基于AAO制备的低维材料及其在环境催化中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
催化是最早利用诸如纳米粒子和纳米线等低维材料的领域之一。本论文利用阳极氧化铝(AAO)为基础,结合水热、溶胶凝胶(sol-gel)、化学改性等手段制备了多种低维材料,并考察了其在催化领域特别是环境催化领域的应用:
     (1)制备出TiO_2纳米粒子,纳米棒和纳米管。前驱体是Ti_4F,pH = 1.6-2.4时,能得到管壁上有中孔存在且直径范围在100-150 nm的TiO_2纳米管。
     (2)利用AAO为初始材料,在45oC稀磷酸中浸渍不同时间可以得到线状、带状、管状等不同形貌的氧化铝。AAO模板特殊结构和组成造成的择优溶解是不同形貌纳米氧化铝纤维形成的主要原因。单胞壁上的缺陷和单胞相连处的小孔是腐蚀和松散作用易于发生的地方,这是形成多种形貌的原因。
     (3) AAO制备的氧化铝纳米材料的表面酸性(阴离子插入所致)和规整取向是其对光催化降解吡啶反应产生催化作用的主要原因。由AAO制备的站立在母体模板上的规整氧化铝棒,对280 nm左右的紫外光有强烈的吸收能力。
     (4)葡萄糖还原-水热-AAO模板制备出填充在AAO管内的细长的银粒子。用NaOH溶去AAO模板后,得到低维纳米银片。
Catalysis is one of the fields which have initiated the use of low dimension materials for a long time. The paper herein reports the synthesis of a variety of ultra-fine materials grounded on anodic aluminum oxide (AAO) by hydrothermal method, sol-gel method and chemically modification method. Potential applications in environmental catalysis of these ultra-fine materials prepared in the work have also been studied in the paper:
     (1) Nano-particles, nano-rods and sub-micron tubes of TiO_2 were synthesized with the template of AAO by sol-gel method. The diameters of the tubes are in the ranges of 100-150 nm when pH values 1.6-2.4. It is confirmed that there are mesopores around 10 nm in the walls of the tubes.
     (2) Without any other support during etching in dilute phosphoric acid aqueous solutions (6 wt %), alumina nano-tubes, nano-belts and nano-wires were fabricated from AAO under different etching times. Besides the etching effect of phosphoric acid on the structure, a loosening effect also occurs along the boundaries of the colloid bundles. Because of the incorporation of acid anions during anodization, the composition of the individual cell wall is affected and three different layers formed. Therefore, the etching rates of different layers of the cell wall are influenced, which leads to the formation of various nano-structures.
     (3) The surface acidity (resulted from anion incorporated during anodization) of alumina got from AAO and its ordered orientation are believed to be the reasons to explain its catalytic effects in pyridine
引文
[1] R. P. Feynman, in Engineering and Science. (Calif. Inst. of Technol., Pasadena, 1960) pp. 22.
    [2] 李凤生. 超细粉体技术. 第一版. 北京: 国防工业出版社, 1999
    [3] 成春. 一维纳米材料的合成与表征[硕士学位论文]. 武汉: 华中师范大学, 2004
    [4] Pelizzetti E, Minero C. Mechanism of the photo-oxidative degradation of organic pollutants over TiO2 particles, Electrochim. Acta. 1993, 38: 47-55
    [5] Herrmann J-M, Guillard C, Pichat P. Heterogeneous photocatalysis: an emerging technology for water treatment. Catal. Today. 1993, 17(1-2): 7-20
    [6] Herrmann J-M. Heterogeneous photocatalysis: fundamentals and applications to the removal of various types of aqueous pollutants. Catal. Today. 1999, 53 (1): 115-129
    [7] Michael R Hoffmann, Scot T Martin, Wonyong Choi, Detlef W. Bahnemann. Environmental Applications of Semiconductor Photocatalysis. Chem. Rev. 1995, 95(10): 69 -96
    [8] Wenyong Lin, Wenqin Pang, Jingzhi Sun, Jiacong Shen. Lamellar TiO2 mesophase with an unusual room temperature photoluminescence. J. Mater. Chem. 1999, 9(3): 641-642
    [9] Charles R. Martin, Ranjani V. Parthasarathy. Polymeric microcapsule arrays. Adv. Mater. 1995, 7(5): 487-488
    [10] Leon S. Van Dyke, Charles R. Martin, Electrochemical investigations of electronically conductive polymers. 4. Controlling the supermolecular structure allows charge transport rates to be enhanced. Langmuir. 1990, 6(6): 1118-1123
    [11] Jirage K B, Hulteen J C, Martin C R. Nanotubule-based molecular-filtration membranes. Sci. 1997, 278: 655-658
    [12] Khoo M, Liu C. A novel micromachined magnetic membrane microfluid pump. Annual International Conference of the IEEE Engineering in Medicine and Biology-Proceedings. 2000, 3: 2394-2412
    [13] Khoo M, Liu C. Micro magnetic silicone elastomer membrane actuator. Sensors and Actuators, A: Physical. 2001, 89(3):259-266
    [14] 曹渊, 陶长元, 杜军, 刘作华, 张丙怀. 模板法制备纳米无机物/聚合物复合膜研究进展. 材料导报. 2004, 18(2):160-162
    [15] Minahan D M, Hoflund G B. Study of Cs-Promoted, α-Alumina-Supported Silver Ethylene-Epoxidation Catalysts: I. Characterization of the Support and As–Prepared Catalyst. J. Catal. 1996, 158(1): 109-115
    [16] Bond G C. The origins of particle size effects in heterogeneous catalysis. Surf. Sci, 1985, 156(2): 966-981
    [17] Che M, Bennett C O.The Influence of Particle Size on the Catalytic Properties of Supported Metals. Adv. Catal. 1989, 36(3): 55-171.
    [18] Briot P, Auroux A, Jones D, Primet M. Effect of particle size on the reactivity of oxygen-adsorbed platinum supported on. Appl. Catal. 1990, 59(1): 141-152
    [19] Lee J K, Verykios X E, Pitchai R. Support and crystallite size effects in ethylene oxidation catalysis. Appl. Catal. 1989, 50(1): 171-188
    [20] Cheng S, Clearfield A. Oxidation of ethylene catalyzed by silver supported on zirconium phosphate: Particle size and support effect. J. Catal, 1985, 94(2): 455-467.
    [21] Seyedmonir S R, Plischke J K, Vannice M A, Young H W. Ethylene oxidation over small silver crystallites . J Catal, 1990, 123(2): 534-549
    [22] Macleod N, Keel J M, Lambert R M. The effects of catalyst aging under industrial conditions: ethylene oxide conversion over Ag-Cs/alpha-Al2O3 catalysts Catal. Lett. 2003, 86(1-3): 51-56
    [23] 焦健,潘明虎,薛其坤,包信和. 硅表面纳米银团簇的氧助迁移行为. 催化学报. 2003, 24(6):433-436
    [24] 王世敏, 许祖勋, 傅晶. 纳米材料制备技术. 第 1 版. 北京: 化学工业出版社. 2001
    [25] 薛群基, 徐康. 纳米化学. 化学进展. 2000, 12(4): 431- 444
    [26] 裘式纶, 翟庆洲, 肖丰收, 张宗涛, 朱广山. 纳米材料研究进展 Ⅱ: 纳米材料的制备, 表征与应用. 化学研究与应. 1998, 4(10): 331-341
    [27] 陈建新, 梅海军, 张景香, 顾丽红. 超细颗粒的制备及应用. 无机盐工业. 2001, 33(1): 26-29
    [28] 林原, 江碗兰, 白乃斌. 超细金属微粒及其复合聚合物的研究进展. 化工新型材料. 1998, 26(3): 16-19
    [29] 孟季茹, 赵磊, 梁国汇, 秦华宇. 环氧改性有机硅复合材料的研制. 化工新型材料. 2000, 28(9): 23-27
    [30] 钱军民, 李旭祥, 黄海燕. 纳米材料的性质及其制备方法. 化工新型材料. 2001, 29(7): 1-5
    [31] 朱春玲, 江万权, 胡源, 杨林, 陈祖耀. 溶胶-凝胶法制备 Polyer/MS/ SiO2 (M=Pb,Cd)复合纳米材料. 化学物理学报. 2001, 14(3): 335-339
    [32] Liu S M., Gan L M., Liu L H. Synthesis of single - crystalline TiO2 nanotubes. Chem. Mater. 2002, 14 (3): 1391-1397
    [33] 张韵慧, 邵晓芬. 微乳液法制备 ZnS; Mn 纳米晶及性能的表征. 功能材料. 2001, 32(4): 405-406
    [34] 吕彤; 张玉亭, 云南大学学报(自然科学版). 微乳液法制备CdS超细粒子的研究. 2002, 24(1A): 178-180
    [35] Ohde H, Ohde M, Bailey F, Kim H, Wai C. M. Water - in - CO2 microemulsions as nanoreactors for synthesizing CdS and ZnS nanoparticles in supercritical CO2. Nano Lett. 2002, 2(7): 721-724
    [36] Qian X F, Zhang X M, Wang C, Tang K B, Xie Y, Qian Y T. Benzene-thermal preparation of nanocrystalline chromium nitride. Materials Research Bulletin. 1999, 34(3): 433-436
    [37] 王成云, 苏庆德, 钱逸泰. 非水溶剂水热法制备 CeO2 纳米粉. 化学研究与应用. 2001, 13(4): 402-405
    [38] X H Liao, J M Zhu, J J Zhu, J Z Xu, H Y Chen. Preparation of monodispersed nanocrystalline CeO2 powders by microwave irradiation. Chem. Commun. 2001, 10: 937-938
    [39] Kresge C T, Leonowlcz M E, Roth W J. Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature. 1992, 359: 710-712.
    [40] Beck J S, Vartulli J C, Roth W J, Leonowicz M E, Kresge C T, Schmitt K D,Chu C T, Olsen D H, Shepard E W, McCullen S B, Higgins J B, Schlenker J L. A new family of mesoporous molecular sieves prepared with liquid crystal templates. J. Am. Chem. Soc. 1992, 114(27): 10834-10843
    [40] Li T, Moon J, Morrone A A, Mecholsky J J, Talham D R, Adair J H. Preparation of Ag/SiO2 Nanosize Composites by a Reverse Micelle and Sol-Gel Technique. Langmuir. 1999, 15(13): 4328-4334
    [41] 侯德东, 刘应开. SnO2 纳米棒的制备及表征. 无机材料学报. 2002, 17(4): 691-696
    [42] Chad A. Mirkin, Robert L. Letsinger, Robert C. Mucic, James J. Storhoff. A DNA-based method for rationally assembling nanoparticles into macroscopic materials. Nature. 1996,382: 607-609
    [43] A. Paul Alivisatos, Kai P. Johnsson, Xiaogang Peng, Troy E. Wilson, Colin J. Loweth, Marcel P. Bruchez Jr, Peter G. Schultz. Organization of 'nanocrystal molecules' using DNA. Nature. 1996, 382: 609-612
    [44] Storhoff J J, Elghanian R, Mucic R C, Mirkin C A, Letsinger R L. One-pot colorimetric differentiation of polynucleotides with single base imperfections using gold nanoparticle probes. J. Am. Chem. Soc. 1998, 120(9): 1959-1964
    [45] Mucic R C, Storhoff J J, Mirkin C A, Letsinger R L. DNA-directed synthesis of binary nanoparticle network materials. J. Am. Chem. Soc. 1998, 120(48): 12674-12675
    [46] J L Coffer, S R Bigham, R F Pinizzotto, H Yang. Characterization of quantum-confined CdS nanocrystallites stabilized by deoxyribonucleic acid (DNA). Nanotechnology. 1992, 3: 69-76
    [47] Mann S. Biomimetic Materials Chemistry [M]. Weinheim: VCH. 1996 1-37:143-166
    [48] Wayne Shenton, Dietmar Pum, Uwe B. Sleytr, Stephen Mann. Synthesis of cadmium sulphide superlattices using self-assembled bacterial S-layers. Nature. 1998, 393: 585-587
    [49] 田玫,李丕春,杨文胜. 利用鲑鱼精 DNA 为模板构建 CdS 纳米线. 分子科学学报. 2002, 18(2): 75-79
    [50] 陈霞,靳健,杨文胜,郭中满,江林,杨百全,徐力,魏莉,李铁津,郑大方. DNA 模板诱导针状 CdS 纳米粒子的形成. 高等学校化学学报. 2000,21(7): 1115-117
    [51] Davis K E, Russel W B, Glantschnig W J. Disorder-to-order transtion in setting suspensions of colloidal silica: X-ray measurements. Sci. 1989, 245: 507-510
    [52] Van B A, Ruel R, Wiltzlus P. Template-directed colloidal crystallization. Nature. 1997, 385: 321-323
    [53] Velve O D, Jede T A, Lobo R F. Porous silica via colloid crystallization. Nature, 1997, 389: 447-448
    [54] Caruso F, Caruso R A, Mohwald H. Nanoengineering of inorganic and hybrid hollow spheres by collidal templating. Sci. 1998, 282: 1111-1114.
    [55] Menon V P, Martin C R. Fabrication and evaluation of nanoelectrode ensembles. Anal. Chem. 1995, 67(14): 1920-1928
    [56] Nishizawa V P Menon, C R Martin. Metal nanotubule membranes with electrochemically switchable ion-transport selectivity. Sci. 1995, 270: 700-702
    [57] Charles J Brumlik, Charles R Martin. Template synthesis of metal microtubes. J. Am. Chem. Soc. 1991, 113(8): 3174-3175
    [58] Hou Z, Abbott N L, Stroeve P. Self-Assembled monolayers on electroless gold impart pH-responsive transport of ions in porous membranes. Langmuir. 2000, 16(5); 2401-2404.
    [59] Gabor L Hornyak, Charles J Patrissi, Charles R Martin. Fabrication, Characterization, and Optical Properties of Gold Nanoparticle/Porous Alumina Composites: The Nonscattering Maxwell-Garnett Limit. J. Phys. Chem. (B). 1997, 101(9): 1548-1555
    [60] 孙聆东,徐波,付雪峰,王明文,钱程,廖春生,严纯华. 聚合物为模板制备CdS, ZnS及其掺杂纳米材料. 中国科学(B). 2001, l31(2): 146-152
    [61] F Keller, M S Hunter, D L Robinson. Structural features of oxide coatings on Aluminium. J. Electrochem. Soc. 1953, 100: 411-419
    [62] J W Diggle, T C Downie, C W Groulding. Anodic oxide film on aluminum. Chem. Rev. 1969, 69: 365-405
    [63] 江小雪, 赵乃勤. 多孔氧化铝膜的制备与形成机理的研究概况. 功能材料. 2005, 36(4): 487-489
    [64] 李勇鹏, 袁贵喜. 阳极氧化膜形成机理探讨. 轻金属. 1997(2): 48-51
    [65] Pu L, Chen Z Q, Tan C, Yang Z, Zou J P, Bao X M, Feng D, Shi Y, Zheng Y D. Microstructural Models of Alumina Nanotubes and Anodic Porous Alumina Film Formed in Sulphuric Acid. Chin. Phys. Lett. 2002, 19(3): 391-394
    [66] Sui Y C, Cui B Z, Martinez L, Perez R, Sellmyer D J. Pore structure, barrier layer topography and matrix alumina structure of porous anodic alumina film. Thin Solid Films. 2002, 42(1-2): 64-69
    [67] S S Abdel Rehim, H H Hassan, M A Amin. Galvanostatic anodization of pure Al in some aqueous acid solutions Part I: Growth kinetics, composition and morphological structure of porous and barrier-type anodic alumina films. J. Appl. Electrochem. 2002, 32: 1257-1264
    [68] Peng X S, Zhang J, Wang X F. Syhthesis of highly ordered CdSe nanowire arrays embedded in anodic alumina membrane by electrodeposition in ammonia alkaline solution. Chem. Phys. Lett. 2002, 343(5- 6): 470-474
    [69] Strijkers G J, Dalderop J H J, Broeksteeg M A A. Structure and magnetization of arrays of electrodeposited Co wires in anodic alumina. J. Appl. Phys. 1999, 86 (9): 5141 - 5145
    [70] Yang S G, Zhu H, Yu D L. Preparation and magnetic property of Fe nanowire array. J. Mag. Mag. Mater. 2000, 222(1-2): 97-100
    [71] Nielsch K, Müller F, Li A P. Uniform nickel deposition into ordered alumina pores by pulsed electrodeposition. Adv. Mater. 2000, 12 (8): 582-586
    [72] Evans P R, Yi G, Schwarzacher W. Current perpendicular to plane giant magnetoresistance of multilayered nanowires electrodeposited in anodic aluminum oxide membranes. Appl. Phys. Lett. 2000, 76 (4): 481- 483
    [73] Zhang Y, Li G H, Wu Y C. Antimony nanowire arrays fabricated by pulsed electrodeposition in anodic alumina membtanes. Adv. Mater. 2002, 14(17): 1227-1230
    [74] Martín - González M, Snyder G J, Prieto A L. Direct electrodeposition of highly dense 50 nm Bi2Te3 - ySey nanowire arrays. Nano. Lett. 2003, 3(7): 973-977
    [75] Sander M. S., Gronsky R., Sands T. Structure of bismuth telluride nanowire arrays fabricated by electrodeposition into porous anodic alumina templates. Chem. Mater. 2003, 15(1): 335-339
    [76] Zhou Y K, Li H L. Sol-gel template synthesis of highly ordered LiCo0.5Mn0. 5O2 nanowire arrays and their structural properties. J. Solid State Chem. 2002, 165: 247-253
    [77] Prieto A L, Sander M S, Martin-Gonzalez M S. Electrodeposition of ordered Bi2Te3 nanowire arrays. J. Am. Chem. Soc. 2001, 123(29): 7160-7161
    [78] Zhang X Y, Zhang L D, Meng G W. Synthesis of ordered single crystal silicon nanowire arrays. Adv. Mater. 2001, 13(16): 1238-1241
    [79] Jeong S Y, Kim J Y, Yang H K. Synthesis of silicon nanotubes on porous alumina using molecular beam epitaxy. Adv. Mater. 2003, 15 (17): 1172-1176
    [80] Ai S F, Lu G, He Q. Highly flexible polyelectrolyte nanotubes. J. Am. Chem. Soc. 2003, 125:11140 - 11141
    [81] Suh J S, Lee J S. Highly ordered two - dimensitional carbon nanotube arrays. Appl. Phy. Lett. 1999, 75(14): 2047-2049
    [82] Kim M J, Choi J H, Park J B. Growth characteristics of carbon nanotubes via aluminum nanopore template on Si substrate using PECVD. Thin Solid Films. 2003, 435 (1): 312 - 317
    [83] Xiao Z L, Han Catherine Y, Welp U. Fabrication of alumina nanotubes andnanowires by etching porous alumina membranes. Nano. lett. 2002, 2(11):1293-1297
    [84] Prieto A L, Sander M S, Martin-Gonzalez M S. Electrodeposition of ordered Bi2 Te3 nanowire arrays. J. Am. Chem. Soc., 2001, 123(29): 7160 - 7161
    [85] Zhang X Y, Zhang L D, Meng G W. Synthesis of ordered single crystal silicon nanowire arrays. Adv. Mater. 2001, 13(16): 1238-1241
    [86] 李东红, 周海龙, 简本成等. 溶胶一相转移法制备纳米氧化铝的研究.轻金属.2001, 10: 9-11
    [87] R V Parthasarathy, C R Martin. Template - Synthesized Polyaniline Microtubules. Chem. Mater. 1994, 6(10): 1627-1632
    [88] De Vito S, Martin C R. Toward Colloidal Dispersions of Template - Synthesized Polypyrrole Nanotubules. Chem. Mater. 1998, 10(7): 1738-1741
    [89] Charles R. Martin, Leon S. Van Dyke, Zhihua Cai, Wenbin Liang. Template synthesis of organic microtubules. J. Am. Chem. Soc. 1990, 112(24): 8976-8977
    [90] Brinda B. Lakshmi, Peter K. Dorhout, Charles R. Martin. Sol-Gel Template Synthesis of Semiconductor Nanostructures. Chem. Mater. 1997, 9(3): 857-862
    [91] X Y Zhang, L D Zhang, M J Zheng, G H Li, L X Zhao. Template synthesis of high-density carbon nanotube arrays. J. Crystal Growth. 2001, 223 (1-2): 306-310
    [92] Che G L, lankshmi B B, Fisher E R. Carbon Nanotube Membranes for Elcctronchemical Energy Storage and Production. Nature, 1998, 393: 346- 349.
    [93] T F Cooke. Inorganic Fibers-A Literature Review. J. Am. Ceram. Soc. 1991, 74: 2959-2978.
    [94] G Harold, L Sowman. A New Era in Ceramic Fibers via Sol - Gel Technology Am. Ceramic Soc. Bull. 1988, 67: 1911-1916
    [95] S. Sakka. Sol-Gel Synthesis of Glasses: Present and Future. Am. Ceramic Soc. Bullliten. 1985, 64: 1463-1466.
    [96] Parkhutik V P, Shershulsky V I. Theoretical modelling of porous oxide growth on aluminium. J. Phys. D: Appl. Phys. 1992, 25(8): 1258-1263
    [97] Nobuyuki Kobayashi, Soichiro Sameshima, Yoshihiro Hirata, Molten state processing of alumina fiber/high-speed steel composite. J. Ceramic Processing Res. 2002, 3(2): 52-56
    [98] C C Tang, S S Fan, P Li, M Lamy. de la Chapelle, H Y Dang. In situ catalytic growth of Al2O3 and Si nanowires. J. Cryst. Growth. 2001, 224(1-2): 117-121
    [99] B C Satishkumar, A Govindaraj, E M Vogl, L Basumallick, C N R Rao. Oxide nanotubes prepared using carbon nanotubes as templates. J. Mater. Res. 1997 ,12: 604-606
    [100] J Hwang, B Min, J S Lee, K Keem, K Cho, M Y Sung, M S Lee, S Kim. Al2O3 Nanotubes Fabricated by Wet Etching of ZnO/Al2O3 Core/Shell Nanofibers. Adv. Mater. 2004, 16(5): 422-425
    [101] Xiao Z L, Han C Y, Welp U, Wang H H, Kwok W K, Willing G A, Hiller J M, Cook R E, Miller D J, Crabtree G W. Fabrication of Alumina Nanotubes and Nanowires by Etching Porous Alumina Membranes. Nano Lett. 2002, 2(11): 1293-1297
    [102] L Pu, X Bao, J Zou, D Feng. Individual alumina nanotubes. Angew. Chem. Int. Ed. 2001, 40(8): 1490-1493
    [103] J Zou, L Pu, X Bao, D Feng. Branchy alumina nanotubes. App. Phy. Lett. 2002, 80(6): 1079-1081
    [104] Y T Tian, G W Meng, T Gao, S H Sun, T Xie, X S Peng, C H Ye, L D Zhang. Alumina nanowire arrays standing on a porous anodic alumina membrane. Nanotechno. 2004, 15: 189-191
    [105] Z Yuan, H Huang, S Fan. Regular alumina nanopillar arrays. Adv. Mater. 2002, 14: 303-305
    [106] S M Liu, W D Zhang, Z L Liu, L H Liu. Chemical fabrication of Al2O3 nano-trilobes. Appl. Catal. A: General. 2005, 287: 108-115
    [1] G E Thompson, R C Furneaux, G C Wood, J A Richardson, J S Goode. Nucleation and growth of porous anodic films on aluminium. Nature. 1978, 272:433-435
    [2] G E Thompson, G C Wood, Porous anodic film formation on aluminium. Nature. 1981, 290: 230-232
    [3] Y. Xu, G. E. Thompson, G.. C. Wood, Mechanism of anodic film formation on aluminium, Trans Inst. Met. Finish. 1985, 63: 98-103
    [4] Jessensky O, Muller F, Gosele U. Self-organized formation of hexagonal pore arrays in anodic alumina. Appl. Phys. Lett. 1998, 72:1173-1175
    [5] J W Diggle, T C Downie, C W Groulding. Anodic oxide film on aluminum. Chem. Rev. 1969, 69: 365-405
    [6] 刘虹雯, 郭海明, 王业亮, 申承民, 杨海涛, 王雨田, 魏龙. 阳极氧化铝模板表面自组织条纹的形成. 物理学报. 2004, 53(2): 656-660
    [7] 李勇鹏, 袁贵喜. 阳极氧化膜形成机理探讨. 轻金属. 1997, 2:48-51
    [8] Xiao Z L, Han Catherine Y, Welp U. Fabrication of alumina nanotubes and nanowires by etching porous alumina membranes. Nano. lett. 2002, 2(11): 1293-1297.
    [9] Pu L, Chen Z Q, Tan C, Yang Z, Zou J P, Bao X M, Feng D, Shi Y, Zheng Y D. Microstructural Models of Alumina Nanotubes and Anodic Porous Alumina Film Formed in Sulphuric Acid. Chin. Phys. Lett. 2002, 19(3): 391-394.
    [10] S S Abdel Rehim, H H Hassan, M A Amin. Galvanostatic anodization of pure Al in some aqueous acid solutions Part I: Growth kinetics, composition and morphological structure of porous and barrier-type anodic alumina films. J. Appl. Electrochem. 2002, 32: 1257-1264
    [11] Pu L, Chen Z Q, Tan C. Microstructural Models of Alumina Nanotubes and Anodic Porous Alumina Film Formed in Sulphuric Acid. Chin. Phys. Lett. 2002, 19(3):391-394
    [12] M E Brito. Boundaries in porous alumina. J. Mater. Sci. Lett. 2001, 20: 2053- 2055
    [13] Mardlovich P P. New and modified anodic alumina membranes. Part I.Thermotreatment of anodic alumina membranes. J. Mmembrane Sci. 1995, 98(1-2): 131-142
    [14] W S Epling, G B Hoflund, D M Minahan. Study of Cs-Promoted, α-Alumina-Supported Silver, Ethylene-Epoxidation Catalysts. J. Catal. 1997, 171(2): 490-497
    [1] Pelizzetti E, Minero C. Mechanism of the photo-oxidative degradation of organic pollutants over TiO2 particles. Electrochim. Acta. 1993, 38(1): 47-55
    [2] Herrmann J-M, Guillard C, Pichat P. Heterogeneous photocatalysis: anemerging technology for water treatment. Catal Today. 1993, 17(1-2): 7-20
    [3] Herrmann J-M. Heterogeneous photocatalysis: fundamentals and applications to the removal of various types of aqueous pollutants, Catal Today. 1999, 53 (1): 115-129
    [4] M. R. Hoffmann, S. T. Martin, Wonyong Choi, Detlef W Bahnemann Environmental Applications of Semiconductor Photocatalysis. Chem Rev 1995, 95(10): 69-96
    [5] Wenyong Lin, Wenqin Pang, Jingzhi Sun, Jiacong Shen. Lamellar TiO2 mesophase with an unusual room temperature photoluminescence. J Mater Chem, 1999, 9(3): 641-642
    [6] 高濂, 郑珊, 张青红. 纳米氧化钛光催化材料及应用. 化学工业出版 2002 年, 12 月, 第一版
    [7] Lion L W, Harvey R W, Young L Y, Leckie J O. Particulate matter: Its association with microorganisms and trace metals in an estuarine salt marsh microlayer. Environ Sci Technol. 1979, 13:1522-1525
    [8] X Y Zhang, L D Zhang, M J Zheng, G H Li, L X Zhao. Template synthesis of high-density carbon nanotube arrays. J. Crystal Growth. 2001, 223(1-2): 306-310
    [9] Kwona C-H, Kima J-H, Junga I-S, Shina H, Yoonb K-H. Preparation and characterization of TiO2–SiO2 nano-composite thin films. Ceram Internation. 2003, 29(8): 851-856
    [10] Harish Parala, Anjana Devi, Raghunandan Bhakta, Roland A Fischer, Synthesis of nano-scale TiO2 particles by a nonhydrolytic approach. J. Mater. Chem. 2002, 6: 1625-1627
    [11] Graetzel C, Jirousek M, Graetzel M. Decomposition of organophosphorus compounds on photoactivated TiO2 surfaces. J. Mol. Catal. 1990, 60(3): 375-387
    [12] Kopf P, Gilbert E, Eberle S. TiO2 photocatalytic oxidation of monochloroacetic acid and pyridine: influence of ozone. J. Photochem. Photobiol. A: Chem. 2000, 136(3): 163-168
    [13] Poulios I, Kositzi M, Kouras A. Photocatalytic decomposition of triclopyr over aqueous semiconductor suspensions. J. Photochem. Photobiol. A: Chem. 1998, 115(2): 175-183
    [14] Qamar M, Saquib M, Muneer A. Titanium dioxide mediated photocatalytic degradation of two selected azo dye derivatives, chrysoidine R and acid red 29 (chromotrope 2R), in aqueous suspensions. DESALINATION. 2005, 186(1-3): 255-271
    [15] 邱健斌,曹亚安,马颖,管自生,姚建年. 负载材料对 TiO2 薄膜光催化活性的影响. 物理化学学报. 2000, 16 (1):1-4
    [16] Lee D-W, Ihm S-K, Lee K-H. Mesostructure Control Using a Titania-Coated Silica Nanosphere Framework with Extremely High Thermal Stability. Chem. Mater. 2005, 17(1–3): 4461-4467
    [17] Herrmann J-M, Tahiri H, Alt-Ichou Y, Lassaletta G, Gonzalez-Ellipe A, Fernandez A. Characterization and photocatalytic activity in aqueous medium of TiO2 and Ag-TiO2 coatings on quartz. Appl. Catal. B: Enviornmental. 1997, 13(3, 4): 219-228
    [18] Kamat P V. Photophysical Photochemical and Photocatalytic Aspects of Metal Nanoparticles. Phys. Chem. B. 2002, 106(32): 7729-7744
    [19] Pathak P, Meziani M, Castillo L, Sun Y-P. Metal-coated nanoscale TiO2 catalysts for enhanced CO2 photoreduction. Green Chem. 2005, 7(9): 667-671
    [20] Zhou XS, Lin YH, Li B, Li LJ, Zhou JP, Nan CW. Processing and characterization of TiO2 film prepared on glass via pulsed laser deposition. J. PHYS. D-APPL. PHYS. 2006, 39(3): 558-562
    [21] Alexej Michailowski, Diyaa Almaulawi, Guosheng Cheng, Martin Moskovits Highly anatase nano-tubule arrays fabricated in porous anodic templates. Chemical Physics Letters. 2001, 349: 1-5
    [22] Song-Zhu Chu, Kenji Wada, Satoru Inoue, Sin-ichi Todoroki. Synthesis and Characterization of Titania Nanostructures on Glass by Al Anodization andSol-Gel Process. Chem. Mater. 2002, 14, 266-272
    [23] DA Brevnov, GV Rama Rao, G P López, P B Atanassov. Dynamics and temperature dependence of etching processes of porous and barrier aluminum oxide layers. Electrochimica Acta. 2004, 49: 2487–2494
    [24] Y F Mei, X L Wu, X F Shao, G S Huang, G G Siu. Formation mechanism of alumina nanotube array. Phys. Lett. A. 2003, 309: 109-113
    [25] S M Liu, L M Gan, L H Liu, W D Zhang, H C Zeng. Synthesis of single-crystalline TiO2 nanotubes. Chem. Mater. 2002, 14: 1391-1397
    [26] H Imai, Y Takei, K Shimizu, M Matsuda, H Hirashima. Direct preparation of anatase TiO2 nanotubes in porous alumina membranes. J. Mater. Chem. 1999, 9: 2971-2972
    [27]A Hagfeldt and M Gratzel. Light-induced redox reactions in nanocrystalline systems. Chem. Rev. 1995, 95: 49-68
    [28] J Bandara, V Nadtochenko, J Kiwi. Dynamics of oxidant addition as a parameter in the modelling of dye mineralization (orange II) via advanced oxidation technologies. Water Sci. Technol. 1997, 35(4): 87-93
    [29] C Maillard-Dupuy, C Guillard, H Courbon, P Pichat. Kinetics and Products of the TiO2 Photocatalytic Degradation of Pyridine in Water. Environ. Sci. Technol. 1994, 28(12): 2176-2183
    [30] S K Rhee, G M Lee, S T Lee. Influence of a supplementary carbon source on biodegradation of pyridine by freely suspended and immobilized Pimelobacter sp. Appl. Microbiol. Biotechnol. 1996, 44: 816-821
    [31] J Cinibulk, Z Vyt. Hydrodenitrogenation of pyridine over alumina - supported iridium catalysts. Appl. Catal. A: Gen. 1999, 180 (1-2): 15-23
    [32] 王玉栋, 郝志显, 甘礼华, 王自慎, 陈龙武. TiO2/SiO2 气凝胶对吡啶的光催化降解. 应用化学. 2004, 10: 1002-1004
    [33] S V Mohana, S Sistlaa, R K Gurua, K K Prasada, C S Kumarb, S V Ramakrishnaa, P N Sarmaa. Microbial degradation of pyridine usingPseudomonas sp. and isolation of plasmid responsible for degradation. Waste Manage. 2003, 23(2): 167-171
    [34] B Uma, S Sandhya. Kinetics of pyridine degradation along with toluene and methylene chloride with Bacillus sp. in packed bed reactor. Bioprocess Eng. 1998, 18: 303-305
    [35] S K Rhee, G M Lee, S T Lee. Influence of a Supplemental Carbon Source on Biodegradation of Pyridine by Freely Suspended and Immobilized Pimelobacter sp. Appl. Microbiol. Biotechnol. 1996, 44: 816-822
    [36] S Fetzner. Bacterial degradation of pyridine, indole, quinoline, and their derivatives under different redox conditions. Appl. Microbiol. Biotechnol. 1998, 49: 237-250
    [37] N Sudhir, V K Aki. Catalytic Supercritical Water Oxidation of Pyridine: Kinetics and Mass Transfer. Chem. Eng. Sci. 1999, 54: 3533-3542
    [38] Y Li, G Gu, J Zhao, H Yu. Anoxic degradation of nitrogenous heterocyclic compounds by acclimated activated sludge. Process Biochem. 2001, 37: 81-86
    [39] E Vaganova, C Damm, G Israel, S Yitzchaik. Wavelength-resolved 3-dimensional fluorescence lifetime imaging. J. Fluoresc. 2002, 12 (2): 219-223.
    [40] J-M Herrmann. Heterogeneous photocatalysis: fundamentals and applications to the removal of various types of aqueous pollutants. Catal. Today. 1999, 53(1): 115-129
    [41] M R Hoffmann, S T Martin, W Choi, D W Bahnemannt. Environmental Applications of Semiconductor Photocatalysis. Chem. Rev. 1995, 95: 69-96
    [42] E Pelizzetti, C Minero. Mechanism of the photo-oxidative degradation of organic pollutants over TiO2 particles Electrochem. Acta. 1992, 38(1): 47-55
    [43] P Calza, C Minero, E Pelizzetti. Photocatalytically Assisted Hydrolysis of Chlorinated Methanes under Anaerobic Conditions. Environ. Sci. Technol. 1997, 31(8): 2198-2203
    [44] J M Hermann, C Guillard, P Pichat. Heterogeneous photocatalysis: an emerging technology for water treatment. Catal. Today. 1993, 17(1-2): 7-20
    [45] C Graetzel, M Jirousek, M Graetzel. Decomposition of organophosphorus compounds on photoactivated TiO2 surfaces. J. Mol. Catal. 1990, 60(3): 375-387
    [46] P Kopf, E Gilbert, S H Eberle. TiO2 photocatalytic oxidation of monochloroacetic acid and pyridine: influence of ozone. J. Photochem. Photobiol. A: Chem. 2000, 136(3): 163-168
    [1] T F Cooke. Inorganic Fibers - A Literature Review. J. Am. Ceram. Soc. 1991, 74: 2959-2978
    [2] G Harold, L Sowman. A New Era in Ceramic Fibers via Sol--Gel Technology, Am. Ceramic Soc. Bull. 1988, 67: 1911-1916
    [3] S Sakka. Sol-Gel Synthesis of Glasses: Present and Future. Am. Ceramic Soc. Bulliten. 1985, 64: 1463-1466
    [4] Parkhutik V P, Shershulsky V I. Theoretical modelling of porous oxide growth on aluminium. J. Phys. D: Appl. Phys., 1992, 25(8): 1258-1263
    [5] Nobuyuki Kobayashi, Soichiro Sameshima, Yoshihiro Hirata, Molten state processing of alumina fiber/high-speed steel composite. J. Ceramic Processing Research, 2002, 3(2): 52-56
    [6] C C Tang, S S Fan, P Li, M Lamy de la Chapelle, H Y Dang. In situ catalytic growth of Al2O3 and Si nanowires. J. Cryst. Growth. 2001, 224(1-2): 117-121
    [7] B C Satishkumar, A Govindaraj, E M Vogl, L Basumallick, C N R Rao. Oxide nanotubes prepared using carbon nanotubes as templates. J. Mater. Res. 1997 (12): 604-606
    [8] 肖汉宁, 千田哲也, 殷冀湘. 氧化铝陶瓷的高温磨损与自润滑机理研究. 无机材料学报. 1997, 3: 420-423
    [9] J Zou, L Pu, X Bao, D Feng. Branchy alumina nanotubes. App. Phy. Lett. 2002, 80(6): 1079-1081
    [10] Z.H. Yuan, H. Huang, S.S. Fan. Regular alumina nanopillar arrays. Adv. Mater. 2002, 14 (4): 303-306
    [11] Y T Tian, G W Meng, T Gao, S H Sun, T Xie, X S Peng, C H Ye, L D Zhang. Alumina nanowire arrays standing on a porous anodic alumina membrane, Nanotechnology. 2004, 15): 189 - 191
    [12] F Keller, M S Hunter, D L Robinson. Structural features of oxide coatings on Aluminium. J. Electrochem. Soc. 1953, 100: 411 - 419
    [13] G E Thompson, R C Furneaux, G C Wood, J A Richardson, J S Goode, Nucleation and growth of porous anodic films on aluminium. Nature. 1978, 272: 433-435
    [14] G E Thompson, G C Wood. Porous anodic film formation on aluminium. Nature. 1981, 290: 230-232
    [15] J W Diggle, T C Downie, C W Groulding. Anodic oxide film on aluminum. Chem. Rev. 1969, 69: 365-405
    [16] Pu Lin, Chen Zhiqiang, Tan Chao. Microstructural Models of Alumina Nanotubes and Anodic Porous Alumina Film Formed in Sulphuric Acid. Chin. Phys. Lett., 2002, 19(3): 391-394
    [17] L Sui, Y C Cui, B Z Martinez, L, Perez, R, Sellmyer D J. Pore structure, barrier layer topography and matrix alumina structure of porous anodic alumina film. Thin Solid Films. 2002, 42(1-2): 64-69
    [18] Y F Mei, X L Wu, X F Shao, G S Huang, G G Siu. Formation mechanism of alumina nanotube array. Phys. Lett. A. 2003, 309: 109-113
    [19] Edward Furimsky. Effect of catalyst surface on decomposition of nitrogen heterorings during regeneration of hydroprocessing catalysts. Catalysis Today. 1998 , 46: 3-12
    [1] Minahan D M, Hoflund G B. Study of Cs-Promoted, α-Alumina-Supported Silver Ethylene-Epoxidation Catalysts: I. Characterization of the Support and As–Prepared Catalyst. J. Catal. 1996, 158(1): 109-115
    [2] Bond G C. The origins of particle size effects in heterogeneous catalysis. Surf. Sci. 1985, 156(2): 966-981
    [3] Che M, Bennett C O. The Influence of Particle Size on the Catalytic Properties of Supported Metals. Adv. Catal. 1989, 36(3), 55-171
    [4] Briot P, Auroux A, Jones D, Primet M. Effect of particle size on the reactivity of oxygen-adsorbed platinum supported on. Appl. Catal. 1990, 59(1): 141-152
    [5] Lee J K, Verykios X E, Pitchai R. Support and crystallite size effects in ethylene oxidation catalysis. Appl. Catal. 1989, 50(1): 171-188
    [6] Cheng S, Clearfield A. Oxidation of ethylene catalyzed by silver supported on zirconium phosphate: Particle size and support effect. J. Catal. 1985, 94(2): 455-467
    [7] Seyedmonir S R, Plischke J K, Vannice M A, Young H W. Ethylene oxidation over small silver crystallites. J. Catal. 1990, 123(2): 534-549
    [8] Macleod N, Keel J M, Lambert R M. The effects of catalyst aging under industrial conditions: ethylene oxide conversion over Ag-Cs/alpha-Al2O3 catalysts. Catal. Lett. 2003, 86(1-3): 51-56
    [9] 焦健,潘明虎,薛其坤,包信和. 硅表面纳米银团簇的氧助迁移行为. 催化学报. 2003, 24(6): 433-436
    [10] Kamat P V, Flumiani M, Hartland G V. Picosecond Dynamics of Silver Nanoclusters Light Induced Fragmentation and Photoejection of Electrons. J. Phys. Chem. B. 1998, 102: 3123-3128
    [11] Jin R, Cao Y, Mirkin C A, Kelly K L, Schatz G C, Zheng J. Atom-Resolved Imaging of Dynamic Shape Changes in Supported Copper. Nano Crystals Sci. 2001, 294: 1901-1903
    [12] Sun Y, Yin Y, Mayers B T, Herricks H, Xia Y. Uniform Silver Nanowires Can Be Synthesized by Reducing AgNO3 with Ethylene Glycol in the Presence of Seeds and Poly(vinyl pyrrolidone). Chem. Mater. 2002, 14: 4736-4745
    [13] Jana N R, Gearheart L, Murphy C J. Seed-mediated growth approach for shape-controlled synthesis of spheroidal and rod-like gold nanoparticles using a surfactant template Adv. Mater. 2001, 13: 1389-1393
    [14] Zhenli Zhang, Mark A. Horsch, Monica H. Lamm, Sharon C. Glotzer. Tethered Nano Building Blocks: Toward a Conceptual Framework for Nanoparticle Self-Assembly. Nano Lett. 2003, 3(10): 1341-1346
    [15] Sihai Chen, David L Carroll. Synthesis and Characterization of Truncated Triangular Silver Nanoplates. Nano. Lett. 2002, 2(9): 1003-1007
    [16] Z L Wang, SA Harfenist, I Vezmar, RL Whetten Superlattices of Self-Assembled Tetrahedral Ag Nanocrystals. Adv. Mater. 1998, 10: 808-812
    [17] Eychmuller A, Katsikas L, Weller H. Photochemistry of semiconductor colloids. 35. Size separation of colloidal cadmium sulfide by gel electrophoresis. Langmuir. 1990, 6: 1605-1608
    [18] Fischer CH, Weller H, Katsikas L, Henglein A. Photochemistry of colloidal semiconductors: HPLC investigation of small CdS particles. Langmuir. 1989, 5: 429-432
    [19] Murray C B, Norris D J, Bawendi M G. Synthesis and characterization of nearly monodisperse CdE (Sulfur, selenium, tellurium) semiconductornanocrystallites. J. Am. Chem. Soc. 1993, 115: 8706-8715
    [20] Suslick KS, Fang MM, Hyeon T. Sonochemical synthesis of ion colloids, J. Am. Chem. Soc. 1996, 118: 11960-11961
    [21] Ohtaki M, Oda K, Eguchi K, Arai H. Preparation of nanosized CdS particles using decomposition of P2S5 in a non-aqueous solvent. J. Chem. Soc. Chem. Commun. 1996 , 619: 1209-1213.
    [22] H Chik, J M Xu. Nanometric superlattices: non-lithographic fabrication, materials, and prospects. Mater. Sci. Engineer.ing. 2004, 43: 103-138
    [23] G Sauer, G Brehm, S Schneider, K Nielsch, R B Wehrspohn, J Choi, H Hofmeister, U Gosele. Highly ordered monocrystalline silver nanowire arrays. J. Appl. Phys. 2002, 91: 3243-3247
    [24] Kadir Aslan, Joseph R Lakowicz, Chris D Geddes. Metal-enhanced fluorescence using anisotropic silver nanostructures: critical progress to date. Anal Bioanal Chem. 2005, 382: 926-933
    [25] Lu Y, Yin Y, Li Z-Y, Xia Y. Colloidal Crystals Made of Polystyrene Spheroids: Fabrication and Structural/Optical Characterization. Langmuir. 2002, 18: 7722-7727
    [26] Evans U, Colavita P E, Doescher M S, Schiza M, Myrick M L. Construction and Characterization of a Nanowell Electrode Array. Nano Lett. 2002, 2(6): 641-645
    [27] Xia Z, Riester L, Sheldon B W, Curtin W A, Liang J, Yin A, Xu J M. Mechanical Properties of Highly Ordered Nanoporous Anodic Alumina Membrane Rev Adv Mater Sci. 2004, 6(2): 131-178
    [28] Sun Y, Xia Y. Gold and Silver Nanoparticles: A Class of Chromophores with Colors Tunable in the Range from 400 to 700 nm. Analyst. 2003, 128: 686-691
    [29] Evans U, Colavita P E, Doescher M S, Schiza M, Myrick M L. Nano Lett., 2002, 2(6): 641
    [30] Bukhtiyarov V I, Carley A F, Dollard L A, Roberts M W. XPS study of oxygen adsorption on supported silver: effect of particle size. Surf. Sci. 1997,381(2-3): 605-608
    [31] V I Bukhtiyarov, M G Slinko. Metallic nanosyatems in catalysis. Russian Chem. Rev. 2001, 70 (2): 147-159
    [32] Feliu Jr S, Barranco V. XPS Study of the Surface Chemistry of Conventional Hot-dip Galvanized Pure Zn, Galvanneal, and Zn-Al Alloy Coatings on Steel. Acta Materialia. 2003, 51(18): 5413-5419

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700