过渡金属-碳复合材料和复合纳米薄膜的磁电阻和电输运特性
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
论文第一部分工作研究了过渡金属—石墨复合材料的巨磁电阻效应。主要成果是:⑴首次观测到了石墨颗粒固体中磁电阻的尺寸效应和温度效应。石墨颗粒固体的磁电阻数值随着平均颗粒尺寸的减小而减小。在温度约为50 K 时,在平均粒径为25.65 μm 的石墨颗粒固体中,观察到了正的线性磁电阻效应;而在温度约为25 K 时,在平均粒径为30.2 nm 的石墨颗粒固体中,观察到了负的线性磁电阻效应。利用正常磁电阻理论、晶粒边界的漫散射理论和电子的弱局域化理论解释了在石墨颗粒固体中发现的有趣的磁电阻规律。这些结果对理解半导体和半金属材料中的正磁电阻具有重要意义。⑵制备了微米过渡金属—石墨复合材料,并研究了其巨磁电阻效应。实验结果表明:过渡金属—石墨复合材料的巨磁电阻随外加磁场的变化规律可以近似用MR ∝B~n来描述,在铁—石墨复合材料中指数n 的数值随着温度的增加和铁含量的减小而增加。Fe_(0.2)-C_(0.8)复合材料的巨磁电阻,在外加磁场为5 T、温度为300 K和5 K时,分别高达53.8%和190%。利用正常磁电阻效应和渗流理论解释了过渡金属—石墨复合材料中巨磁电阻随外加磁场的变化规律,给出了出现正线性磁电阻的产生机理。该研究对理解已有的正线性磁电阻现象具有重要指导意义。
    论文的第二部分工作:采用PLD 方法在Si 基片上制备了非晶碳膜、Fe_x-C_(1-x)膜和Fe_(0.011)-C_(0.989)/Fe 双层膜,并对其微结构、磁电阻和电输运等特性进行了研究。主要结果为:(1)首次观测到27 ℃条件下制备的非晶碳膜/Si 具有明显的电压诱导开关特性,并且其开关电压随温度的升高而逐渐减小。而在300 和500 ℃条件下制备的非晶碳膜却具有完全不同电输运规律。这些非晶碳膜所具有的异常的电输运特性将会在场效应器件、温度传感器、电子开关等领域具有很好的应用前景。利用能带理论探讨了以上在Si 基片上制备的非晶碳膜的电输运和磁电阻现象。(2)对Fe_x-C_(1-x)/Si 材料的微结构、磁电阻和电输运等特性进行了研究。在一定的温度范围内,Fe_x-C_(1-x)/Si 的电输运性质与其测量电流密切相关,从而具有有趣的非线性的I-V 特性曲线。Fe_x-C_(1-x)/Si 还具有异常的磁电阻效应。在T=300 K 和B= 1 T 的条件下,Fe_(0.011)-C_(0.989)/Si 的正磁电阻可达33%。(3)建立了一个双通道模型,并利用该模型对Fe_x-C_(1-x)/Si 的磁电阻和电输运特性进行了解释。该模
The size and temperature dependence of magnetoresistance (MR) of bulk graphite were investigated. The MR of bulk graphite decreases with decreasing particle size. The micron-sized graphite exhibits positive linear field dependence of MR at about 50 K, whereas the nano-sized bulk graphite exhibits negative linear field dependence of MR at about 25 K. The possible mechanism for the MR of bulk graphite can be partially understood using ordinary MR theory, weak localization theory and diffuse scattering theory.
    A large positive MR has been found in micro-sized Fe(Ni)_x-C_(1-x) composite. Fe0.2-C0.8 composite has the largest MR with the MR value of 53.8% and 190% at room temperature and at 5 K under a magnetic field of 5T, respectively. The magnetic field dependence of the MRs can be described approximately as MR ∝Bn, and the value of n is determined by the Fe concentration and temperature. Every specimen under study has a linear field dependence of the positive MR at different temperature, and therefore we can design different magnetic sensors to satisfy different demands using Fe(Ni)_x-C_(1-x) composite. Using ordinary MR theory and electrical transport theory,we has interpreted the interesting rule of the MR observed.
    Amorphous carbon films (a-C film) were deposited on n-Si substrate at different temperatures using pulsed laser deposition. Some anomalous current-voltage characteristics of the a-C films/n-Si are reported. The a-C films/n-Si deposited at 27 ℃has an apparent voltage-induced switch effect, and the value of the switch voltage decreases with increasing temperature. However, the a-C films/n-Si deposited at 300 ℃and 500 ℃are completely different from that of a-C films/n-Si deposited at 27 ℃, which have its own special I-V characteristics. The anomalous I-V characteristics should be of interest for various applications such as field effect devices. Besides, the structure of the a-C films was investigated by Raman and atomic force
    microscopy and the dependence of resistivity of the a-C films/n-Si on deposition temperatures has been studied in the temperature range of 100-300 K. Finally, using energy band theory we proposed a model to interpret the anomalous current-voltage characteristics observed. Using pulsed laser deposition method we prepared Fex-C1-x films on n-Si (100) substrates. We found that the electrical transport properties of Fex-C1-x/Si are controlled by the measuring current within a given temperature range so that it has an unusual I-V curve. Correspondingly, a colossal electroresistance (ER) of 1500% was found in the Fex-C1-x/Si samples. The switching of the conducting channel from the Fex-C1-x to the Si substrate plays an important role in the electrical transport properties and the ER of Fex-C1-x/Si. The easy control of the resistance of Fex-C1-x/Si by electric current should be of interest for various applications such as field effect devices. A novel type of MR was found in Fex-C1-x films on Si (100) substrates. When temperature T<258 K, the MR of Fe0.011-C0.989/Si substrate is negative and when 258K
引文
[1] Baibich M N, Broto J M, Fert A, Nguyen Van Dau F, Pertroff F, Eitenne P, Creuzet G, Friederich A, and Chazelas J, Giant magnetoresistance of (001)Fe/(001)Cr magnetic superlattices, Phys. Rev. Lett. 1988, 61:2472-2475
    [2] A. E. Berkowitz J. R. Mitchell, M. J. Carey, A. P. Young, S. Zhang, F. E. Spada, F. T. Parker, A. Hutten, and G. Thomas, Giant magnetoresistance in heterogeneous Cu-Co alloys, Phys. Rev. Lett. 1992, 68:3745-3748
    [3] Xiao J Q, Jiang J S, and Chien C L,Giant magnetoresistance in nonmultilayer magnetic systems, Phys. Rev. Lett. 1992, 68:3749-52
    [4] Helmolt R V, Wecker J, Holzapfel B, et al. Giant negative magnetoresistance in perovskitelike La2/3Ba1/3MnOx ferromagnetic films. Phys. Rev. Lett. 1993, 71:2331-2334
    [5] Miyazaki T, Tezaka N, Giant magnetic tunneling effect in Fe/Al2O3/Fe junction. Journal of Magnetism and Magnetic Materials 1995, 139: L231-L234
    [6] Xu R, Husmann A, Rosenbaum T F, et al. Large magnetoresistance in non-magnetic silver chalcogenides. Nature (London) 1997, 390 :57-59
    [7] Yang F Y, Liu K, Hong K M, et al. Large magnetoresistance of electrodeposited single-crystal bismuth thin films, Science 284 (1999) 1335-1337
    [8] Manyala N, Sidis Y, DiTusa J F, et al. Magnetoresistance from quantum interference effects in ferromagnets, Nature (London) 2000, 404 :581-584
    [9] Solin S A, Thio T, Hines D R, et al. Enhanced room-temperature geometric magnetoresistance in inhomogeneous narrow-gap semiconductors, Science 2000, 289 : 1530-1532
    [10] Schad R, Potter C D, Beli?n P, Verbanck G., et al. Giant magnetoresistance in Fe/Cr superlattices with very thin Fe layers. Appl. Phys. Lett. 1994, 64:3500-3502
    [11] Parkin S S P, More N, and Roche K P. Oscillations in exchange coupling and magnetoresistance in metallic superlattice structures: Co/Ru, Co/Cr, and Fe/Cr. Phys. Rev. Lett. 1990, 64: 2304–2307
    [12] Parkin S S P, York B R. Influence of deposition temperature on giant magnetoresistance of Fe/Cr multilayers. Appl. Phys. Lett. 1993, 62:1842-1844
    [13] Petroff F, Barthélemy A, Mosca D H, et al. Oscillatory interlayer exchange and magnetoresistance in Fe/Cu multilayers. Phys. Rev. B 1991, 44:5355–5357
    [14] Shintaku K, Daitoh Y, and Shinjo T. Magnetoresistance effect and interlayer exchange coupling in epitaxial Fe/Au(100) and Fe/Au(111) multilayers. Phys. Rev. B 1993, 47:14584–14587
    [15] Yu C G, Li S X, Lai W Y, et al. Giant magnetoresistance in Fe/Ag multilayers and its anomalous temperature dependence. Phys. Rev. B 1995, 52:1123–1132
    [16] Yu C G, Li S X, Lai W Y, et al. Giant magnetoresistance in Fe/Ag multilayers and its anomalous temperature dependence. Phys. Rev. B 1995, 52:1123–1132
    [17] Saito Y, Hashimoto S, and Inomata K. Giant magnetoresistance dependence on Ar acceleration voltage in Co9Fe/Cu and Co3Fe/Cu multilayers. Appl. Phys. Lett. 1992, 60:2436-2438
    [18] Parkin S S P. Oscillations in giant magnetoresistance and antiferromagnetic coupling in [Ni81Fe19/Cu]N multilayers. Appl. Phys. Lett. 1992, 60: 512-514
    [19] Parkin S S P, Li Z G and Smith D J. Giant magnetoresistance in antiferromagnetic Co/Cu multilayers. Appl. Phys. Lett. 1991, 58:2710-2712
    [20] Parkin S S P, Li Z G and Smith D J. Giant magnetoresistance in antiferromagnetic Co/Cu multilayers. Appl. Phys. Lett. 1991, 58:2710-2712
    [21] Unguris J, Celotta R J, and Pierce D T. Oscillatory exchange coupling in Fe/Au/Fe(100). J. Appl. Phys. 1994, 75:6437-6439
    [22] Bloemen P J H, Johnson M T, M. Van de Vorst T H, et al. Magnetic layer thickness dependence of the interlayer exchange coupling in (001) Co/Cu/Co. Phys. Rev. Lett. 1994, 72:764–767
    [23] Okuno S N and Inomata. K. Two oscillatory behaviors as functions of ferromagnetic layer thickness in Fe/Cr(100) multilayers. Phys. Rev. Lett. 1994, 72:1533–1536
    [24] De Vries J J, Schudelaro A A P, Jungblut R,et al. Oscillatory Interlayer Exchange Coupling with the Cu Cap Layer Thickness in Co/Cu/Co/Cu(100). Phys. Rev. Lett. 1995, 75:4306–4309
    [25] Zhang S F. Theory of giant magnetoresistance in magnetic granular films. Appl. Phys. Lett. 1992, 61:1855-1857
    [26] Gavrin A, Kelley M H, Xiao J Q, et al. Domain structures in magnetoresistive granular metals. Appl. Phys. Lett., 1995, 66:1683-1685
    [27] Sang H, Zhang S Y, Chen H, et al. Dynamic behavior of cobalt granules with annealing treatment in ion-beam cosputtered Co22Ag78 granular film. Appl. Phys. Lett. 1995, 67: 2017-2019
    [28] Moriarty J A, Phillips R. First-principles interatomic potentials for transition-metal surfaces. Phys. Rev. Lett. 1991, 66: 3036–303
    [29] Wang J Q, Xiao G. Transition-metal granular solids: Microstructure, magnetic properties, and giant magnetoresistance. Phys. Rev. B 1994, 49:3982–3996
    [30] Sheng L, Wang Z D, Xing D Y, et al. Semiclassical transport theory of inhomogeneous systems. Phys. Rev. B 1996, 53: 8203–8206
    [31] Allia P, Knobel M, Tiberto P. Magnetic properties and giant magnetoresistance of melt-spun granular Cu100-x-Cox alloys. Phys. Rev. B 1995, 52:15398–15411
    [32] Altbir D, Castro J A, Vargas P. Magnetic coupling in metallic granular systems. Phys. Rev. B 1996, 54: R6823–R6826
    [33] 都有为. 纳米材料中的巨磁电阻效应. 物理学进展1997,17(2):159-179
    [34] Ju H L, Kwon C, Li Q, Greene R L, et al. Giant magnetoresistance in La1 –xSrxMnOz films near room temperature. Appl. Phys. Lett. 1994, 65: 2108-2110
    [35] Xiong G C, Li Q, Ju H L, et al. Influence of preparation on resistivity behavior of epitaxial Nd0.7Sr0.3MnO3 –and La0.67Ba0.33MnO3 –thin films. Appl. Phys. Lett. 1995, 66 :1689-1691
    [36] Xiong G C, Bhagat S M, Li Q, et al. Anomalous magnetoconductivity of epitaxial Nd0.7Sr0.3MnO3 and Pr0.7Sr0.3MnO3 films. Solid State Commun. 1996, 97 (7):599-604
    [37] Singh S K, Palmer S B, Paul D M, et al. Growth, transport, and magnetic properties of Pr0.67Ca0.33MnO3 thin films. Appl. Phys. Lett. 1996, 69:263-265
    [38] Jin S, O'Bryan H M, Tiefel T H, et al. Large magnetoresistance in polycrystalline La–Y–Ca–Mn–O. Appl. Phys. Lett. 1995, 66:382-384
    [39] Rao G H, Sun J R, Liang J K, et al. Giant magnetoresistance effect in bulk La1/3Nd1/3Ca1/3MnO3 at low field. Appl. Phys. Lett. 1996, 69:424-426
    [40] Manoharan S S, Vasanthacharya N Y, Hegde M S, et al. Ferromagnetic La0.6Pb0.4MnO3 thin films with giant magnetoresistance at 300 K. J. Appl. Phys. 1994, 76:3923-3925
    [41] Liu K, Wu X W, Ahn K H, et al. Charge ordering and magnetoresistance in Nd1-xCaxMnO3 due to reduced double exchange. Phys. Rev. B 1996, 54:3007–3010
    [42] 陈光华, 邓金祥等. 新型电子薄膜材料. 北京:化学工业出版社,2002.368-387
    [43] Moodera J S, Kinder L R, Wong T M, et al. Large Magnetoresistance at Room Temperature in Ferromagnetic Thin Film Tunnel Junctions. Phys. Rev. Lett. 1995, 74:3273-3276
    [44] LeClair P, Moodera J S, Meservey R. Ferromagnetic-ferromagnetic tunneling and the spin filter effect. J. Appl. Phys. 1994, 76:6546-6548
    [45] Plaskett T S, Freitas P P, Barradas N P, et al. Magnetoresistance and magnetic properties of NiFe/oxide/Co junctions prepared by magnetron sputtering. J. Appl. Phys. 1994, 76:6104-6106
    [46] Moodera J S, Kinder L R. Ferromagnetic–insulator–ferromagnetic tunneling: Spin-dependent tunneling and large magnetoresistance in trilayer junctions (invited). J. Appl. Phys. 1996, 79: 4724-4729
    [47] Tezuka N, Miyazaki T. Magnetic tunneling effect in Fe/Al2O3/Ni1–xFex junctions. J. Appl. Phys. 1996, 79: 6262-6264
    [48] Moodera J S, Kinder L R, Wong T M, et al. Large Magnetoresistance at Room Temperature in Ferromagnetic Thin Film Tunnel Junctions. Phys. Rev. Lett. 1995, 74: 3273–3276
    [49] Moodera J S, Kinder L R, Nowak J, LeClair P, Meservey R,Geometrically enhanced magnetoresistance in ferromagnet–insulator–ferromagnet tunnel junctions,Appl. Phys. Lett. 1996, 69:708-800
    [50] Miyazaki T, Tezuka N. Spin polarized tunneling in ferromagnet/insulator/ferromagnet junctions. J. Mag. Mag. Mater. 1995, 151: 403-410
    [51] 蔡建旺,赵见高,詹文山,等. 磁电子学的若干问题. 物理学进展,1997, 17(2):119-149
    [52] Chuprakov I S, Dahmen K H. Large positive magnetoresistance in thin films of silver telluride. Appl. Phys. Lett.,1998,72:2165~2167
    [53] Lee M, Rosenbaum T F, Saboungi M L, Schnyfers H S. Band-gap tuning and linear magnetoresistance in the silver chalcogenides. Phys. Rev. Lett.,2002,88: 066602
    [54] Beck G., Janek J. Positive and negative magnetoresistance in the system silver-selenium. Physica B,2001,308–310:1086~1089
    [55] Manoharan S S, Prasanna S J. Magnetoresistance in microwave synthesized Ag2+δSe (0.0     [56] Ogorelec Z, Hamzic A, Basletic M. On the optimization of the large magnetoresistance of Ag2Se. Euro Phys. Lett., 1999, 46(1): 56-61
    [57] Sun Y, Salamon M B, Lee M, et al. Giant magnetothermopower associated with large magnetoresistance in Ag 2 ?δTe. Appl. Phys. Lett. 2003, 82 (9): 1440-1442
    [58] Schnyders H S, Saboungi M L, Rosenbaum T F. Magnetoresistance in n-type and p-type Ag2Te: Mechanisms and applications. Appl. Phys. Lett. 2000, 76 (13): 1710-1712
    [59] Liang BQ, Wang YJ, Chen X, Low-temperature longitudinal magnetoresistance effect in Ag2+ delta Te thin films. ACTA Physica sinica 1999, 48 (12): S35-S39
    [60] Liang B Q, Chen X, Wang Y J, et al. Abnormal magnetoresistance effect in self-doped Ag_(2 +δ)Te thin films ( δ≤0.25). Phys, Rev. B 2000, 61(5):3239-3242
    [61] Hamzic A, Ogorelec Z, Zadro K, Basletic M. Magnetic transitions in Cu2-xSe below room temperature. J. Mag. Mag. Mater.,2001,233:182~186
    [62] Husmann A., Betts J B, Boebinger G S, Migliori A, Rosenbaum T.F., Saboungi M.L. Megagauss sensors.Nature,2002,417:421~424
    [63] Soh Y A, Aeppli G. Applied physics: Making sense of magnetic fields. Nature, 2002, 417:392-393
    [64] Abrikosov A A. Quantum magnetoresistance. Phys. Rev. B,1998,58:2788-2794
    [65] Abrikosov A A. Quantum linear magnetoresistance. Euro Phys. Lett.,2000,49(6):789~793
    [66] Abrikosov A A. Quantum magnetoresistance of layered semimetals. P Phys. Rev. B, 1998, 60: 4231-4234
    [67] Herring C. Effect of random inhomogeneities on electrical and galvanomagnetic measurements. J. Appl. Phys., 1960, 31:1939-1953
    [68] Chien C L, Yang F Y, Liu K, et al. very largemagnetoresistance in electrodeposited single-crystal Bi thin films (invited). J. Appl. Phys. 2000, 87(9):4659-4664
    [69] Lerner C M, Ma Y P, Brooks J S, et al. magnetoresistivity if bismuth films in magnetic fields to 19 tesla. Appl. Phys. A 1991, 52:433-437
    [70] Lu M, Zieve R J, Hulst A V, et al. Low-temperature electrical-transport properties of single-crystal bismuth films under pressure. Phys. Rev. B 1996,53: 1609-1615
    [71] Partin D L, Hereman J, Morelli D T, et al. Growth and characterization of epitaxial bismuth films. Phys. Rev. B, 1988, 38:3818-3824
    [72] Yang F Y, Liu K, Chien C L, et al. Large magnetoresistance and finite-size effects in electrodeposited single-crystal Bi thin films. Phys. Rev. Lett. 1999,82:3328-3331
    [73] Cho S, Kim Y, Freeman A J, et al. Large magnetoresistance in post-annealed Bi thin films. Appl. Phys. Lett. 2001, 79(22):3651-3653
    [74] Cho S, Kim Y, Olafsen L J. et al. Large magnetoresistance in post-annealed polycrystalline and epitaxial Bi thin films. J. Magnet. Magnet. Mater. 2002, 239:201-203
    [75] Du X, Hebard A F. Large magnetoresistance of bismuth/gold films thermally deposited onto glass substrates. 2003, 82(14):2293-2295
    [76] Condrea E, Grozav A D, Leporda N I, et al. Large magnetoresistance effect in thin bismuth wires. Physica B 2001, 294-295: 328-331
    [77] Liu K, Chien C L, Searson P C, Kui Y Z. Structural and magneto-transport properties of electrodeposited bismuth nanowires. Appl. Phys. Lett. 1998, 73(10): 1436-1438
    [78] Liu K, Chien C L, Searson P C, Finite-size effects in bismuth nanowires. Phys. Rev. B 1998, 58(22): R14681-14684
    [79] Liu K, Chien C L, Searson P C, Giant positive magnetoresistance in arrays of semi-metallic bismuth nanowires. IEEE Trans. on Mag. 1998, 34(4): 1093-1095
    [80] Zhang Z B, Sun X Z, Dresselhaus M S, et al. Magnetotransport investigations of ultrafine single-crystalline bismuth nanowire arrays. Appl. Phys. Lett. 1998,73(11) :1589-1591
    [81] Hong K M, Yang F Y, Liu K, et al. Giant positive magnetoresistance of Bi nanowires arrays in high magnetic fields. J. Appl. Phys. 1999, 85(8):6184-6186
    [82] Heremans J, Thrush C M, Zhang Z, et al. Magnetoresistance of bismuth nanowires arrays: a possible transition from one-dimensional to three-dimensional localization. Phys. Rev. B, 1998, 58(16): R10091-10095
    [83] 翟宏如,鹿牧,赵宏武,等. 多层膜的巨磁电阻. 物理学进展,1997,17(2):159-179
    [84] Solin S A, Thio T, Hines D R, Heremans J J. Enhanced Room-Temperature Geometric Magnetoresistance in Inhomogeneous Narrow-Gap semiconductors. Science 2000, 289: 1530-1532
    [85] Zhou T, Hines D R, Solin S A. Extraordinary magnetoresistance in externally shunted van der Pauw plates. Appl. Phys. Lett. 2001, 78:667-669
    [86] Solin S A, Hines D R, H. Rowe A C, Tsai J S, Pashkin Y A, Chung S J, Goel N, Santos M B. Nonmagnetic semiconductors as read-head sensors for ultra-high-density magnetic recording. Appl. Phys. Lett. 2002, 80:4012-4014
    [87] Solin S A, Hines D R, Tsai J S, Pashkin Y A, Chung S J, Goel N, Santos M B. Room Temperature Extraordinary Magnetoresistance of Nonmagnetic Narrow-Gap semiconductor/Metal Composites: Application to Read-Head Sensors for Ultrahigh-Density Magnetic Recording. IEEE Trans. On magnetics 2002, 38(1): 89-94
    [88] Moussa J, Ram-Mohan L R, Rowe A C H, Solin S A. Response of an extraordinary magnetoresistance read head to a magnetic bit. J. Appl. Phys. 2003, 94:1110-1114
    [89] Zhou T, Solin S A, Hines D R. Extraordinary magnetoresistance of a semiconductor-metal composite van der Pauw disk. J. Mag. Magnet. Mater. 2001, 226-230: 1976-1977
    [90] Solin S A, Thio T, Hines D R. Controlled GMR enhancement from conducting inhomogeneities in non-magnetic semiconductors. Physica B 2000, 279: 37-40
    [91] Moussa J, Ram-Mohan L R, Sullivan J, Zhou T, Hines D R, Solin S A. Finite-element modeling of extraordinary magnetoresistance in thin film semiconductors with metallic inclusions. Phys. Rev. B 2001, 64:184410
    [92] Holz M, Kronenwerth O, Grundler D. Magnetoresistance of semiconductor-metal hybrid structures: The effects of material parameters and contact resistance. Phys. Rev. B 2003, 67:195312
    [93] Yuan G L, Liu J M, Zhang X J, Liu Z G. Enhanced room-temperature geometric magnetoresistance in a modified van der Pauw disk. Materials Letters 2002, 56:995–998
    [94] Akinaga H. magnetoresistive switch effect in metal/semiconductor hybrid granular films –extra huge magnetoresistance effect at room temperature. J. Maget. Magnet. Mater. 2002, 209:145-148
    [95] Thio T, Solin S A, Bennett J W, Hines D R. Giant magnetoresistance in zero-band-gap Hg1-xCdxTe. Phys. Rev. B 1998, 57:12239
    [96] Solin S A, Thio T, Hines D R,Kawano M, Oda N, Sano M. Lardge enhancement of the giant magnetoresistance in inhomogeneous semiconductors: Dependence on magnetic field direction. J. Appl. Phys. 1999, 85:5789-5791
    [97] Thio T, Solin S A, Bennett J W, Hines D R,Kawano M, Oda N, Sano M. Giant magnetoresistance in Hg1-xCdxTe applications for high density magnetic recording. J. Crystal Growth. 1998, 184/185:1293-1296
    [98] Guevara J, Vildosola V, Milano J, Llois AM, Half-metallic character and electronic properties of inverse magnetoresistant Fe1-xCoxSi alloys. Phys Rev B 2004, 69 (18): 184422
    [99] Chattopadhyay M K, Roy S B, Sujeet Chaudhay, Kanwal Jeet Singh, Magnetic response of Fe1-xCoxSi alloys: A detailed study of magnetization and magnetoresistance. Phys. Rev. B 2002, 66:174421
    [100] Chen P, Xing D Y, Du Y W, Positive magnetoresistance from quantum interference effects in perovskite-type manganites. Phys. Rev. B 2001, 64:104402
    [101] Matsumoto Y, Murakami M, Shono T, et al. Room-temperature ferromagnetism in transparent transition metal–doped titanium dioxide. Science 2001, 291:854-856
    [102] Dai J, Spinu L, Wang K-Y, malkinsk L, Tang J. Channel switching and magnetoresistance of a metal-SiO2-Si structure. J. Phys. D: Appl. Phys. 2000, 33:L64-L67
    [103] Knobel M, Denaroin J C, Decarvalho H B, Brasil M J S P, Pakhomov A B, Missell F P. Magnetic and magnetotransport properties of Co thin films on Si. Phys. Stat. Sol. 2001, 187:177-188
    [104] Tang J K, Dai J B, Wang K Y, et al. Current-controlled channel switching and magnetoresistance in a Fe3C island film supported on a Si substrate. J. Appl. Phys. 2002, 91:8411-8413
    [105] Akinaga H. Magnetoresistive switch effect in metal/semiconductor hybrid granular films: extremely huge magnetoresistance effect at room temperature. Semi. Sci. Tech. 2002, 17:322-326
    [106] Akinaga H, Mizuguchi M, Manago T, Sato T, Kuramochi H, Ono K, Ofuchi H, Oshima M Magnetoresistive switch effect in MnSb granular films grown on sulfur-passivated GaAs: more-than 10000% magnetoresistance effect at room-temperature. Physica E 2001, 10 (1-3):447-451
    [107] Li XH, Huang YH, Wang ZM, Yan CH. Tuning between negative and positive magnetoresistance in (La0.7Sr0.3MnO3) 1-x (La0.85Sr0.15CuO4)x composites. Appl. Phys. Lett. 2002, 81 (2): 307-309
    [108] He J, Zhang ZD, Liu JP, Sellmyer DJ. Transition from negative magnetoresistance behavior to positive behavior in Co20(Cu1-xGex)80 ribbons. Appl. Phys. Lett. 2002, 80 (10): 1779-1781
    [109] Verbank G, Temst K, Mae K, Schad R, Van Bael M J, Moshchalkov V V, Bruynseraede Y. Large positive magnetoresistance in Cr/Ag/Cr trilayers. Appl. Phys. Lett. 1997, 70:1477-1479
    [110] Mallik R, Sampathkumaran E V, Paulose P L. Large positive magnetoresistance at low temperatures in a ferromagnetic natural multilayers, LaMn2Ge2. Appl. Phys. Lett. 1997, 71:2385 -2387
    [111] Ghosh K, Ogale S B, Pai S P, Robson M, Li E, Jin I, Dong Z W, Greene R L, Ramesh, Venkatesan. Positive giant magnetoresistance in a Fe3O4/SrTiO3/La0.7Sr0.3MnO3 heterostructure. Appl. Phys. Lett. 1998, 73:689 -69
    [112] Tsui F, Uher C, Flynn C P, Positive giant magnetoresistance in Dy/Sc superlattices. Phys. Rev. Lett. 1994, 72(19):3084-3087
    [113] Chen YX, Wang SG, Mei LG, Dependence of magnetoresistance on the thickness of a dusted Al spacer inserted in CoFe/Cu/CoFe sandwiches. J. Mater. Sci. Technol 2000, 18(5): 436-438
    [114] Zhang DJ, Du YW. Giant positive magnetoresistance in magnetic multilayer film prepared by ion-beam sputtering. Chin. Phys, Lett.2003, 20 (6): 919-920
    [115] Kaburagi Y, Hishiyama Y. Electronic properties of kish graphite crystals with low values of residual resistivity ratio. Carbon 1998, 36(11):1671-1676
    [116] Kaburagi Y. Magnetoresistance of highly oriented graphite at 77K and 4.2K. J. Phys. C: Solid State Phys. 1982, 15:5425-5440
    [117] Kaburagi Y, Hishiyama Y. Linear dependence of transverse magnetoresistance on magnetic field in kish graphite. Carbon 1995, 33(10):1505-1506
    [118] Kaburagi Y, Hishiyama Y. Changes in electronic properties of high quality kish graphite crystals by doping with a slight amount of iron impurities. Carbon 1999, 39:147-163
    [119] Hishiyama Y, Irumano H, Kaburagi Y. Structure, raman scattering, and transport properties of boron-doped graphite. Phys. Rev. B 2001, 63:245406
    [120] Kaburagi Y, Hishiyama Y. field exponent n of transverse magnetoresistance( ?ρ/ ρ0∝Bn) in graphite crystals. Carbon 1997, 36:299-301
    [121] Kaburagi Y, Hishiyama Y. Structural and textural changes from polyimide Kapton to graphite: Part II. Magnetoresistance and x-ray diffraction. J. Mater. Res. 1992, 7(5):1174-1177
    [122] Van Schaijk R T F,De Visser A,Ionov S G, Kulbachinskii V A, Kytin V G. Magnetotransport in carbon foils fabricated from exfoliated graphite. Phys. Rev. B 1997, 57(15):8900-8906
    [123] Dujardin E, Thio T. Fabrication of mesoscopic devices from graphite microdicks. Appl. Phys. Lett. 2001, 79(15):2474-2476
    [124] Pakhomov A B, Zhang X X, Liu H, Wang X R, Huang H J. Yang S H. Magnetoresistance in arrays of fine graphite powders with nearest-neighbor tunneling conduction. Physica B 2000, 279:41-44
    [125] Endo M, Hishiyama Y, Koyama T.Magnetoresistance effect in graphitizing carbon fibers prepared by benzene decomposition. J. Phys. D: Appl. Phys. 1982, 15:353-363
    [126] Robson D, assabghy F Y I, Ingram D J E. Some electronic properties of polyacrylonitrile-based carbon fibers. J. Phys. D: Appl. Phys. 1972, 5:169-179
    [127] Zhang X, Xue Q Z, Positive and negative linear magnetoresistance in graphite. Physics Letters A, 2003, 320:471-477
    [128] Suda Y, Kawasaki H, Namba J, Iwatsuji K, Doi K, Wada K,Properties of palladium doped tin oxide thin films for gas sensors grown by PLD method combined with sputtering process. Surface and Coatings Technology 2003 174 –175:1293–1296
    [129] 李美成,杨建平,王菁,吴敢,李勇华,雷占许,赵连城,陈学康.脉冲激光薄膜制备技术,真空与低温2000,6(2):63-70
    [130] Wang RM, Zhang HZ,Analytical TEM investigations on boron carbonitride nanotubes grown via chemical vapour deposition. New J. Phys. 2004, 6: 78
    [131] Zhang WL, Xia YB, Ju JH, Fan YM, Fang ZJ, Wang LJ, Wang ZM. Raman analysis of laser annealed nitrogen doped amorphous carbon film. Solid State Commun. 2002, 123 (3-4):97-100
    [132] Brandt N B, Chudinov S M, and Ponomaev Ya G. Semimetals 1. Graphite and Its Compounds. North-Holland, Amsterdam, 1988
    [133] Yaguchi H,Singleton J. Destruction of the Field-Induced Density-Wave State in Graphite by Large Magnetic Fields. Phys. Rev. Lett. 1998, 81: 5193–5196
    [134] Makarova T L, Sundqvist B, Hohne R, Esquinazi P, Kopelevich Y, Scharff P, Davydov V A, Kashevarova L S, Rakhmanina A V. Magnetic carbon. Nature (London), 2001, 413; 716
    [135] Esquinazi P, Setzer A, Hohne R, Semmelhack C, Kopelevich Y, Spemann, Butz T, Kohlstrunk B, Losche M, Ferromagnetism in oriented graphite samples. Phys. Rev. B, 2002, 66: 024429
    [136] Shibayama Y, Sato H, Enoki T, Endo M, Disordered Magnetism at the Metal-Insulator Threshold in Nano-Graphite-Based Carbon Materials. Phys. Rev. Lett., 2000, 84: 1744
    [137] Wakabayashi K, Fujita M, Ajiki H, Sigrist M. Magnetic properties of nanographites at low temperature. Physica B, 2000, 280:388 and references therein
    [138] Robson D, Assabghy F Y I, Ingram D J E, Some electric properties of polyacrylonitrile-based carbon fibres, J. Phys. D: Appl. Phys. 5 (1972) 169 and references in
    [139] Romanenko A I, Anikeeva O B, Okotrub A V, Bulusheva L G, Kuznetsov V L, Butenko Y V, Chuvilin A L, Dong C, Ni Y, The temperature dependence of the electric resistivity and the negative magnetoresistance of carbon nanoparticles,Physics of Solid State, 44, 487 (2002)
    [140] Wang Z M, Xu Q Y, Ni G, Du Y W,Huge magnetoresistance and Shubnikov–de Hass effect in graphite,Physics Letters A 314 (2003) 328–331
    [141] Pippard A B, magnetoresistance in Metals, edited by Goldman A M, McClintock P V E, Springford M (Press Syndicate of the university of Cambridge, Cambridge, 1989), pp. 90
    [142] Fujita S, Negative magnetoresistance in carbons and diffuse scattering at crystallite boundaries,Carbon,1976, 6: 746-728
    [143] 黄昆, 韩汝琦,固体物理学,北京:高等教育出版社,1988,P373-375
    [144] Konno T J, Shoji K, Sumiyama K, Suzuki K. Structure and magnetic properties of co-sputtered Co-C thin films. J. Mag. Mag. Mater., 1999, 195:9~18
    [145] Takayoshi Hayashi, Shigeru Hirono, Masato Tomita, Shigeru Umemura. Magnetic thin films of cobalt nanocrystals encapsulated in graphite-like carbon. Nature, 1996, 381:772-774
    [146] Wang H, Wong S P, Cheung W Y, Ke N, Chiah M F, Liu H, Zhang X X, Microstructure evolution, magnetic domain structures, and magnetic properties of Co-C nanocomposite films prepared by pulsed-filtered vacuum arc deposition. J. Appl. Phy., 2000, 88:2063~2067
    [147] Delaunay J J, Hayashi T, Tomita M, Hirono S. Formation and microstructural analysisi of co-sputtered thin films consisting of cobalt nanograins embedded in carbon. J. Appl. Phys.,1997,82:2200~2203
    [148] Yu M, Liu Y, Sellmyer D J. Structural and magnetic properties of nanocomposite Co:C films. J. Appl. Phys., 1999, 85:4319~4321
    [149] Laidani N, Calliari L, Speranza G, Micheli V, Galvanetto E, Surface and coating technology,1998, 100-101:116-124
    [150] Zhang Z D, Zheng J G, Skorvanek I, et al. Shell/core structure and magnetic properties of carbon-coated Fe-Co(C) nanocapsules. J. Phys.: Condens. Matter 2001, 13: 1921-1929
    [151] Nie X, Jiang J C, Tung L D, Spinu L, Meletis E I. Multifunctional Co-C nanocomposite thin films. Thin solid films, 2002, 415: 211-218
    [152] Konofaos N, Angelis C T, Evangelou E K, Dimitriadis C A, and Logothetidis S. Charge carrier response time in sputtered a-C/n-Si heterojunctions. Appl. Phys. Lett. 2001, 79:2381-3
    [153] Hastas N A, Dimitriadis C A, Tassis D H, and Logothetidis S. Electrical characterization of nanocrystalline carbon–silicon heterojunctions. Appl. Phys. Lett. 2001, 79:638-40
    [154] Konofaos N, Angelis C T, Evangelou E K, Panayiotatos Y, Dimitriadis C A, and Logothetidis S. Electrical characterization of TiN/a-C/Si devices grown by magnetron sputtering at room temperature. Appl. Phys. Lett. 2001, 78:1682-4
    [155] Alexandrou I, Scheibe H J, Kiely C J, Papworth A J, Amaratunga G A J. and Schultrich B. Carbon films with an sp2 network structure. Phys. Rev. B 1999, 60:10903-7
    [156] Ferrari A C, Libassi A, Tanner B K, Stolojan V, Yuan J, Brown L M, Rodil S E, Kleinsorge B, and Robertson J. Density, sp3 fraction, and cross-sectional structure of amorphous carbon films determined by x-ray reflectivity and electron energy-loss spectroscopy. Phys. Rev. B 2000, 62:11089-103
    [157] Bhattacharyya S, Madel O, Schulze S, Haussler P, Hietschold M, and Richter F. Structure of nitrogenated carbon films by electron diffraction and imaging. Phys. Rev. B 2000, 61:3927-35
    [158] Yoshikawa M, Iwagami K, Matsunobe T, Morita N, Yamaguchi Y, Izumi Y, and Wager J. Resonant Raman scattering from N-doped and Si-doped diamondlike amorphous carbon films. Phys. Rev. B 2004, 69:045410
    [159] Agostino R G, Caruso T, Chiarello G, Cupolillo A, Pacile D, Filosa R, Formoso V, Colavita E, Papagno L, and Ducati C. Thermal annealing and hydrogen exposure effects on cluster-assembled nanostructured carbon films embedded with transition metal nanoparticles. Phys. Rev. B 2003, 68:035413
    [160] Ahlgren T, Vainonen E, Likonen J, and Keinonen J. Concentration-dependent deuterium diffusion in diamondlike carbon films. Phys. Rev. B 1998, 57:9723-26
    [161] Vainonen-Ahlgren E, Ahlgren T, Likonen J, Lehto S, Sajavaara T, Rydman W, Keinonen J, and Wu CH. Deuterium diffusion in silicon-doped diamondlike carbon films. Phys. Rev. B 2001, 63:045406
    [162] Donadio D, Colombo L, Milani P, and Benedek G. Growth of nanostructured carbon films by cluster assembly. Phys. Rev. Lett. 1999, 83:776-9
    [163] Wei Q, Pan Z W, Li Z J, Zhang Z X, Zang L K, Wang Y X, Ye X S, Bai T, Wang C, and Liu J R. Impact-energy dependence of atomic mobility in diamondlike carbon film growth. Phys. Rev. B 2003, 68:235408
    [164] Heitz T, Drevillon B, Godet C, and Bouree J E. Quantitative study of C—H bonding in polymerlike amorphous carbon films using in situ infrared ellipsometry. Phys. Rev. B 1998, 58:13957-13973
    [165] Casari C S, Bassi A L, Ravagnan L, Siviero F, Lenardi C, Piseri P, Bongiorno G, Bottani C E, and Milani P. Acoustic phonon propagation and elastic properties of cluster-assembled carbon films investigated by Brillouin light scattering. Phys. Rev. B 2001, 64:085417
    [166] Ravagnan L, Siviero F, Lenardi C, Piseri P, Barborini E, Milani P, Casari C S, Li Bassi A, and Bottani C E. Cluster-Beam deposition and in situ characterization of carbyne-rich carbon films. Phys. Rev. Lett. 2002, 89:285506
    [167] Schuler A, Gampp R, and Oelhafen P. In situ photoelectron spectroscopy of titanium-containing amorphous hydrogenated carbon films. Phys. Rev. B 1999, 60:16164-9
    [168] Siegal M P, Tallant D R, Martinez-Miranda L J, Barbour J C, Simpson R L, and Overmyer D L. Nanostructural characterization of amorphous diamond-like carbon films. Phys. Rev. B 2000, 61:10451-62.
    [169] Jayatissa A H, Sato F, Saito N, Ohnishi H, Takizawa K, Nakanishi Y, and Yamaguchi T. Structure properties of carbon films deposited by pulsed ArF laser ablation: effects of substrate temperature, bias and H2 pressure. Mater. Sci. Eng. B 1998;55:143-52
    [170] Pappas D L, Saenger K L, Coumo J J, and Dreyfus R W. Characterization of laser vaporization plasmas generated for the deposition of diamond-like carbon. J. Appl. Phys. 1992, 72: 3966-70
    [171] Chen J S, Lau S P, Chen G Y, Sun Z, Li Y J, Tay B K, and Chai J W. Depositon of iron containing amorphous carbon films by filtered cathodic vacuum arc technique. Diam. Relat. Mater. 2001,10:2018-2023
    [172] Dillon R O, Woollam J A, and Katkanant V. Use of Raman scattering to investigate disorder and crystallite formation in as-deposited and annealed carbon films. Phys Rev B 1984, 29:3482-3489
    [173] Ferrari A C, and Robertson J. Interpretation of Raman spectra of disordered and amorphous carbon. Phys. Rev. B 2000, 61:14095-14107
    [174] Rupesinghe N L, Cole R J, Chhowalla M, Amaratunga G A J, Weightman P. Tetrahedral amorphous carbon–silicon heterojunction band energy offsets. Diam. Relat. Mater. 2000, 9:1148–1153
    [175] Tang J K, Dai J B, Wang K Y, Zhou W L, Ruzycki N, and Diebold U. Current-controlled channel switching and magnetoresistance in an Fe_3C island film supported on Si substrate. J. Appl. Phys. 2002, 91:8411-8413
    [176] Xue Q Z, Zhang X, Zhang L N, Zhu D D, and Tian G T. Anomalous magnetoresistance and I-V relation of Fe-doped amorphous carbon film on Si substrates. J. Appl. Phys. 2004 (in press)
    [177] Gao J, Shen S Q, Li T K, and Sun J R, Current-induced effect on the resistivity of epitaxial thin films of La_(0.7)Ca_(0.3)MnO_3 and La_(0.85)Ba_(0.15)MnO_3. Appl. Phys. Lett. 2003, 82:4732-34
    [178] Wu T, Ogale S B, Garrison J E, Nagaraj B, Amlan Biswas, Chen Z, Greene R L, Ramesh R, Venkatesan T, and Millis A J, Electroresistance and Electronic Phase Separation in Mixed-Valent Manganites. Phys. Rev. Lett. 2001,86, 5998-6001
    [179] Debnath A K and Lin J G, Current-induced giant electroresistance in La0.7Sr0.3MnO3 thin films. Phys. Rev. B 2003,67:064412
    [180] Rao C N R, Raju A R, Ponnambalam V, Sachin Parashar, and Kumar N. Electric-field-induced melting of the randomly pinned charge-ordered states of rare-earth manganates and associated effects. Phys. Rev. B 2000,61:594-598
    [181] Sudheendra L and Rao C N R, Electric current-induced first-order effects on the insulator–metal transition and the colossal electroresistance in rare-earth manganates. J. Appl. Phys. 2003, 94:2767-2769
    [182] Toshiyuki Usagawa, Yoshihiro Ishimaru, Jianguo Wen, Tadashi Utagawa, Satoshi Koyama, and Youichi Enomoto, Nonlinear I–V characteristics and proximity effects for PrBa_2Cu_3O_7 –/YBa_2Cu_3O_7 –bilayered structures grown on (001) YBa_2Cu_3O_7 –single crystal substrates. Appl. Phys. Lett. 1998,72:1772-1774
    [183] Fiebig M, Miyano K, Tomioka Y, and Tokura Y, Visualization of the local insulator-metal transition in Pr_(0.7)Ca_(0.3)MnO_3. Science 1998, 280: 1925-1928
    [184] Markovich V, Rozenberg E, Yuzhelevski Y, Jung G, Gorodetsky G, Shulyatev D A, Mukovskii Ya M, Correlation between electroresistance and magnetoresistance in La_(0.82)Ca_(0.18)MnO_3 single crystal. Appl. Phys. Lett. 2001,78:3499-3501
    [185] Yusuke Taki, Osamu Takai, XPS structural characterization of hydrogenated amorphous carbon thin films prepared by shielded arc ion plating, Thin solid films 1998, 316:45-50

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700