杂原子分子筛的二次合成及其选择性吸附脱硫性能
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
吸附脱硫是近些年兴起的一种燃料油脱硫方法,因其可在较低的压力和温度下进行受到了各国高度重视,但如何寻找高效的吸附剂是该方法成功与否的关键。采用杂原子分子筛作为吸附剂进行吸附脱硫有可能得到较好的效果和新的机理。
     本论文采用液-固相同晶取代的方法将镓引入到Y型分子筛骨架中,首次利用合成的杂原子分子筛([Ga]AlY)对含有不同硫化物的模拟燃料进行了吸附脱硫研究。同时采用分子模拟方法计算了各含硫化合物中硫原子上的电荷数,并将硫原子上的电荷数与各含硫化合物的穿透吸附容量相关联,对[Ga]AlY分子筛的吸附脱硫机理进行了深入研究;研究了CeMCM-41的吸附脱硫性能;以介孔碳纳米管为惰性基体,采用限定空间尺寸法成功合成了纳米NaY分子筛。各章内容分别概述如下:
     第一章介绍了国内外燃料油脱硫进展,详细介绍了吸附脱硫方法的原理、方法和研究进展,同时还介绍了杂原子分子筛的合成方法及应用。
     第二章合成了相对结晶度大于95%的NaY分子筛,NaY分子筛经多次NH_4~+交换后得到NH_4Y分子筛。以合成的NH_4Y分子筛为原料,采用液-固相同晶取代方法制备了不同镓含量的镓化Y型分子筛。合成样品经XRD表征,[Ga]AlY的晶胞参数由NH_4Y原粉的2.547nm增加到2.656nm,这充分说明镓已经取代分子筛骨架中的铝进入了骨架。IR分析表明[Ga]AlY分子筛中的铝含量降低造成反对称伸缩震动频率向高频移动。ICP结果表明,Al含量由NH_4Y的11.9%下降到[Ga]AlY的8.8%,[Ga]AlY的Ga含量为4.3%。IR和ICP结果进一步说明了Ga取代了骨架中的一部分Al。随着合成体系中氟镓酸铵加入量的增加,进入Y型分子筛骨架的镓量也增加,但镓最多可以取代分子筛骨架中约1/3的铝。[Ga]AlY的BET比表面积为799.9m~2/g,与原料NH_4Y相比几乎没有变化,平均孔径和孔容与NH_4Y的相同分别为0.63nm和0.34cm~3/g。
     第三章详细研究了[Ga]AlY分子筛的吸附脱硫性能。采用[Ga]AlY分子筛处理含烯烃或芳烃的模拟燃料时,烯烃和芳烃对脱除噻吩硫和四氢噻吩中的硫都有较大影响,主要是烯烃和芳烃与[Ga]AlY分子筛中的活性吸附位间形成π络合作用而占用大量的吸附位。处理其它含硫量500μg/g的模拟燃料时,每克
Adsorptive desulfurization was a new method to remove sulfur compounds from the transportation fuels. The governments in many countries had paid attention to adsorptive desulfurization in that it would be accomplished at lower temperature and pressure. The success in this method, however, depended on the development of highly selective adsorbents. It was possible to obtain fine results and new mechanism if the heteroatom zeolites could be used to adsorption desulfurization.
    In this paper, the introduction of heteroatom gallium into the framework of a Y zeolite by the isomorphous substitution method had been reported and the desulfurization of various model fuels over the synthesized Y zeolite ([Ga]AlY) was studied. The charge on S atom of sulfide, calculated by using molecule simulation, was correlated to the sulfur adsorption capacity. The desulfurization over the synthesized CeMCM-41 zeolite was studied. At last, nanosized NaY zeolite had been synthesized inside the mesopore of carbon nanotube. A brief introduction was given as follows:
    In chapter 1, the adsorption desulfurization development was described in detail, The application and the synthesize method of the heteroatoms zeolites were also introduced.
    In chapter 2, NaY zeolite whose crystallinity was greater than 95% was synthesized . The NH4Y zeolite could be obtained by several times cation exchange of the NH_4~+ form. [Ga]AlY with different content of gallium was synthesized from raw material NH4Y by using isomorphous substitution of heteroatoms. The cell parameter of [Ga]AlY, determined by XRD using the internal standard method, was 2.656 nm and that of NH_4Y was 2.547 nm, implying that the Ga atoms had been introduced into the framework of Y zeolite. The internal tetrahedral symmetrical stretching of IR showed a blue shift due to the substitution Ga for Al. ICP analysis showed that the aluminium content decreased from 11.9% for the NH4Y to 8.8 % for the [Ga]AlY. While the gallium content of [Ga]AlY was 4.3%. The results of ICP and IR indicated further that Ga had been substituted into the faujasitic framework.
引文
[1] Sawyer R. F., Harley R.A., Cadle S. H., Norbeck J. M., Slott R., Bravo H. A. Mobile sources critical review: 1998 NARSTO assessment. Atmospheric Environment, 2000, 34: 2161-2181.
    
    [2] Gary R. M., Nimish R. D., David T. A. Analysis of motor vehicle emissions in a houston tunnel during the texas air quality study 2000. Atmospheric Environment, 2004, 38: 3363-3372.
    [3] 中国环保总局。2004年中国环境状况公报。2005. 4.
    
    [4] Xue M., Chitrakar R., Sakane K., Hirotsu T., Ooi K., Yoshimura Y. J., Feng Q.,Sumida N. Selective adsorption of thiophene and 1-benzothiopheneon metal-ion-exchanged zeolites in organic medium. Journal of Colloid and Interface Science, 2005, 285: 487-492.
    
    [5] Haji S., Erkey C. Removal of dibenzothiophene from model diesel by adsorption on carbon aerogels for fuel cell applications. Industry Engineering Chemical Research, 2003, 42: 6933-6937.
    
    [6] Strohm J. J., Zheng J., Song C. S. Low-temperature steam reforming of jet fuel in the absence and presence of sulfur over Rh and Rh-Ni catalysts for fuel cells. Journal of Catalysis, 2006, 238: 309-320.
    
    [7] Laredo G. C., Lopez C. R., Lvarez R. E. A., Cano J. L. Naphthenic acids, total acid number and sulfur content profilecharacterization in isthmus and maya crude oils. Fuel, 2004, 83: 1689-1695.
    [8] Schulz H., Bohringer W., Ousmanov F., Waller P. Refractory sulfur compounds in gas oils. Fuel Processing Technology, 1999, 61: 5-41.
    [9] Jeffrey G. W., Richard V. K. Downhole heavy crude oil hydroprocessing. Applied Catalysis A; General, 1996, 140: 1-16.
    
    [10] Kim B. H., Kim H. Y., Kim T. S., Park D. H. Selectivity of desulfurization activity of desulfovibrio desulfuricans M6 on different petroleum products. Fuel Processing Technology, 1995, 43: 87-94.
    [11] Kaufmann T. G., Kaldor A., Stuntz G. F., Kerby M. C, Ansell L. L. Catalysis science and technology for cleaner transportation fuels. Catalysis Today, 2000, 62: 77~90.
    [12] 卫恒德,张士瑞.满足更苛刻汽油规格的炼油技术.炼油设计,2001,31(1):21~23.
    [13] 张晓静.催化裂化汽油吸附脱硫工艺研究.炼油设计,2001,6(31):44~47.
    [14] 杨宝康,张继军,傅军,何鸣元.汽油含硫化合物脱除新技术.石油炼制与化工,2000,31(7):36~39.
    [15] Hua R. X., Li Y. Y., Liu W., Zheng J. C., Wei H. B., Wang J. H., Lu X., Kong H. W., Xu G. W. Determination of sulfur-containing compounds in diesel oils by comprehensive two-dimensional gas chromatography with a sulfur chemiluminescence detedtor. Journal of Chromatography A, 2003, (1019): 101~109.
    [16] 路鑫,武建芳,吴建华,孔宏伟,花瑞香,陶文晟,顾君磊,许国旺.全二维气相色谱/飞行时间质谱用于柴油组成的研究.色谱,2004,22(1):5~11.
    [17] 花瑞香,沈春海,王京华,路鑫,刘军,肖珂,孔宏伟,许国旺.全二维气相色谱法用于不同石油馏分的族组成分布研究.化学学报,2002,60(12):2185~2191.
    [18] 杨永坛,王征,杨海鹰,陆婉珍.气相色谱法测定催化柴油中硫化物类型分布及数据对比.分析化学,2005,33(11):1517~1521.
    [19] AAMA/ACEA/EMA/JAMA, Worldwide Fuel Charter [M], 1998, 12.
    [20] AAMA/ACEA/EMA/JAMA, Worldwide Fuel Charter [M], 2000, 4.
    [21] AAMA/ACEA/EMA/JAMA, Worldwide Fuel Charter [M], 2002, 12.
    [22] 匡宇红.我国汽油质量现状及改善途径.扬子石油化工,2002,17(2):62~65.
    [23] http://www.catarc.org.cn
    [24] Murali D. G., Srinivas B. N., Rana M.S., Kumar M., Maity S. K. Mixed oxide supported hydrodesulfurization catalysts-a review. Catalysis Today, 2003, 86: 45~60.
    [25] Oyama S. T., Wang X., Requejo F. G., Sato T., Yoshimura Y. Hydrodesulfurization of petroleum feedstocks with a new type of nonsulfide hydrotreating catalyst. Journal of Catalysis, 2002, 209:1-5.
    
    [26] Choi K. H., Sano Y., Korai Y., Mochida I. An approach to the deep hydrodesulfurization of light cycle oil. Applied Catalysis B: Environmental,2004,53:275-283.
    
    [27] Yang H., Chen J. W., Fairbridge C, Briker Y., Zhu Y. J., Ring Z. Inhibition of nitrogen compounds on the hydrodesulfurization of substituted dibenzothiophenes in light cycle oil. Fuel Processing Technology, 2004, 85:1415-1429.
    
    [28] Michele B., Gerald D. M, Stephanie P., Geantet C,, Vrinat M., Perot G., Lemaire M., Deep desulfurization: reactions, catalysts and technological challenges. Catalysis Today, 2003, 84: 129-138.
    [29] Landau M. V. Deep hydrotreating of middle distillates from crude and shale oils. Catalysis Today, 1997, 36(4): 393-429.
    [30] Brunet S., Mey D., Perot G., Bouchy C, Diehl F. On the hydrodesulfurization of FCC gasoline: a review.Applied Catalysis A: General, 2005, 278: 143-172.
    [31] Bataille F., Lemberton J. L., Michaud P., Perot G., Vrinat M., Lemaire M., Schulz E., Breysse M., Kasztelan S. Alkydibenzothiophenes hydrodesulfurization-promoter effect reactivity and reaction mechanism. Journal of Catalysis, 2000, 191: 409-422.
    
    [32] Ishihara A., Dumeignil F., Wang D. H. Investigation of sulfur behavior on CoMo-based HDS catalysts supported on high surface area TiO_2 by 35S radioisotope tracer method. Applied Catalysis A: General, 2005, 292: 50-60.
    [33] Absi-Halabi M., Stanislaus A., A-Dolama K. Performance comparison of alumina-supported Ni-Mo, Ni-W and Ni-Mo-W catalysts in hydrotreating vacuum residue. Fuel, 77(7): 787-790.
    
    [34] Okamoto Y., Kato A., Sato K., Hiromitsu I., Kubota T. Intrinsic catalytic activity of SiO_2-supported Co-Mo and Co-W sulfide catalysts for the hydrodesulfurization of thiophene. Journal of Catalysis, 2005, 233: 16-25.
    [35] Okamoto Y., Ochiai K., Kawano M., Kubota T. Evaluation of the maximum potential activity of Co-Mo/Al_2O_3 catalysts for hydrodesulfurization. Journal of Catalysis, 2004, 222: 143~151.
    [36] Klicpera T., ZdraZil M. Preparation of high-activity MgO-supported Co-Mo and Ni-Mo sulfide hydrodesulfurization catalysts. Journal of Catalysis, 2002, 206: 314~320.
    [37] 王锦业,李大东,石亚华.Ni含量及预硫化对NiW/Al_2O_3催化剂上噻吩加氢脱硫反应活性的影响.催化学报,2003,23(2):153~156.
    [38] Vradman L., Landau M. V., Herskowitz M. Hydrodearomatization of petroleum fuel fractions on silica supported Ni-W sulphide with increased stacking number of the WS_2 phase. Fuel, 2003, 82: 633~639.
    [39] 柳云骐,刘晨光,阙国和.合成大比表面积γ-Mo_2N的新方法.无机化学学报,1999,15(4):541~544.
    [40] Wanner S., Hilaire L., Wehrer P. Obtaining tungsten carbides from tungsten bipyridine compleses via low temperature thermat treatment. Applied Catalysis A: General, 2000, 203: 55~70.
    [41] Tanake H., Boulinguiez M., Vrinat M. Hydrodesulfurization of thiophene, dibenzothiophene and gas oil on various Co-Mo/TiO_2-Al_2O_3 catalysts. Catalysis Today, 1996, 29: 209~213.
    [42] Calafat A., Laine J., López-Agudo A., Palacios J. M. Effect of surface oxidation of the support on the thiophene hydrodesulfurization activity of Mo, Ni, and NiMo catalysts supported on activated carbon. Journal of Catalysis, 1996, 162: 20~30.
    [43] Rana S. M., Ancheyta J., Maity S. K., Rayo P. Maya crude hydridemetallization and hydrodesulfurization catalysts: an effect of TiO_2 incorporation in Al_2O_3. Catalysis Today, 2005, 109: 61~68.
    [44] Magyar S., Hancsók J., KallóD. Hydrodesulfurization and hydroconversion of heavy FCC gasoline on PtPd/H-USY zeolite. Fuel Processing Technology, 2005, 86: 1151~1164.
    [45] Solís D., Klimova T., Cuevas R., Ramírez J., López-Agudo A. Hydrodesulfurization of gasoils over NiMo/Al_2O_3-H(or Ni)Na Y zeolite hybrid catalysts. Cataluysis Taday, 2004, 98: 201~206.
    [46] Klicpera T., ZdraZil M. High surface area MoO_3/MgO: preparation by reaction of MoO_3 and MgO in methanol or ethanol slurry and activity in hydrodesulfurization of benzothiophene. Applied Catalysis A: General, 2001, 216: 41~50.
    [47] Cid R., Neria J., Goday J. Thiophene hydrodesulfurization on sulfrided nickel exchanged USY zeolite effect of PH of the catalyst preparation. Applied Catalysis A: General, 1995, 125(1): 169~183.
    [48] Hamdy F., Whitehrust D. D. Carbon versus alumina as a support for Co-Mo catalysts reactivity towards HDS of dibenzothiophenes and diesel fuel. Catalysis Today, 1999, 50: 9~17.
    [49] 周亚松,范小虎.纳米TiO_2-SiO_2复合氧化物的制备与性质.高等学校化学学报,2003,24(7):1266~1270.
    [50] Kim G. K., Barry H. C., Henrik T. Catalyst and process technologies for ultra low sulfur diesel. Applied Catalysis A: General, 1999, 189:205~215.
    [51] Wang D. H., Qian E. W., Hiroshi A., Kazuhiro O., Atsushi I., Yoshiaki K. Oxidative desulfurization of fuel oil Part Ⅰ. Oxidation of dibenzothiophenes using tert-butyl hydroperoxide. Applied Catalysis A: General, 2003, 253:91~99.
    [52] Luis J., Gutiérrez G., Fuentes G. A. Hernández-Terán M. E., Murrieta F., Juan N., Jiménez-Cruz F. Ultra-deep oxidative desulfurization of diesel fuel with H_2O_2 catalyzed under mild conditions by polymolybdates supported on Al_2O_3. Applied Catalysis A: General, 2006, 305:15~20.
    [53] Vasile H., Francois F., Jacques B. Mild oxidation with H_2O_2 over Ti-containing molecular sieves-A very efficient method for removing aromatic sulfur compounds from fuels. Journal of Catalysis, 2001, 198:179~186.
    [54] Jorge P., Jean-Marc C., Francois F. Oxidation of dibenzothiophene by hydrogen peroxide catalyzed by solid bases. Journal of Catalysis, 2002, 211:103~108.
    [55] Alexander V. A., Elena V. F., Andrey Z. L. Vladimir M. Senyavin, Leonid A. Aslanov, Viktor B. Rybakov, Alia V. Tarakanova, Vanadium peroxocomplexes as oxidation catalysts of sulfur organic compounds by hydrogen peroxide in bi-phase systems. Catalysis Today, 2003, 78:319~325.
    [56] Amedeo L., Dino M., Francesco P. Uncatalyzed heterogeneous ocideation of calcium bisulfite. Chenical Engineering Science, 1996, 51(16): 3889-3896.
    
    [57] Darian S. T., Arabshahi S. H. Process for upgrading diesel oils. US Pat. 4746420, 1988.
    
    [58] Walter G. Method of desulfurization of hydrocarbons. US Pat. 6160193, 2000.
    
    [59] Krishnaiah G., Balko J. Reduce ultra-low sulfur gasoline compliance costs with davison clean fuels technologies: S-brane membrane process for sulfur removal and FCC catalyst technologies for clean fuels. Proceedings of the NPRA 2003 Annual Meeting. San Antonio, TX, 2003.
    
    [60] Diesel desulfurization technologies. Marathon Ashiland Petroleum LLC Michael E. Leister, 2001.
    
    [61] Mei H., Mei B. W., Yen T. F. A new method for obtaining ultra-low sulfur diesel fuel via ultrasound assisted oxidative desulfurization. Fuel, 2003, 82(4): 405-414.
    
    [62] Hirai T., Ogawa K., Komasawa L. Desulfurization process for dibenzo- thiophenes from light oil by photochemical reaction and liquid-liquid extraction. Industry Engineering Chemical Research, 1996, 35: 586-589.
    
    [63] Hirai T., Shiralshi Y., Komasawa L. Desulfurization process for light oil by photochemical reaction and liquid-liquid extraction: removal of benzothiophene and alkyl sulfides. Journal Chemical Engineering Janpan, 1997, 30: 173-175.
    
    [64] Shiraishi Y., Hirai T., Komasawa I. Photochemical desurfurization of light oils using an oil/hydrogen peroxide aqueous solution extraction system: application for high sulfur content straight-run light gas oil and aromatic rich light cycle oil. Journal Chemical Engineering Janpan, 1999,32: 158-161.
    
    [65] Zannikos F., Lois E., Stournas S. Desulfurization of petroleum fractions by ocidation and solvent extraction. Fuel Processing Technology, 1995, 42: 35-45.
    
    [66] Ramirez-Verduzco L. F., Torres-Garcia E., Gomez-Quintana R., Gonzalez- Pena V., Murrieta-Guevara F. Desulfurization of diesel by oxidation/extraction scheme: influence of the extraction solvent. Catalysis Today, 2004, 98: 289-294.
    
    [67] Funakoshi I. A. Process for recovering organic sulfur compounds from fuel oil. US Pat. 5753102, 1998.
    [68] Forte, Paulino. Process for the removal of sulfur from petroleum fractions. US Pat. 5582714, 1996.
    [69] Horii, Yuji O., Hitoshi D., Sadaaki M., Toshiatsu T., Takeo S., Hideaki O., Tsuyoshi S., Toru. Desulfurization and denitration of light oil by extraction. US Pat. 5494572, 1996.
    [70] Ralph B. Purification of a hydrocarbon stream with Cr~+ ions in solution. US Pat. 3666660, 1972.
    [71] 史英君.重油催化裂化轻柴油脱氮研究.石油炮制与化工,1994,25(12):20~23.
    [72] Toshiki F., Yoshitaka I., Ken-ichi N., Kuniki K.,Kohtaro K. Thermophilic biodesulfurization of hydrodesulfurized light gas oils by Mycobacterium phlei WU-F1. FEMS Microbiology Letters, 2003, 221: 137~142.
    [73] Toshimitsu O., Morio K., Yoshitaka I., Koichi O., Masanori Su. Application of solid-phase extraction to the analysis of the isomers generated in biodesulfurization against methylated dibenzothiophenes. Journal of Chromatography A, 2000, 903: 193~202.
    [74] Rashtchi M., Mohebali G. H., Akbarnejad M. M., Towfighi J., Rasekh B., Keytash A. Analysis of biodesulfurization of model oil system by the bacterium, strain RIPI-22. Biochemical Engineering Journal, 2006, 29:169~173.
    [75] Monticello D. J. Biodesulfurization and the upgrading of petroleum distillates. Current Opinion in Biotechnology, 2000, 11(6): 540~546.
    [76] Kim J. H., Ma X. L., Zhou A. N., Song C. S. Ultra-deep desulfurization and denitrogenation of diesel fuel by selective adsorption over three different adsorbents: a study on adsorptive selectivity and mechanism. Catalysis Today, 2006, 111: 74~83.
    [77] Sano Y., Sugahara K., Choi K., Korai Y., Mochida Ⅰ. Two-step adsorption process for deep desulfurization of diesel oil. Fuel, 2005, 84: 903~910.
    [78] Salem A., Hamid H. Removal of sulfur compounds from napyhtha solutions using solid adsorbents. Chemical Engineering Technology, 1997, 20(5): 342~347.
    [79] Savage D. W., Kaul B. K., Dupre G. D. Deep desulfurization of distillate fuels. US Pat. 5454933, 1995.
    [80] 张晓静,秦如意,刘金龙,李燕,胡滨,赵智刚,张昀.催化裂化汽油非临氢吸附脱硫新技术.炼油技术与工程,2003,33(1):11~14.
    [81] 张晓静,秦如意,刘金龙.FCC汽油吸附脱硫工艺的研究.石油炼制与化工,2003,34(3):24~27.
    [82] 张晓静,秦如意,刘金龙.FCC汔油吸咐脱硫工艺技术LADS工艺.天然气与石油,2003,21(1):39~42.
    [83] Irvine R. L. Process for desulfurizing gasoline and hydrocarbon feedstocks. US Pat. 5730860, 1998.
    [84] Poels E. K., Van Beek W., Hoed D., Visser C. Deactivation of fixed-bed nickel hydrogenation atatysts by sulfur. Fuel, 1995, 74(12): 1800~1805.
    [85] Babich I. V., Moulijn J. A. Science and technology of novel proccsses for deep desulfurization of oil refinery stream: a review. Fuel, 2003, 82:607~631.
    [86] http://www.coptechnologysolutions.com/index.htm
    [87] Song C. S. An overview of new approaches to deep desulfurization for ultra-clean gasoline, diesel fuel and jet fuel. Catalysis Today, 2003, 86: 211~263.
    [88] Khare G. P. Desulfurization and novel sorbents for same. US Pat. 6346190, 2002.
    [89] Khare G. P. Sorbent compositions. US Pat. 5958830, 1999.
    [90] Khare G. P. Process for the production of a sulfur sorbent. US Pat. 6184176, 2001.
    [91] Takashi H. Gasoline production technology and methods, and an evaluation of their economic viability. Technology Department, Petroleum Energy Center (PEC).
    [92] 江雨生,孟祥堃,张晓昕.用镍系非晶态合金脱除苯中硫的研究.石油化工,2004,33(2):122~125.
    [93] Padin J., Yang R. T. New sorbents for olefin/paraffin separations by adsorption via π-complexation: synthesis and effects of substrates. Chemical Engineering Science, 2000, 55: 2607~2616.
    [94] Rge S. U., Yang R. T. Propane/propylene separation by pressure swing adsorption: sorbent comparison and multiplicity of cyclic steady states. Chemical Engineering Science, 2002, 57: 1139~1149.
    [95] Takahashi A., Yang R. T., Munson C. L. Cu(Ⅰ)-Y Zeolite as a superior adsorbent for diene-olefin separation. Langmuir, 2001, 17(26): 8405~8423.
    [96] Takeo Y., Chelsey B., Carl A. K., Richard D. N., Christopher N. B. Olefin separation using silver impregnated ion-exchange membranes and silver salt/polymer blend membranes. Journal of Membrane Science, 1996, 117: 151~161.
    [97] Hermámdez-Maldonado A. J., Yang R. T. Desulfurization of liquid fuels by adsorption via π-complexation with Cu(Ⅰ)-Y and Ag-Y zeolites. Industry Engineering Chemical Research, 2003, 42(1): 123~129.
    [98] Song C. S., Ma X. L. New design approaches to ultra-clean diesel fuels by deep desulfurization and dearomatization. Applied Catalysis B: Environmental, 2003, 41: 207~238.
    [99] Hermámdez-Maldonado A. J., Yang R. T. Desulfurization of commercial liquid fuels by selective adsorption via π-complexation with Cu(I)-Y zeolite. Industry Engineering Chemical Research, 2003, 42(13): 3103~3110.
    [100] Hermámdez-Maldonado J. A., Yang R. T. New sorbents for desulfurization of diesel fuels via π-complexation. AIChE Journal, 2004, 50(4): 791~801.
    [101] Hermámdez-Maldonado A. J., Yang F. H., Qi G. S., Yang R. T. Desulfurization of transportation fuels by π-complexation sorbents: Cu(Ⅰ)-, Ni(Ⅱ)-, and Zn(Ⅱ)-zeolites. Applied Catalysis B: Environmental, 2005, 56(1-2): 111~126.
    [102] Yang R. T., Hermámdez-Maldonado A. J., Yang F. H. Desulfufization of transportation fuels with zeolites under ambient conaitions. Science, 2003, 301(4): 79~81.
    [103] Yang R. T., Takahashi A., Yang F. H. New sorbents for desulfurization of liquid fuels by π-complexation. Industry Engineering Chemical Research, 2001, 40: 6236~6239.
    [104] Takahashi A., Yang F. H., Yang R. T. New sorbents for desulfurization by π-complexation: tiophene/benzene adsorption. Industry Engineering Chemical Research, 2002, 41(10): 2487~2496.
    [105] 单国彬,刘会洲.多孔聚合物载体的制备及吸附脱除二苯并嚷吩的初步探索.过程工程学报,2002,2(6):497~500.
    [106] Ma X. L., Velu S., Kim J. H., Song C. S. Deep desulfurization of gasoline by selective adsorption over solid adsorbents and impact of analytical methods on ppm-level sulfur quantification for fuel cell applications. Applied Catalysis B: Environmental, 2005, 56(1-2): 137~147.
    [107] Velu S., Ma X. L., Song C. S. Selective adsorption for rmoving sulfur from jet fuel over zeolite-based adsorbents. Industry Engineering Chemical Research, 2003, 42(21): 5293~5304.
    [108] Velu S., Watanab S., Ma X. L., Song C. S. Development of selective adsorbents for removing sulfur from gasoline for fuel cell applications. Petroleum Chemistry Division Preprints, 2003, 48(2): 56~57.
    [109] Velu S., Ma X. L., Song C. S. Fuel cell grade gasoline production by selective adsorption for removing sulfur, petroleum chemistry division preprints, 2003, 48(2), 58~59.
    [110] Velu S., Ma X. L., Song C. S. Zeolite-based adsorbents for desulfurization of jet fuel by selective adsorption. Fuel Chemistry Division Preprints, 2002, 47(2): 447~448.
    [111] Hermámdez-Maldonado A. J., Yang R. T. Desulfurization of commercial jet fuels by adsorption via π-complexation with vapor phase ion exchanged Cu(Ⅰ)-Y zeolites. Industry Engineering Chemical Research, 2004, 43: 6142~6149.
    [112] 周丹红,王玉清,贺宁,杨刚.Cu(Ⅰ),Ag(Ⅰ)/分子筛化学吸附脱硫的π-络合机理.物理化学学报,2006,22(5):542~547.
    [113] Hermámdez-Maldonado A. J., Stamatis S. D., Yang R. T. New sorbents for desulfurization of diesel fuels via π-complexation: layered beds and regeneration, Industry Engineering Chemical Research, 2004, 43: 769~776.
    [114] Jayaraman A., Yang F. H., Yang R. T. Effects of nitrogen compounds and polyaromatic hydrocarbons on desulfurization of liquid fuels by adsorption via π-complexation with Cu(Ⅰ)Y zeolite. Energy & Fuels, 2006, 20: 909~914.
    [115] Tian F. P., Wu W. C., Jiang Z. X., Yang Y. X., Cai T. X., Li C. Adsorption of sulfur-containing compounds from FCC gasoline on cerium-exchanged Y zeolite. 催化学报,2005, 26(9): 734~736.
    [116] 李灿,田福平,蒋宗轩,应品良,梁长海,孙秀萍,孙福侠.深度脱除硫化物的分子筛吸附剂及制法和应用.[P]CN 1511629A,2004.
    [117] Takaishi T. Ordered distribution of Na ions in dehydrated NaX zeolite. Zeolites, 1996, 17: 389~392.
    [118] Olson D. H. The crystal structure of dehydrated NaX. Zeolites, 1995, 15: 439~443.
    [119] Kim Y., Han Y. W., Seff K. Crystal structure of fully dehydrated fully Ti~+-exchanged zeolite X. Zeolites, 1997, 18: 325~333.
    [120] Mikhail S., Zaki T., Khalil L. Desulfurization by an economically adsorption technique. Applied Catalysis A: General, 2002, 227: 265~278.
    [121] Scoot G. M., Robert J. A. Deep desulfurization by selective adsorption of dibenzothiophenes on Ag~+/SBA-15 and Ag~+/SiO_2. Chemical Communication, 2003: 2620~2621.
    [122] Abu Bakr S. H. S. Naphtha desulfurization by adsorption, Industry Engineering Chemical Research, 1994, 33: 336~340.
    [123] Xue M., Ramesh C., Kohji S., Takahiro H., Kenta O., Yoshimura Y., Makoto T. Preparation of cerium-loaded Y-zeolites for removal of organic sulfur compounds from hydrodesulfurizated gasoline and diesel oil. Journal of Colloid and Interface Science, 2006, 298(2): 535~542.
    [124] Velu S., Ma X. L., Song C. S. Mechanistic investigations on the adsorption of organic sulfur compounds over solid adsorbents in the adsorptive desulfurization of transportation fuels. Preprints-American Chemical Society, Division Fuel Chemistry, 2003, 48(2): 693~694.
    [125] Ma X. L., Sun L., Song C. S. A new approach to deep desulfurization of gasline, diesel fuel and jet fuel by selective adsorption for ultra-clean fuels and for fuel cell applications. Catalysis Today, 2002, 77: 107~116.
    [126] Sinha A. K., Satyanarayana C. V. V., Srinivas D., Sivasanker S., Ratnasamy P. Location of Mn(Ⅱ) ions in manganese aluminophosphate molecular sieves: a comparative study of MnAPO-11 and MnAPO-41. Microporous and Mesoporous Materials, 2000, 35-36: 471~481.
    [127] 魏迎旭,王公慰,刘中民,孙承林,许磊,董振武.磷铝系列分子筛催化剂的制备、表征及催化丁烷转化反应的性能.催化学报,2001,22(1):15~17.
    [128] 孙慧勇,胡津仙,周敬来.杂原子 Fe-ZSM-5 分子筛的合成及表征.燃料化学学报,1999,27(1):7~10.
    [129] Kumar R., Bhaumik A. T. Solvent-free catalysis over the TS-1/H_2O_2 system in selective oxidation reactions. Microporous and Mesoporous Materials, 1998, 21(4): 497~504.
    [130] Choudhary V. R., Devadas P. Product selectivity and aromatics distribution in aromatization of propane over H-GaMFI zeolite: influence of temperature. Microporous and Mesoporous Materials, 1998, 23(3-4): 231~238.
    [131] 王晓晗,陈连璋.稀土杂原子沸石 La-AlZSM-的合成.石油学报(石油加工),1994,10(1):61~67.
    [132] 孙慧勇,胡津仙,王建国,周敬来.小晶粒 FeZSM-5 分子筛合成过程中晶粒大小和分布的控制.石油化工,2001,30(3):188~191.
    [133] Nair, Vinayan S., Rosemarie. Ferrisilicate molecular sieve. US Pat. 5077026, 1991.
    [134] 张春雷,李爽,吴通好,林励吾,李工,徐竹生.甲烷无氧脱氢芳构化的杂原子分子筛催化剂及其应用.[P]CN1190032A,1998.
    [135] Wang Y., Zhang Q. H., Shishido T., Takehira K. Characterizations of iron-containing MCM-41 and its catalytic properties in epoxidation of styrene with hydrogen peroxide. Journal of Catalysis, 2002, 209: 186~196.
    [136] Lucinda J. D., Paul M., Donald B., Philip C. B. P., Frank K., Frederick E. H., Graham J. H. Oxidation of crotyl alcohol using Ti-β and Ti-MCM-41 catalysts. Journal of Molecular Catalysis A: Chemical, 2001, 165: 243~247.
    [137] Laha S. C., Kumar R. Promoter-induced synthesis of MCM-41 type mesoporous materials including Ti-and V-MCM-41 and their catalytic properties in oxidation reactions. Microporous and Mesoporous Materials, 2002, 53: 163~177.
    [138] 陈晓晖,林性贻,魏可镁,郑起.一种含铋的分子筛极其合成和应用.[P]CN1586720A,2005.
    [139] 王亚军,唐祥海,朱瑞芝,潘履让.双金属杂原子分子筛 CrCoBEA 的合成、波谱及催化性能研究.高等学校化学学报,2000,21(7):999~1004.
    [140] 马淑杰,李连生,孙富平,裘式伦.双杂原子 Ti-Fe-ZSM-5 分子筛的合成与表征.高等学校化学学报,1996,18(4):504~508.
    [141] 佟惠娟,李工.含铁和钒的 ZSM-5 型分子筛的合成、表征及催化性能.石油化工高等学校学报,2002,15(2):33~36.
    [142] 佟惠娟,李工.Fe-V-Ti-ZSM-5 分子筛的合成及对NO与C_3H_6反应的催化性能.复旦学报(自然科学版),2003,42(3):347~350.
    [143] Kneller J. M., PietraB T., Ott K. C., Labouriau A. Synthesis of dealuminated zeolites NaY and MOR and characterization by diverse methodologies: ~(27)A1 and ~(29)Si MSD NMR, XRD, and temperature dependent ~(129)Xe NMR. Microporous and Mesoporous Materials, 2003, 62: 121~131.
    [144] Niu G. X., Huang Y., Chen X. Y., He J. M., Liu Y., He A. Thermal and hydrothermal stability of siliceous Y zeolite and its application to high-temperature catalytic combustion. Applied Catalysis B: Environmental, 1999, 21: 63~70.
    [145] 庞文琴,赵大庆,裘式伦.气-固相置换法合成 Sn-ZSM-5 型分子筛.石油学报(石油加工),1989,5(2):93~98.
    [146] 庞文琴,赵大庆,裘式纶,丁红.气-固相置换法合成 B-ZSM-5 型分子筛.吉林大学学报(自然科学版),1989,4:114~117.
    [147] Breck D., Donald W., Gary W. Silicon substituted zeolite compositions and process for preparing same. US Pat. 4503023.1985.
    [148] Corma A., Martinez A., Martinez C. The role of extraframework aluminum species in USY catalysts during isobutene/2-butene alkylation. Applied Catalysis A: General, 1996, 134: 169~182.
    [149] López-Fonseca R., Gutiérrez-Ortiz J. I., Gutiérrez-Ortiz M. A., GonzálezVelasco J. R. Dealuminated Y zeolites for destruction of chlorinated volatile organic compounds. Journal of Catalysis, 2002, 209(1): 145~150.
    [150] Dwyer J., Karim K. The incorporation of heteroatoms into faujastic framework by secondary synthesis using aqueous fluoride complexes. Journal of the Chemical society Chemical Communications, 1991, 14: 905~906.
    [151] 唐颐,徐金锁,高滋.金属元素对 Y 沸石的液固相类质同晶取代.高等学校化学学报,1990,11(12):1317~1321.
    [152] 高滋,徐金锁.杂原子对 Y 沸石液固相类质同晶取代规律探讨.化学学报,1995,(53):135~140.
    [153] Kollmer F., Hausmann H., Hǒelderich W. F.(NH_4)_2 SiF_6-modified ZSM-5 as catalysts for direct hydroxylation of benzene with N_2O: 1. Influence of the treatment method. Journal of Catalysis, 2004, 227: 398~407.
    [154] Kollmer F., Hausmann H., Hǒelderich W. F.(NH_4)_2 SiF_6-modified ZSM-5 as catalysts for direct hydroxylation of benzene with N_2O: 2. A comparative study with ferrisilicalite and dealuminated and iron-exchanged ZSM-5. Journal of Catalysis, 2004, 227: 408~418.
    [155] Han S., Shihabi D. S., Chang C. D. Selective removal of surface acidity in ZSM-5 zeolite using (NH_4)_2SiF_6 treatment. Journal of Catalysis, 2000, 196: 375~378.
    [156] Sato K., Nishimura Yoichi N., Matsubayashi N., Imamura M., Shimada H. Structural changes of Y zeolites during ion exchange treatment: effects of Si/A1 ratio of the starting Na Y. Microporous and Mesoporous Materials, 2003, 59: 133~146.
    [157] Navarro U., Trujillo C. A., Oviedo A., Lobo R. Impact of deactivation conditions on the acidity of Y zeolites used in the formulation of FCC catalysts, studied by FTIR of adsorbed CO. Journal of Catalysis, 2002, 211: 64-74.
    [158] Nasir M. T., Sulaiman A. Catalytic cracking of n-dodecane and alkyl benzenes over FCC zeolite catalysts: time on stream and reactant converted models. Chemical Engineering and Processing, 2005, 44: 1257-1268.
    [159] Fan Y., Bao X. J., Lei D., Shi G., Wei W. S., Xu J. A novel catalyst system based on quadruple silicoaluminophosphate and aluminosilicate zeolites for FCC gasoline upgrading. Fuel, 2005, 84(4): 435-442.
    [160] Tonetto G., Atias J., Delasa H. FCC catalysts with different zeolite crystallite sizes: acidity, structural properties and reactivity. Applied Catalysis A: General, 2004, 270(1-2): 9-25.
    [161] Koichi S., Yoichi N., Kosaku H., Nobuyuki M., Hiromichi S. Role of HY zeolite mesopores in hydrocracking of heavy oils. Journal of Catalysis, 2001, 200(2): 288-297.
    [162] Marteris G. G., Marin G. B., Martens J. A., Jacobs P. A., Baron G. V. A fundamental kinetic model for hydrocracking of C_8 to C_(12) alkanes on Pt/US-Y zeolites. Journal of Catalysis, 2000, 195(2): 253-267.
    [163] Hensen E. J. M., Van Veen J. A. R. Encapsulation of transition metal sulfides in faujasite zeolite for hydroprocessing applications. Catalysis Today, 2003, 86(1-4): 87-109.
    [164] Ahmed K. A. G, Sameh M. A. F., Noha A. K. A. G. Hydrocanversion of cyclohexene using catalysts containing Pt, Pd, Ir and Re supported on H-ZSM-5 zeolite. Applied Catalysis A: General, 2005, 283: 157-164.
    [165] Joeri F. M. D., Denayer J. F. M., Martens J. A., Jacobs P. A., Thybaut J. W., Marin G. B., Baron G. V. Influence of the zeolite composition on the hydro-isomerisation and hydrocracking of alkanes on Pt/USY zeolites: modelling of the reaction kinetics using an adsorption-reaction approach. Applied Catalysis A: General, 2003, 246:17-28.
    [166] Chang Y. K., Chu L., Tsai J. C, Chiu S. J. Kinetic study of immobilized lysozyme on the extrudate-shaped NaY zeolite. Process Biochemistry, 2006, 41: 1864~1874.
    [167] Sang S. Y., Liu Z. M., Tian P., Liu Z. Y., Qu L. H., Zhang Y. Y. Synthesis of small crystals zeolite NaY. Materials Letters, 2006, 60: 1131~1133.
    [168] Treacy M. M. J., Foster M. D., Randall K. H. An dfficient method for determining zeolite vertex symbols. Microporous and Mesoporous Materials, 2006, 87: 255~260.
    [169] Ioana F., Philippe C., Emil D., Vasile H., Henri K. Study of the conversion of aromatic hydrocarbons on EMT-type zeolite: Influence of the partial substitution of A1 by Ga. Applied Catalysis A: General, 2005, 280(2): 245~254.
    [170] Zwijnenburg M. A., Bromley S. T., Jansen J. C., Maschmeyer T. Computational insights into the role of Ge in stabilising double-four ring containing zeolites. Microporous and Mesoporous Materials, 2004, 73(3): 171~174.
    [171] Van de water L. G. A., Van der J. C., Jansen J. C., Maschmeyer T. Improved catalytic activity upon Ge incorporation into ZSM-5 zeolites. Journal of Catalysis, 2004, 233(1): 170~178.
    [172] Roman B., Blanka W., Katerina N., Viktor K. Oxidation of propane with oxygen and/or nitrous oxide over Fe-ZSM-5 with low iron concentrations. Applied Catalysis A: General, 2004, 264(1): 13~22.
    [173] Jumras L., Chan I., Truong T. N. Density functional theory study of the ethylene epoxidation over Ti-substituted silicalite(TS-1). Journal of Molecular Catalysis A: Chemical, 2004, 207(2): 139~148.
    [174] Pérez-Ramírez J., Groen J. C., Brǚckner A., Kumar M. S., Bentrup U. Evolution of isomorphously substituted iron zeolites during activation: comparison of Fe-beta and Fe-ZSM-5. Journal of Catalysis, 2005, 232(2): 318~334.
    [175] Kazuyuki U., Koh K., Satoru M., Masakatsu N., Wega T. Catalytic hydrocracking of petroleum-derived asphaltenes by transition metal-loaded zeolite catalysts. Fuel, 2004, 83(14-15): 1899~1906.
    [176] Zhou W., Zhang S. Y., Hao X. Y., Guo H. Zhang C., Zhang Y. Q., Liu S. X. MFI-type boroaluminosilicate: a comparative study between the direct synthesis and the templating method. Journal of Solid State Chemistry, 2006, 179: 855~865.
    [177] Liu M., Guo X. W., Wang X. S., Liang C. H., Li C. Effect of (n)SiO_2/(n)B_2O_3 in the precursor on chemical-physics properties of Ti-ZSM-5 synthesized by gas-solid method. Catalysis Today, 2004, 93-95: 659~664.
    [178] Wang X. S., Guo X. W. Synthesis, characterization and catalytic properties of low cost titanium silicalite. Catalysis Today, 1999, 51: 177~186.
    [179] Jacobsen C. J. H., Madsen C., Janssens T. V. W., Jakobsen H. J., Skibsted J. Zeolites by confined space synthesis-characterization of the acid sites in nanosized ZSM-5 by ammonia desorption and ~(27)Al/~(29)Si-MSAS NMR spectroscopy. Microporous and Mesoporous Materials, 2000, 39: 393~401.
    [180] Holmberg B. A., Wang H. T., Yan Y. S. High silica zeolite Y nanocrystals by dealumination and direct synthesis. Microporous and Mesoporous Materials, 2004, 74: 189~198.
    [181] 刘欣梅,阎子峰,王槐平.由煤系高岭土原位合成 NaY 分子筛.石油大学学报(自然科学版),2002,26(5):94~99.
    [182] Beatriz O. H., Luis J. G., Zhang Q. H., Sacco A., Suib L. S. Synthesis of mordcnite nanocrystals. Microporous and Mesoporous Materials, 2004, 67: 19~26.
    [183] 徐如人,庞文琴.分子筛与多孔材料化学.北京:科学出版社,2005:173~174.
    [184] Xiao F. S., Zheng S., Sun J. M., Yu R. B., Qiu S. L., Xu R. R. Dispersion of inorganic salts into zeolites and their pore modification. Journal of Catalysis, 1998, 176: 474~487.
    [185] 许章林,张盈珍,郑禄彬.杂原子沸石的二次合成及其表征(Ⅰ.含镓 Y 分子筛).分子催化,1992,6(4):271~278.
    [186] Perdew. J. P, Chevary, J. A., Vosko. S. H., Jackson. K. A., Pederson. M. R., Singh. D. J., Fiolhais. C. Atoms, molecules, solids, and surfaces: applications of the generalized gradient approximation for exchange and correlation. Physics Review B, 1992, 46: 6671-6687.
    [187] Perdew. J. P., Burke. K., Ernzerhof. M. Generalized gradient approximation made simple. Physics Review Letters, 1996, 77: 3865-3868.
    [188] Hammer. B., Hansen L. B., Norskov. J. K. Improved adsorption energetics within density-functional theory using revised Perdew-Burke-Ernzerhof functionals. Physics Review B, 1999, 59: 7413-7421.
    [189] Berges J., Caillet J., Langlet J., Kozelka J. Hydration and 'inverse hydration' of platinum(II) complexes: an analysis using th density functionals PW91 and BLYP. Chemical Physics Letters, 2001, 344: 573-577.
    [190] Otsuki S., Nonaka T., Takashima N., Qian W. H., Ishihara A., Imai T., Kabe T. Oxidative desulfurization of light gas oil and vacuum gas oil by oxidation and solvent extraction. Energy and Fuels, 2000, 14: 1232-1239.
    [191] Yang R. T., Yang F. H., Takahashi A., Hernandez-Maldonado A. J. Selective sorbents for purification of hydrocarbons. US Pat. App. 0040040891, 2004.
    [192] Jayaraman A., Yang F. H., Yang R. T. Effects of nitrogen compounds and polyaromatic hydrocarbons on desulfurization of liquid fuels by adsorption via π-complexation with Cu( I )Y zeolite. Energy & Fuels, 2006, 20: 909-914.
    [193] Hermαmdez-Maldonado A. J., Qi G. S., Yang R. T. Desulfurization of commercial fuels by π-complexation: monolayer CuCl/γ-Al_2O_3. Applied Catalysis B: Environmental, 2005, 61:212-218.
    [194] Hermdmdez-Maldonado A. J., Yang R. T. Desulfurization of commercial jet fuels by adsorption via π-complexation with vapor phase ion exchanged Cu(I)-Y zeolites. Industry Engineering Chemical Research, 2004, 43: 6142-6149.
    [195] Hermαmdez-Maldonado A. J., Stamatis S. D., Yang R. T. New sorbents for desulfurization of diesel fuels via π-complexation: layered beds and regeneration. Industry Engineering Chemical Research, 2004, 43: 769-776.
    [196] Kresge C. T., Leonowicz M. E., Roth W. J., Vartuli J. C, Beck J. S. Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature, 359: 710~712.
    [197] Singh U. G., Williams R. Y., Hallam K. R., Allen G. C. Synthesis and characterisation of titanium and titanium nitride-functionalised MCM 41 materials. Solid State Sciences, 2005, 7(9): 1104~1112.
    [198] Liepold A., Roos K., Reschetilowski W. Mesoporous MCM-41 materialseffect of acidity and porosity on catalytic properties. Chemical Engineering Science, 1996, 51(11): 3007~3012.
    [199] Corma A., Martinez A., Martinézsoria V., Monton J. B. Hydrocracking of Vacuum Gasoil on the Novel Mesoporous MCM-41 Aluminosilicate Catalyst. Journal of Catalysis, 1995, 153(1): 25~31.
    [200] Tatiana K., Eduardo R., Merced M., Jorge R. Synthesis and characterization of hydrotreating Mo catalysts supported on titania-modified MCM-41. Microporous and Mesoporous Materials, 2001, 44-45: 357~365.
    [201] Silva-Rodrigo R., Calderón-Salas C., Melo-Banda J. A., Domínguez J. M., Vázquez-Rodríguez A. Synthesis, characterization and comparison of catalytic properties of NiMo-and NiW/Ti-MCM-41 catalysts for HDS of thiophene and HVGO. Catalysis Today, 2004, 98(1-2): 123~129.
    [202] Eliche-Quesada., Mérida-Robles., Rodríguez-Castellón., Jiménez-López A. Influence of the incorporation of palladium on Ru/MCM hydrotreating catalysts. Applied Catalysis B: Environmental, 2006, 65: 118~126.
    [203] Kazu O., Kyoichi N., Miki N. Prominent catalytic activity of Ga-containing MCM-41 in the friedel-crafts alkylation. Microporous and Mesooorous Materials, 2001, 44-45: 509~516.
    [204] Blasco T., Corma A., Martínez A., Martinez-Escolano P. Supported heteropolyacid(HPW) catalysts for the continuous alkylation of isobutane with 2-butene: The benefit of using MCM-41 with larger pore diameters. Journal of Catalysis, 1998, 177(2): 306~313.
    [205] Medina-Valtierra J., Sánchez M. A., Montoya J. A., Navarrete J., De los Reyes J. A. Para-selectivity in the alkylation of toluene with isopropanol on a MCM-41/γ-Al_2O_3 catalyst. Applied Catalysis A: General, 1997, 158(1-2): 11~16.
    [206] Medina-Valtierra J., Zaldivar O., Montoya J. A., Navarrete J., De Los Reyes J. A. Selectivity to cumene in the alkylation of benzene with isopropanol on a MCM-41/γ-Al_2O_3 catalyst. Applied Catalysis A: General, 1998, 166(2): 387~392.
    [207] Shinae J., Ryong R. Aluminum Impregnation into Mesoporous Silica Molecular Sieves for Catalytic Application to Friedel-Crafts Alkylation. Journal of Catalysis, 2000, 195(2): 237~243.
    [208] Hanna R., Isabelle B., Tom E., Kimmo H., Regis G., Philippe T. Preparation and Characterization of MCM-41 Supported Metallocene Catalysts for Olefin Polymerization. Journal of Catalysis, 1999, 188(1): 14~23.
    [209] Blasco T., Corma A., Navarro M. T., Pariente J. R Synthesis, Characterization, and Catalytic Activity of Ti-MCM-41 Structures. Journal of Catalysis, 1995, 156(1): 65~74.
    [210] Li G. J., Kawi S. MCM-41 modified SnO_2 gas sensors: sensitivity and selectivity properties. Sensors and Actuators B: Chemical, 1999, 59(1): 1~8.
    [211] Chen M. T., Lin Y. S., Lin Y. F., Lin H. P., Lin J. L. Dissociative adsorption of HCOOH, CH_3OH, and CH_2O on MCM-41. Journal of Catalysis, 2004, 228(1): 259~263.
    [212] 童广明,常志向,刘东香.过渡金属改性的 MCM-41 中孔沸石的制备及性能.石油炼油制与化工,2000,30(1):24~28.
    [213] 于建强,李灿,许磊.以硅溶胶和三氯化钛为原料合成 Ti-MCM-41 分子筛(Ⅰ)Ti-MCM-41 分子筛的合成.催化学报,2001,22(3):267~270.
    [214] 马辉,何静.Ti接枝 MCM-41 催化剂的结构设计及化学亲和选择性研究.催化学报,2002,23(5):473~477.
    [215] Blasco T., Corma A., Navarro M. T. Synthesis, characterization and catalytic activity of Ti-MCM-41 structures. Journal of Catalysis, 1995, 156: 65~74.
    [216] Trombetta M., Busca G., Lenarda M., Storaro L., Pavan M. An investigation of the surface acidity of mesoporous Al-containing MCM-41 and of the external surface of ferrierite through pivalonitrile adsorption. Applied Catalysis A: General, 1999, 182: 225~235.
    [217] Araujo A. S., Aquino J. M. F. B., Souza M. J. B., Silva A. O. S. Synthesis, characterization and catalytic application of cerium-modified MCM-41. Journal of Solid State Chemistry, 2003, 171: 371~374.
    [218] Mercuri L. R, Matos J. R., Jaroniec M. Improved thermogravimetric determination of the specific surface area for cerium-incoporated MCM-41 materials. Journal of Alloys and Compounds, 2002, 344: 190~194.
    [219] 章效锋.碳纳米管新用途.电子显微镜学报,1995,(3):157~162.
    [220] 李春忠,胡黎明.纳米材料制备技术的工程研究.化工进展,1995,(6):42~43.
    [221] 施尔畏,仲维卓,华素坤,元如林.关于负离子配位多面体生长基元模型.中国科学 (E辑),1998,28(1):37~45.
    [222] 郑燕青,施尔畏,李汶军,王步国,胡行方.晶体生长理论研究现状与发展.无机材料学报,1999,14(3):321~332.
    [223] Schoeman B. J. Analysis of the nucleation and growth of TPA-silicalite-1 at elevated temperatures with the emphasis on colloidal stability. Microporous and Mesoporous Materials, 1998, 22(1/3): 9~22,
    [224] Schoeman B. J. A high temperature in situ laser light-scattering study of the initial stage in the crystallization of TPA-silicalite-1. Zeolites, 1997, 18(2/3): 97~105.
    [225] Persson A. E., Schoeman B. J., Otterstedt J. E. The synthesis of discrete colloidal particles of TPA-silicalite-1. Zeolites, 1994, 14(7): 557~567.
    [226] Schoeman B. J., Sterte J., Otterstedt J. E. Analysis of the crystal growth mechanism of TPA-silicalite-1. Zeolites, 1994, 14(7): 568~575.
    [227] Persson A. E., Schoeman B. J., Sterte J., Otterstedt J. E. Synthesis of stable suspensions of discrete colloidal zeolite(Na, TPA)ZSM-5 crystals. Zeolites, 1995, 15(7): 611~619.
    [228] Van Grieken R., Sotelo J., Menéndez J. M., Melero J. A. Anomalous crystallization mechanism in the synthesis of nanocrystalline ZSM-5. Microporous and Mesoporous Materials, 2000, 39(1/2): 135~147.
    [229] Schoeman B. J., Sterte J., Otterstedt J. E. Colloidal zeolite suspensions. Zeolites, 1994, 14(2): 110~116。
    [230] 晁自胜,林海强,陈国周,吴廷华,万惠霖,闵恩泽.超微 NaY 分子筛的合成(Ⅰ)-添加轻稀土离子的影响.高等学校化学学报,2000,21(9):1353~1358.
    [231] 晁自胜,林海强,陈国周,吴廷华,万惠霖,闵恩泽,超微 NaY 分子筛的合成(Ⅱ)-添加铝络合剂的影响.高等学校化学学报,2001,22(1):10~15.
    [232] Holmberg B. A., Wang H. T., Norbeck J. M., Yan Y. S. Controlling size and yield of zeolite Y nanocrystals using trtramethylammonium bromide. Microporous and Mesoporous Materials, 2003, 59: 13~28.
    [233] Boisen A., Schmidt I., Carlsson A., Dahl S., Brorson M., Jacobsen C. J. H. TEM stereo-imaging of mesoporous zeolite single crystals. Chemical Communication, 2003: 958~959.
    [234] Schmidt I., Madsen C., Jacobsen C. J. H. Confined space synthesis: a novel route to nanosized zeolites. Inorganic Chemistry. 2000, 39: 2279~2283.
    [235] Jacobsen C. J. H., Madsen C., Houzvicka J., Schmidt I., Carlsson A. Mesoporous zeolite single crystals. Journal American Chemical Society, 2000, 122: 7116~7117.
    [236] Cuong P. H., Gauthier W., Tessonnier J. P., Ledoux M. J., Rigolet S., Marichal C. BETA zeolite nanowire synthesis under non-hydrothermal conditions using carbon nanotubes as template. Carbon, 2004, 42: 1941~1946.
    [237] Fang M., Du H., Meng X., Xu W., Pang W. Microwave preparation of molecular sieve AlPO_4-5 with nanometer sizes. Discussion on Zeolite and Microporous Materials, 1997, Hanrimwon Publishing Co. Seoul, Korea, 191~192.
    [238] Norby P. In-situ XRD as a tool to understanding zeolite crystallization. Current Opinion in Colloid and Interface Science, 2006, 11: 118~125.
    [239] Treacy M. M. J., Higgins J. B., Von Ballmoos R. Collection of simulated XRD powder patterns for zeolies. Zeolites, 1996, 16(5-6): 330~802.
    [240] Vivekanandhan S., Venkateswarlu., Satyanarayana N. Effect of different ethylene glycol precursors on the pechini process for the synthesis of nano-crystalline LiNi_(0.5)Co_(0.5)VO_4 powders. Materials Chemistry and Physics, 2005, 91: 54~59.
    [241] Yukichi S., Toshiyuki S., Yukihiro T., Akira S., Hiroyasu S. Structure analysis of the mesopore in dealuminated zeolite Y by high resolution TEM observation with slow scan CCD camera. Journal of Catalysis, 1998, 178(1): 94~100.
    [242] Mohamed R. M., Fouad O. A., Ismail A. A., Ibrahim I. A. Influence of crystallization times on the synthesis of nanosized ZSM-5. Materials Letters, 2005, 59: 3441~3444.
    [243] Jung K. T., Hyun J. H., Shul Y. G. Synthesis of fibrous titanium silicalite (FTS21) zeolite. Zeolites, 1997, 19(2-3): 161~168.
    [244] Storck S., Bretinger H., Maier W. F. Characterization of micro-and mesoporous solids by physisorption methods and pore-size analysis. Applied Catalysis A: General, 1998, 174: 137~146.
    [245] Hedlund J., Mintova S., Sterte J. Controlling the preferred orientation in silicalite-1 films synthesized by seeding. Microporous and Mesoporous Materials, 1999, 28(1): 185~194.
    [246] 王学勤,王祥生.苯乙烯烷基化 HZSM-5 沸石催化剂积碳失活的研究 Ⅰ.石油学报,1994,10(2):38~43.
    [247] Gilso J. P., Derouance E. G. On the external and intracrystalline surface catalytic activity of pentasil zeolites. Journal of Catalysis, 1984, 88(2): 538~541.
    [248] Franekel D., Cherniavsky M., Levy M. Evidence for the involvement of two sieving effects in the catalytic alkylation of aromatics over HZSM-5 type zeolites. In: Proceedings of Eighth International Conference on Catalysis. Berlin, 1984, 4: 545~554.
    [249] Tsapatsis M., Lovallo M., Okubo T. Characterization of zeolite L nanoclusters. Chemical Materials, 1995, 7(9): 1734~1741.
    [250] Wang X. D., Yang W. L., Tang Y. Fabrication of hollow zeolite spheres. Chemical Communication, 2000, 2161-2162.
    
    [251] Camblor M. A., Corma A., Martinez A. Catalytic cracking of gasoline benefits in activity and selectivity of small Y zeolite crystallites stabilized by a higher silicon to aluminium ratio by synthesis. Applied Catalysis, 1989, 55(1): 65-74.
    [252] Zhang W. P., Han X. W., Liu X. M., Bao X. H. The stability of nanosized HZSM-5 zeolite: a high-resolution solid-state NMR study. Microporous and Mesoporous Materials, 2001, 50: 13-23.
    
    [253] Rajagopalan K., Peters A. W., Edwards G. C. Influence of zeolite particle size on selectivity during fluid catalytic cracking. Applied Catalysis, 1986, 23(1): 69-80.
    
    [254] Camblor M. A., Corma A., Martinez A., Martinez-Soria V., Valencia S. Mild hydrocracking of vacuum gasoil over NiMo-beta zeolite catalysts: the role of the location of the NiMo phases and the crystallite size of the zeolite. Jounal of Catalysis, 1998, 179(2): 537-547.
    
    [255] Connor P. O., Verlaan J. P. J., Yanik S. J. Challenges, catalyst technology and catalytic solutions in resicd FCC. Catalysis Today, 1998, 43: 305-313.
    [256] Chang C. D., Chen N. Y., Chu C. T. Activation of zeolites. US Pat. 5271920. 1993.
    
    [257] Meng X., Zhang Y., Meng C, Pang W. Synthesis of ultrafine zeolite L. In: Proceedings of Ninth International Zeolite Conference. Mont real, 1992, 297-304.
    
    [258] Madsen C, Jacobsen C. J. H. Nanosized zeolite crystals-convenient control of crystal size distribution by confined space synthesis. Chemical Communication, 1999:673-674.
    
    [259] Vander Pol A. J., Verduyn A. J., Van Hoff J. H. Effect of the crystallite size of titanium silicalite-1 on the activity in the hydroxylatio n of phenol. In: Proceedings of Ninth International Zeolite Conference. Mont real, 1992: 607- 614.
    
    [260] Schwart S,, Corbin D. R., Sonnichsen G. C. The effect of crystal size on the methylamines synthesis performance of ZK-5 zeolites. Microporous and Mesoporous Materials, 1998, 22 (1-3): 409-418.
    [261] Absil R. P., Katzer J. R., Lissy O. N. Hydrocracking catalyst and process using small crystal size zeolite Y. US Pat. 5401704, 1995.
    [262] Bonetto L., Camblor M. A., Corma A. Optimization of zeolite in cracking catalysts influence of crystallite size. Applied Catalysis A: General, 1992, 82(1): 37-50.
    [263] Sugimoto M., Katsuno H., Takatsu K. Correlation between the crystal size and catalytic properties of ZSM-5 zeolites. Zeolites, 1987, 7(6): 503-507.
    [264] Yamamura M., Chaki K., Wakatsuki T. Synthesis of ZSM-5 zeolite with small crystal size and its catalytic performance for ethylene oligomerization. Zeolites, 1994, 14(6): 643-649.
    [265] Castagnda N. B., Dutta K. P. An alternative strategy to an electron rich phosphine based carbonylation catalyst. Journal Physics Chemistry B, 1998, 102: 1696-1702.
    [266] Schoeman B. J., Sterte J., Otterstedt J. E. The synthesis of colloidal zeolite hydroxysodalite sols by homogeneous nucleation. Zeolites, 1994,14(8): 208-216.
    [267] Tauster S. T., Vaughan David E. W., Steger J. Zeolite catalyst. US Pat. 4552856. 1985.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700