. Phys. Rev. B 1999, 59 (19): 12579-12583
    [57] Vining C B. Semiconductors are cool. Nature 2001, 413 (6856): 577-578
    [58] Venkatasubramanian R, Siivola E, Colpitts T, et al. Thin-film thermoelectric devices with high room-temperature figures of merit. Nature 2001, 413 (6856): 597-602
    [59] Wolkin M V, Jorne J, Fauchet P M, et al. Electronic states and luminescence in porous silicon quantum dots: The role of oxygen. Phys. Rev. Lett. 1999, 82 (1): 197-200
    [60] Wang J F, Gudiksen M S, Duan X F, et al. Highly polarized photoluminescence and photodetection from single indium phosphide nanowires. Science 2001, 293 (5534): 1455-1457
    [61] Huynh W U, Dittmer J J, Alivisatos A P. Hybrid nanorod-polymer solar cells. Science 2002, 295 (5564): 2425-2427
    [62] Mohamed M B, Volkov V, Link S, et al. The 'lightning' gold nanorods: fluorescence enhancement of over a million compared to the gold metal. Chem. Phys. Lett. 2000, 317 (6): 517-523
    [63] Sun Y G, Xia Y N. Increased sensitivity of surface plasmon resonance of gold nanoshells compared to that of gold solid colloids in response to environmental changes. Aanl. Chem. 2002, 74 (20): 5297-5305
    [64] Johnson J C, Yan H Q, Schaller R D, et al. Near-field imaging of nonlinear optical mixing in single zinc oxide nanowires. Nnano Lett. 2002, 2 (4): 279-283
    [65] Yang W Z, Zhou D L, Yin G F, et al. Characterization of ZnO based varistor derived from nano ZnO powders and ultrafine dopants. J. Mater. Sci. & Tech. 2005, 21 (2): 183-186
    [66] Katti K, Katti D R, Tang J, et al. Modeling mechanical responses in a laminated biocomposite -Part II -Nonlinear responses and nuances of nanostructure. J. Mater. Sci. 2005, 40 (7): 1749-1755
    [67] Aleksejenko G, Pacebutas V, Krotkus A. Optical nonlinearities in PbSe nanocrystals. Acta Phys. Polonica A 2003, 107 (2): 294-297
    [68] Kityk I V, Makowska-Janusik M, Kassiba A, et al. SiC nanocrystals embedded in oligoetheracrylate photopolymer matrices;new promising nonlinear optical materials. Opti. Mater. 2000, 13 (4): 449-453
    [69] Kind H, Yan H Q, Messer B, et al. Nanowire ultraviolet photodetectors and optical switches. Adv. Mater. 2002, 14 (2): 158
    [70] Dekker C. Carbon nanotubes as molecular quantum wires. Phys. Today 1999, 52 (5): 22-28
    [71] Li Q H, Gao T, Wang Y G, et al. Adsorption and desorption of oxygen probed from ZnO nanowire films by photocurrent measurements. Appl. Phys. Lett. 2005, 86 (12): Art. No. 123117
    [72] Khairoutdinov R F, Doubova L V, Haddon R C, et al. Persistent photoconductivity in chemically modified single-wall carbon nanotubes. J. Phys. Chem. B 2004, 108 (52): 19976-19981
    [73] Douglas W E, Klapshina L G, Kuzhelev A S, et al. Self-organised poly[(ethynediyl)(arylene)(ethynediyl)silylene]/N-ethylearbazole/polyphenylsilsesquioxane hybrid nanomaterials: photoconductivity and electro-optic response at telecommunication wavelengths. Russ. Chem. Bull. 2004, 53 (9): 1978-1982
    [74] Li C Z, He H X, Bogozi A, et al. Molecular detection based on conductance quantization of nanowires. Appl. Phys. Lett. 2000, 76 (10): 1333-1335
    [75] Walter E C, Favier F, Penner R M. Palladium mesowire Arrays for fast hydrogen sensors and hydrogen-actuated switches. Anal. Chem. 2002, 74 (7): 1546-1553
    [76] Favier F, Walter E C, Zach M P, et al. Hydrogen sensors and switches from electrodeposited palladium mesowire arrays. Science 2001, 293 (5538): 2227-2231
    [77] Cui Y, Wei Q Q, Park H K, et al. Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species. Science 2001, 293 (5533): 1289-1292
    [78] Law M, Kind H, Messer B, et al. Photochemical sensing of NO2 with SnO2 nanoribbon nanosensors at room temperature. Angew. Chem. Int. Ed. 2002, 41 (13): 2405-2408
    [79] Martucci A, Buso D, Guglielmi M, et al. Optical gas sensing properties of silica film doped with cobalt oxide nanocrystals. J. Sol-Gel Sci. and Tech. 2004, 32 (1-3): 243-246
    [80] Kong X H, Li Y D. High sensitivity of CuO modified SnO2 nanoribbons to H2S at room temperature. Sens. Actuat. B-Chem. 2005, 105 (2): 449-453
    [81] Zhou X T, Lai H L, Peng H Y, et al. Thin beta-SiC nanorods and their field emission properties. Chem. Phys. Lett. 2000, 318 (1-3): 58-62
    [82] Lee C J, Lee T J, Lyu S C, et al. Field emission from well-aligned zinc oxide nanowires grown at low temperature. Appl. Phys. Lett. 2002, 81 (19): 3648-3650
    [83] Cheng C L, Chen Y F, Chen R S, et al. Raman scattering and field-emission properties of RuO2 nanorods. Appl. Phys. Lett. 2005, 86 (10): Art. No. 103104
    [84] Yu S G, Yi W K, Lee J, et al. Energy distribution for undergate-type triode carbon nanotube field emitters. Appl. Phys. Lett. 2002, 80 (21): 4036-4038
    [85] Yu J, Zhang Q, Ahn J, et al. Synthesis of carbon nanoparticles by microwave plasma chemical vapor deposition and their field emission properties. J. Mater. Sci. Lett. 2002, 21 (7): 543-545
    [86] Andrienko I, Cimmino A, Hoxley D, et al. Field emission from boron-doped polycrystalline diamond film at the nanometer level within grains. Appl. Phys. Lett. 2000, 77 (8): 1221-1223
    [87] Lee M H, Oh S G, Yi S C, et al. Characterization of Eu-doped Y2O3 nanoparticles prepared in nonionic reverse microemulsions in relation to their application for field emission display. J. Electrochem. Soc. 2000, 147 (8): 3139-3142
    [88] Huang M H, Mao S, Feick H, et al. Room-temperature ultraviolet nanowire nanolasers. Science 2001, 292 (5523): 1897-1899
    [89] Tang Z K, Wong G K L, Yu P, et al. Room-temperature ultraviolet laser emission from self-assembled ZnO microcrystallite thin films. Appl. Phys. Lett. 1998, 72 (25): 3270-3272
    [90] Johnson J C, Choi H J, Knutsen K P, et al. Single gallium nitride nanowire lasers. Nature Mater. 2002, 1 (2): 106-110
    [91] Johnson J C, Yan H Q, Schaller R D, et al. Single nanowire lasers. J. Phys. Chem. B 2001, 105 (46): 11387-11390
    [92] Dickson R M, Lyon L A. Unidirectional plasmon propagation in metallic nanowires. J. Phys. Chem. B 2000, 104 (26): 6095-6098
    [93] Peng D L, Hihara T, Sumiyama K. Electrical resistivity and magnetoresistance in monodispersed oxide-coated Fe cluster assemblies. Japn. J. Appl. Phys. Part 1-Regular Papers Short Notes & Rrev. Papers 2004, 43 (2): 674-680
    [94] Sashchiuk A, Amirav L, Bashouti M, et al. PbSe nanocrystal assemblies: synthesis and structural, optical, and electrical characterization. Nano Lett. 2004, 4 (1): 159-165
    [95] Ichinose H, Kato T, Takefu M, et al. Electrostatic theory on the formation of monodispersed two-dimensional nanosize clusters of partially fluorinated surfactants. Langmuir 1999, 15 (14): 4705-4709
    [96] Cazzanelli M, Navarro-Urrios D, Riboli F, et al. Optical gain in monodispersed silicon nanocrystals. J. Appl. Phys. 2004, 96 (6): 3164-3171
    [97] Nikesh V V, Dharmadhikari A, Ono H, et al. Optical nonlinearity of monodispersed, capped ZnS quantum particles. Appl. Phys. Lett. 2004, 84 (23): 4602-4604
    [98] Hamada Y, Kobayashi I, Nakajima M, et al. Optical and interfacial tension study of crystallization of n-alkane in oil-in-water emulsion using monodispersed droplets. Cryst. Growth & Design 2002, 2 (6): 579-584
    [99] Li J G, Tang C C, Li D, et al. Monodispersed spherical particles of brookite-type TiO2: synthesis, characterization, and photocatalytic property. J. Am. Cera. Soc. 2004, 87 (7): 1358-1361
    [100] Tuel A, Hubert-Pfalzgraf L G. Nanometric monodispersed titanium oxide particles on mesoporous silica: synthesis, characterization, and catalytic activity in oxidation reactions in the liquid phase. J. Catal. 2003, 217 (2): 343-353
    [101] Abbet S, Judai K, Klinger L, et al. Synthesis of monodispersed model catalysts using softlanding cluster deposition. Pure Appl. Chem. 2002, 74 (9): 1527-1535
    [102] Choi K M, Akita T, Mizugaki T, et al. Highly selective oxidation of allylic alcohols catalysed by monodispersed 8-shell Pd nanoclusters in the presence of molecular oxygen. New J. Chem. 2003, 27 (2): 324-328
    [103] Heiz U, Sanchez A, Abbet S, et al. Catalytic oxidation of carbon monoxide on monodispersed platinum clusters: each atom counts. J. Am. Chem. Soc. 1999, 121 (13): 3214-3217
    [104] Aluoch A O, Sadik O A, Bedi G. Development of an oral biosensor for salivary amylase using a monodispersed silver for signal amplification. Anal. Biochem. 2005, 340 (1): 136-144
    [105] Lamprecht A, Ubrich N, Perez M H, et al. Biodegradable monodispersed nanoparticles prepared by pressure homogenization-emulsification. Int. J. Pharm. 1999, 184 (1): 97-105
    [106] Zhu Y H, Da H, Yang X L, et al. Preparation and characterization of core-shell monodispersed magnetic silica microspheres. Colloi. Surf. A-Physicochem. Engineering Aspects 2003, 231 (1-3): 123-129
    [107] Chinnasamy C N, Jeyadevan B, Shinoda K, et al. Unusually high coercivity and critical single-domain size of nearly monodispersed CoFe2O4 nanoparticles. Appl. Phys. Lett. 2003, 83 (14): 2862-2864
    [108] Peng D L, Sumiyama K, Hihara T, et al. Magnetic properties of monodispersed Co/CoO clusters. Phys. Rev. B 2000, 61 (4): 3103-3109
    [109] Matijevic E. Monodispersed metal (hydrous) oxides -a fascinating field of colloid science. Acc. Chem. Res. 1981, 14: 22-29
    [110] Matijevic E. Uniform inorganic colloid dispersions: achievements and challenges. Langmuir 1994, 10: 8-16
    [111] Cushing B L, Kolesnichenko V L, O'Connor C J. Recent advances in the liquid-phase syntheses of inorganic nanoparticles. Chem. Rev. 2004, 104 (9): 3893-3946
    [112] Peng Q, Dong Y J, Li Y D. ZnSe semiconductor hollow microspheres. Angew. Chem. Int. Ed. 2003, 42 (26): 3027-3030
    [113] Peng Q, Xu S, Zhou K B. A general chemical conversion method to various semiconductor hollow structures. Small 2005, 1(2): 216-221
    [114] Deng H, Li X L, Peng Q, et al. Monodisperse magnetic single-crystal ferrite microspheres. Angew. Chem. Int. Ed. in press
    [115] 夏光祥.湿法冶金.北京:科学出版社,1978.1-39
    [116] 【苏】拉斯科林 B. H. 等(张镛,夏润身,蒋筝民.译).北京:原子能出版社,1984.1-383
    [117] 李洪桂.湿法冶金学.长沙:中南大学出版社,2002.1-14
    [118] 陈家镛,杨守志,柯加俊,等.湿法冶金的研究与发展.北京:冶金工业出版社,1998.1-616
    [119] Mech A, Karbowiak M, Kepinski L, et al. Structural and luminescent properties of nano-sized NaGdF4 : Eu3+ synthesised by wet-chemistry route. J. Alloys Compund. 2004, 380 (1-2):315-320
    [120] Zhong W, Wu X L, Tang N J, et al. Magnetocaloric effect in ordered double-perovskite Ba2FeMoO6 synthesized using wet chemistry. Eur. Phys. J. B 2004, 41 (2): 213-217
    [121] Munoz A, Alonso J A, Martinez-Lope M J, et al. Synthesis, structural, and magnetic characterization of a new ferrimagnetic oxide: YFeMnO5. Chem. Mater. 2004, 16 (21): 4087-4094
    [122] Menegotto R V. Multiparameter analysis and enhanced productivity by the consolidation of inorganic wet chemistry methods. Am. Lab. 2002, 34 (4): 36
    [123] Castro-Garcia S, Julien C, Senaris-Rodriguez M A. Structural and electrochemical properties of Li-Ni-Co oxides synthesized by wet chemistry via a succinic-acid-assisted technique. Int. J. Inorg. Mater. 2001, 3 (4-5): 323-329
    [124] Wu J H, Li B S, Guo J K. A novel wet chemistry/two-step calcining process for the synthesis of ultrafine alpha-Al2O3 particles. Mater. Lett. 2001, 47 (1-2): 40-43
    [125] Chow G M. Chemical synthesis and processing of nanostructured particles and coatings. In: Chow G M, Noskova N I, eds. Nanostructured Materials Science & Technology. Dordrecht/Boston/London: Kluwer Academic Publishers, 1998. 31-46
    [126] Kamins T I. Self-assembly semiconductor nanowires. In: Fecht H J, Werner M, eds. The Nano-Micro interface: Bridging the Micro and Nano World. Weinheim: Wiley-VCH Verlag GmbH & Co. KgaA, 2004. 195-206
    [127] Chow G M, Kurihara L K. Chemical synthesis and processing of nanostructured powders and films. In: Koch C C, eds. Nanostructured Materials: Processing, properties and potential applications. New York: Noys Publications/ William Andrew Publishing, 2002. 3-50
    [128] Hambardzumyan A, Biltresse S, Dufrene Y, et al. An unprecedented surface oxidation of polystyrene substrates by wet chemistry under basic conditions. J. Colloi. Interf. Scien. 2002, 252 (2): 443-449
    [129] Wu H Q, Wei X W, Shao M W, et al. Preparation of Fe-Ni alloy nanoparticles inside carbon nanotubes via wet chemistry. J. Mater. Chem. 2002, 12 (6): 1919-1921
    [130] Pluchery O, Eng J, Opila RL, et al. Vibrational study of indium phosphide oxides. Surf. Sci. 2002, 502: 75-80
    [131] Bernt M, Solomon G. Using wet chemistry for etching under-bump metal. Solid State Tech. 2001, 44 (10): 89
    [132] Bonnemann H, Brijoux W, Hofstadt H W, et al. Wet chemistry synthesis of beta-nickel aluminide NiAl. Angew. Chem. Int. Edi. 2002, 41 (4): 599
    [133] Muukkonen E, Hakkinen T, Riihisaari T, et al. Characterization of wet chemistry resist and resist residues removal processes. Phys. Script. 1999, T79: 255-258
    [134] Mews A, Kadavanich A V, Banin U, et al. Structural and spectroscopic investigations of CdS/HgS/CdS quantum-dot quantum wells. Phys. Rev. B 1996, 53 (20): 13242-13245
    [135] Hooper R M, Mcardle B J, Narang R S, Sherwood J N. Crystallization from solution at low temperatures. In: Pamplin B R, eds. Crystal Growth. Oxford: Pergamon Press, 1980. 395-420
    [136] Burda C, Chen X B, Narayanan R, et al. Chemistry and properties of nanocrystals of different shapes. Chem. Rev. 2005, 105: 1025-1102
    [137] Barrer R M. Hydrothermal chemistry of zeolites. London: Academic Press, 1982. 1-360
    [138] Yang J, Mei S, Ferreira J M F. Hydrothermal synthesis of TiO2 nanopowders from tetraalkylammonium hydroxide peptized sols. Mater. Sci. Eng. C 2001, 15 (1-2): 183-185
    [139] Burukhin A A, Churagulov B R, Oleinikov N N, et al. Synthesis of nanosized ferrite powders from hydrothermal and supercritical solutions. Russ. J. Inorg. Chem. 2001, 46 (5): 646-651
    [140] Lu S W, Lee B I, Wang Z L, et al. Hydrothermal synthesis and structural characterization of BaTiO3 nanocrystals. J. Cryst. Growth 2000, 219 (3): 269-276
    [141] MacLaren I, Trusty P A, Ponton C B. A transmission electron microscope study of hydrothermally synthesized yttrium disilicate powders. Acta Mater. 1999, 47 (3): 779-791
    [142] Tang Q, Shen J M, Zhou W J, et al. Preparation, characterization and optical properties of terbium oxide nanotubes. J. Mater. Chem. 2003, 13 (12): 3103-3106
    [143] Fu Y P, Lin C H, Hsu C S. Preparation of ultrafine CeO2 powders by microwave-induced combustion and precipitation. J. Allo. Compou. 2005, 391 (1-2): 110-114
    [144] Wang F, Fan X P, Pi D P, et al. Synthesis and luminescence behavior of Eu3+-doped CaF2 nanoparticles. Solid State Commu. 2005, 133 (12): 775-779
    [145] Jing L Q, Yuan F L, Hou H G, et al. Relationships of surface oxygen vacancies with photoluminescence and photocatalytic performance of ZnO nanoparticles. Sci. in China Series B-Chem. 205, 48 (1): 25-30
    [146] Li Y H, Hong G Y. Synthesis and luminescence properties of nanocrystalline YVO4 : Eu3+. J. Solid State Chem. 2005, 178 (3): 645-649
    [147] Liu X Z, Si W, Ding C, et al. Preparation and characterization of nanometer indium oxide by precipitation method without ammonia water. Chin. J. Inorg. Chem. 2004, 20 (8): 975-979
    [148] Jal P K, Sudarshan M, Saha A, et al. Synthesis and characterization of nanosilica prepared by precipitation method. Colloi. Surf. A 2004, 240 (1-3): 173-178
    [149] Husein M, Rodil E, Vera J. Formation of silver chloride nanoparticles in microemulsions by direct precipitation with the surfactant counterion. Langmuir 2003, 19 (20): 8467-8474
    [150] Arai Y, Segawa H, Yoshida K. Synthesis of nano silica particles for polishing prepared by sol-gel method. J. Sol-Gel Sci. Tech. 2004, 32 (1-3): 79-83
    [151] Wang S J, Zhang X T, Cheng G, et al. Study on electronic transport properties of WO3TiO2 nanocrystalline thin films by photoassisted conductive atomic force microscopy. Chem. Phys. Lett. 2005, 405 (1-3): 63-67
    [152] Woo K, Lee H J. Preparation of maghernite nanoparticies for clinical applications. Key Eeng. Mater. 2005, 277-279: 876-880.
    [153] Wang F, Li M S, Lu Y P, et al. A simple sol-gel technique for preparing hydroxyapatite nanopowders. Mater. Lett. 2005, 59 (8-9): 916-919
    [154] Yan Q Z, Su X T, Zhou Y P, et al. Controlled synthesis of TiO2 nanometer powders by sol-gel auto-igniting process and their structural property. Acta Phys.-Chim. Sinica 2005, 21 (1): 57-62
    [155] Dhanaraj J, Jagannathan R, Kutty T R N, et al. Photoluminescence characteristics of Y2O3:Eu3+ nanophosphors prepared using sol-gel thermolysis. J. Phys. Chem. B 2001, 105 (45): 11098-11105
    [156] Beck C, Hartl W, Hempelmann R. Size-controlled synthesis of nanocrystalline BaTiO3 by a sol-gel type hydrolysis in microemulsion-provided nanoreactors. J. Mater. Res. 1998, 13 (11): 3174-3180
    [157] Rawlinson D A, Sermon P A. Nanoparticles of barium ferrite synthesised using a water-in-oil microemulsion. J. De Phys. IV 7 (C1): 755-756
    [158] Herrig H, Hempelmann R. Microemulsion mediated synthesis of ternary and quaternary nanoscale mixed oxide ceramic powders. Nanostruct. Mater. 1997, 9 (1-8): 241-244
    [159] Agostiano A, Catalano M, Curri M L, et al. Synthesis and structural characterisation of CdS nanoparticles prepared in a four-components "water-in-oil" microemulsion. Micron 2000, 31 (3): 253-258
    [160] Guo L, Wu Z H, Liu T, et al. Synthesis of novel Sb2O3 and Sb2O5 nanorods. Chem. Phys. Lett. 2000, 318 (1-3): 49-52
    [161] Jiang Y, Zhu Y J. Microwave-assisted synthesis of sulfide M2S3 (M = Bi, Sb) nanorods using an ionic liquid. J. Phys. Chem. B 2005, 109 (10): 4361-4364
    [162] Palchik O, Kerner R, Gedanken A, et al. A general method for preparing tellurides: Synthesis of PbTe, Ni2Te3, and Cu7Te5 from solutions under microwave radiation. Glass Phys. Chem. 2005, 31 (1): 80-85
    [163] Komarneni S, D'Arrigo M C, Leonelli C, et al. Microwave-hydrothermal synthesis of nanophase ferrites. J. Am. Cera. Soc. 1998, 81 (11): 3041-3043
    [164] Abu Mukh-Qasem R, Gedanken A. Sonochemical synthesis of stable hydrosol of Fe3O4 nanoparticles. J. Cplloi. Interf. Sci. 2005, 284 (2): 489-494
    [165] Zhu S M, Zhou H A, Hibino M, et al. Synthesis of MnO2 nanoparticles confined in ordered mesoporous carbon using a sonochemical method. Adv. Func. Mater. 2005, 15 (3): 381-386
    [166] Li B, Xie Y, Huang J X, et al. Sonochemical synthesis of nanocrystalline copper tellurides Cu7Te4 and Cu4Te3 at room temperature. Chem. Mater. 2000, 12 (9): 2614-2616
    [167] Zhu J J, Liu S W, Palchik O, et al. Sonochemical method for the preparation of nanophasic sulfides: synthesis of HgS and PbS nanoparticles. J. Solid State Chem. 2000, 153 (2): 342-348
    [168] Storhoff J J, Mirkin C A. Programmed materials synthesis with DNA. Chem. Rev. 1999, 99 (7): 1849-1862
    [169] Keszler D A. Synthesis, crystal chemistry, and optical properties of metal borates. Current Opi. in Solid Stat. & Mater. Sci. 1999, 4 (2): 155-162
    [170] Lukin E S, Anufrieva E V, Makarov N A, et al. Dense and durable ceramics based on alumina and zirconia. Reffrac. Industr. Ceram. 2004, 45 (6): 421-423
    [171] Krumov E, Dikova J, Starbova K, et al. Thin ZrO2 sol-gel films for catalytic applications. J. Mater. Sci.-Mater. in Electr. 2003, 14 (10-12): 759-760
    [172] Yang C L, Hsiang H I, Chen C C. Characteristics of yttria stabilized tetragonal zirconia powder used in optical fiber connector ferrule. Ceram. Int. 2005, 31 (2): 297-303 2005
    [173] Petrov V A, Vorobyev A Y, Chernyshev A P. Thermal radiation and optical properties of cubic zirconia stabilised with yttria up to the temperature of high rate evaporation. High Temp.-High Press. 2002, 34 (6): 657-668
    [174] De Vicente F S, De Castro A C, De Souza M F, et al. Luminescence and structure of Er3+ doped zirconia films deposited by electron beam evaporation. Thin Solid Films 2002, 418 (2): 222-227
    [175] Hirano M, Inagaki M, Mizutani Y, et al. Mechanical and electrical properties of Sc2O3-doped zirconia ceramics improved by postsintering with HIP. Solid State Ionics 2000, 133 (1-2): 1-9
    [176] Weckhuysen B M, Wachs I E, Schoonheydt R A. Surface chemistry and spectroscopy of chromium in inorganic oxides. Chem. Rev. 1996, 96 (8): 3327-3349
    [177] Zhu J, Li T L, Pan B, et al. Enhanced dielectric properties of ZrO2 thin films prepared in nitrogen ambient by pulsed laser deposition. J. Phys. D-Appl. Phys. 2003, 36 (4): 389-393
    [178] Si J, Desu S B, Tsai C Y. Metal-organic chemical-vapor-deposition of ZrO2 films using Zr(thd)4 as precursors. J. Mater. Res. 1994, 9 (7): 1721-1727
    [179] Onfroy T, Clet G, Houalla M. Acidity, surface structure, and catalytic performance of WOx supported on monoclinic zirconia. J. Phys. Chem. B 2005, 109 (8): 3345-3354
    [180] Navio J A, Hidalgo M C, Colon G, et al. Preparation and physicochemical properties of ZrO2 and Fe/ZrO2 prepared by a sol-gel technique. Langmuir 2001, 17 (1): 202-210
    [181] Gulino A, LaDelfa S, Fragala I, et al. Low-temperature stabilization of tetragonal zirconia by bismuth. Chem. Mater. 1996, 8 (6): 1287-1291
    [182] Hu M Z C, Harris M T, Byers C H. Nucleation and growth for synthesis of nanometric zirconia particles by forced hydrolysis. J. Colloi. Interf. Sci. 1998, 198 (1): 87-99
    [183] Murugavel P, Kalaiselvam M, Raju A R, et al. Sub-micrometre spherical particles of TiO2, ZrO2, and PZT by nebulized spray pyrolysis of metal-organic precursors. J. Mater. Chem. 1997 7 (8): 1433-1438
    [184] Somiya S, Akiba T. Hydrothermal zirconia powders: A bibliography. J. Eur. Ceram. Soc.1999, 19 (1): 81-87
    [185] Zhang Y W, Xu G, Yan Z G, et al. Nanocrystalline rare earth stabilized zirconia: solvothermal synthesis via heterogeneous nucleation-growth mechanism, and electrical properties. J. Mater. Chem. 2002, 12 (4): 970-977
    [186] Wang Y Q, Yin L X, Palchik O, et al. Sonochemical synthesis of layered and hexagonal yttrium-zirconium brides. Chem. Mater. 20011,13 (4): 1248-1251
    [187] Akinc M, Jongen N, Lemaitre J, et al. Synthesis of nickel hydroxide powders by urea decomposition. J. Europ. Ceram. Soc. 1998, 18 (11): 1559-1564
    [188] Li W Y, Cai F S, Gou X L, et al. Synthesis, characterization and electrochemical properties of Ni(OH)2 nanotubes. Acta Chim. Sinica 2005, 63 (5): 411-415
    [189] Avena M J, Vazquez M V, Carbonio R E, et al. A simple and novel method for preparing NI(OH)2: 1. strucrural studies and voltammetric response. J. Appl. Electrochem. 1994, 24 (3): 256-260
    [190] Jayashree R S, Kamath P V. Factors governing the electrochemical synthesis of alpha-nickel (II) hydroxide. J. Appl. Electrochem. 1999, 29 (4): 449-454
    [191] Lorke A, Luyken R J, Govorov A O, et al. Spectroscopy of nanoscopic semiconductor rings. Phys. Rev. Lett. 2000, 84 (10): 2223-2226
    [192] Manago T, Ono T, Miyajima H, et al. Magnetization properties of NiO/Pd several layered and multilayered films. Solid State Commun. 1999, 109 (10): 621-624
    [193] Park Y M, Choi G M. Mixed ionic and electronic conduction in YSZ-NiO composite. J. Electrochem. Soc. 1999, 146 (3): 883-889
    [194] Nakasa A, Suzuki E, Usami H, et al. Synthesis of porous nickel oxide nanofiber. Chem. Lett. 2005, 34 (3): 428-429
    [195] Park J, Kang E, Son S U, et al. Monodisperse nanoparticles of Ni and NiO: synthesis, characterization, self-assembled superlattices, and catalytic applications in the Suzuki coupling reaction. Adv. Mater. 2005, 17 (4): 429
    [196] Wang L C, Meng F L, Sun Y F, et al. Preparation and characterization of nanocrystalline electrochromic NiO thin films prepared by sol-gel method. J. Inorg. Mater. 2004, 19 (6): 1391-1396
    [197] Liang J H, Deng Z X, Jiang X, et al. Photoluminescence of tetragonal ZrO2 nanoparticles synthesized by microwave irradiation. Inorg. Chem. 2002, 41 (14): 3602-3604
    [198] Mingos D M P, Baghurst D R. Applications of microwave dielectric heating effects to synthetic problems in chemistry. Chem. Soc. Rev. 1991, 20:1
    [199] Giles J, Ultrasound scans accused of disrupting brain development. Nature 2004, 431 (7012): 1026
    [200] Joo J, Yu T, Kim Y W, et al. Multigrarn scale synthesis and characterization of monodisperse tetragonal zirconia nanocrystals. J. Am. Chem. Soc. 2003,125 (21): 6553-6557
    [201] Liang J H, Jiang X, Liu G, et al. Characterization and synthesis of pure ZrO2 nanopowders via sonochemical method. Mater. Res. Bulli. 2003, 38 (1): 161-168
    [202] Huang C Y, Tang Z L, Zhang Z T. Differences between zirconium hydroxide (Zr(OH)(4)center dot nH(2)O) and hydrous zirconia (ZrO2 center dot nH(2)O). J. Am. Ceram. Soc. 2001, 84 (7): 1637-1638
    [203] Liang J H, Li Y D. Synthesis and characterization of Ni(OH)(2) single-crystal nanorods. Chem. Lett. 2003, 32 (12): 1126-1127
    [204] Saavedra M J, Parada C, Rojo J M. Synthesis, structural characterization, thermal stability and electrical properties of the new phases (MGa)-Ga-I(CrO4)(2) (M-I = Na, K, Rb). J. Mater. Chem. 1998, 8 (9): 2077-2080
    [205] Bueno I, Parada C, Puche R S, et al. Synthesis, thermal-decomposition, magnetic-properties and vibrational study of the series Ln(OH)CrO4 (Ln=Y,Dy-Lu) J. Alloys Compound 19995, 225 (1-2): 237-241
    [206] Aoki Y, Konno H S. ynthesis and structure of novel Cr-V-Cr-VI mixed valence compounds, Nd1-xCaxCrO4 (x=0.02-0.20). J. Solid State Chem. 2001, 156 (2): 370-378
    [207] Yu S H, Colfen H, Antonietti M. Control of the morphogenesis of barium chromate by using double-hydrophilic block copolymers (DHBCs) as crystal growth modifiers. Chem.-A Eur. J. 2002, 8 (13): 2937-2945
    [208] Aoki Y, Konno H. Synthesis, structure and defects of rare earth chromates(V), RE0.9CrO3.85 (RE = Gd, Yb and Y). J. Mater. Chem. 2001, 11 (5): 1458-1464 2001
    [209] Shi H T, Qi L M, Ma J M, et al. Synthesis of hierarchical superstructures consisting of BaCrO4 nanobelts in catanionic reverse micelles. Adv, Mater. 2003, 15 (19): 1647
    [210] Yang P D, Kim. FLangmuir-Blodgett assembly of one-dimensional nanostructures Chemphyschem 2002, 3 (6): 503
    [211] Suh S, Hoffman D M. General synthesis of homoleptic indium alkoxide complexes and the chemical vapor deposition of indium oxide films. J. Am. Chem. Soc. 2000, 122 (39): 9396-9404
    [212] Liang J H, Li Y D. Synthesis and characterization of lead chromate uniform nanorods. J. Cryst. Growth 2004, 261 (4): 577-580
    [213] Su. J M, Shang C, and Huang J C. Co-removal of hexavalent chromium through copper precipitation in synthetic wastewater. Environ. Sci. Technol. 2003, 37:4281-4287
    [214] Andson J C. Dielectrics.London: Chapman and Hall Ltd, 1964. 49-53
    [215] Komaba S, Sasaki T, Kumagai N. Preparation and electrochemical performance of composite oxide of alpha manganese dioxide and Li-Mn-O spinel. Electrochim. Acta 2005, 50 (11): 2297-2305
    [216] Poizot P, Laruelle S, Grugeon S, et al. Nano-sized transition-metaloxides as negative-electrode materials for lithium-ion batteries. Nature 2000, 407 (6803): 496-499
    [217] Ma R Z, Bando Y, Sato T, et al. Single-crystal Al18B4O33 microtubes. J. Am. Chem. Soc. 2002, 124 (36): 10668-10669
    [218] Becker P. Borate materials in nonlinear optics. Adv. Mater. 1998, 10 (13): 979
    [219] Hu Z S, Lai R, Lou F, et al. Preparation and tribological properties of nanometer magnesium borate as lubricating oil additive. Wear 2002, 252 (5-6): 370-374
    [220] Ma R Z, Bando Y, Golberg D, et al. Nanotubes of magnesium borate. Angew. Chem. Int. Edt. 2003, 42 (16): 1836-1838
    [221] Li Y, Fan Z Y, Lu J G, et al. Synthesis of magnesium borate (Mg2B2O5) nanowires by chemical vapor deposition method. Chem. Mater. 2004, 16 (13): 2512-2514
    [222] Ma R Z, Bando Y, Sato T. Nanowires of metal borates. Appl. Phys. Lett. 2002, 81 (18): 3467-3469
    [223] Chang S L, Li S L, Zhao H L, et al. Synthesis and properties of Zn4B6O13:Eu3+. Funct. Mater. 2002, 33(6): 669-670
    [224] Blasse G, Donega C D, Efryushina N, et al. Luminescence of Pr3+ in indium borate (InBO3). Solid State Commu. 1994, 92 (8): 687-688
    [225] 苏锵.稀土化学.郑州:河南科学技术出版社,1993.1-347
    [226] Lucas F, Jaulmes S, Quarton M, et al. Crystal structure of SrAl2B2O7 and Eu2+ luminescence. J. Solid State Chem. 2000, 150 (2): 404-409
    [227] Peng M Y, Pei Z W, Hong G Y, et al. The reduction of Eu3+ to Eu2+ in BaMgSiO4: Eu prepared in air and the luminescence of BaMgSiO4: Eu2+ phosphor. J. Mater. Chem. 2003, 13 (5): 1202-1205
    [228] Schaffers K I, Keszler D A. Tetrahedral Triangular 3-D Framework and europium luminescence in the borate BaBe2(BO3)2. Inorg. Chem. 1994, 33 (6): 1201-1204

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700