钒酸盐纳米发光材料和钛酸铋系光催化薄膜的制备及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
论文分为两部分。第一部分是钒酸盐纳米材料的制备、表征及发光性能研究,这是我们研究的主要内容;第二部分是钛酸铋系薄膜的制备、表征及光催化性能研究。
     发光材料是重要的功能材料之一,在照明、显示、荧光探测、光电器件等领域有着广泛的应用。随着纳米技术的迅速发展,纳米发光材料由于显示出许多体块材料所不可比拟的新的光学特性而成为人们关注和研究的热点。钒酸盐具有良好的化学稳定性和热稳定性,但对其荧光性能的研究相对较少,在本论文中,我们采用不同的合成方法制备了钒酸盐纳米发光材料,并系统地研究了其发光性质,以寻求具有高性能的新型发光材料。
     在第一章中,我们简单阐述了固体发光理论,对纳米材料的基本性质、纳米发光材料的制备方法、纳米发光材料的特性进行了简要介绍,并对钒酸盐发光材料的研究概况进行了总结。
     随着新型平板显示器的发展,要求具有更高发光效率、更纯发光颜色的发光材料,以稀土钒酸盐为基质的发光材料性能优良,因而引起人们较大的研究兴趣。在第二章中,我们采用沉淀法、燃烧法制备了以稀土钒酸盐(YVO_4、LaVO_4)为基质的纳米发光材料,并研究了其发光性质。①首次采用柠檬酸为燃料/还原剂、硝酸盐为氧化剂的溶胶-凝胶燃烧法成功制备了不同尺寸的YVO_4:Eu~(3+)纳米晶,并系统研究了制备参数,如退火温度、柠檬酸/硝酸盐的摩尔比及硝酸锂添加剂的量,对YVO_4:5mol%Eu~(3+)纳米颗粒发光性质的影响。研究表明,YVO_4:Eu~(3+)纳米晶的发光强度随退火温度的升高而升高,这表明在纳米尺寸范围内高的退火温度对发光强度是有利的;柠檬酸/硝酸盐的摩尔比是影响YVO_4:Eu~(3+)纳米晶的颗粒特征、发光强度的一个重要因素,获得最高发光强度的摩尔配比是5/2;共掺杂Li~+可以大大提高YVO_4:Eu~(3+)纳米晶的发光强度,同不加入Li~+的样品相比,加入5mol%Li~+的样品的发光强度增加了11倍。②采用沉淀法制备了YVO_4:Er~(3+)和YVO_4:Er~(3+),Mn~(2+)纳米晶,研究表明,由于浓度猝灭的影响,当Er~(3+)掺杂浓度为0.3mol%时,YVO_4:Er~(3+)样品553nm主发光峰的发光强度最强;随着退火温度的升高,颗粒的结晶度越来越好,YVO_4:Er_(0.003)~(3+)样品的发光强度越来越高;由于从Mn~(2+)到Er~(3+)存在着有效的能量传递,使得YVO_4:Er_(0.003)~(3+),Mn_(0.001)~(2+)样品的发光强度是YVO_4:Er_(0.003)~(3+)发光强度的1.5倍。③采用沉淀法制备了不同形貌及尺寸的LaVO_4:Eu~(3+)纳米晶,研究表明:反应pH值是影响LaVO_4:Eu~(3+)纳米晶的形貌及颗粒尺寸的重要因素,而形貌及颗粒尺寸的差异又导致LaVO_4:Eu~(3+)纳米晶发光强度的不同;在LaVO_4:Eu~(3+)纳米晶中,Eu~(3+)的荧光猝灭浓度为3mol%;由于存在Eu~(3+)→Dy~(3+)非辐射能量传递,在LaVO_4:Eu~(3+)纳米晶中共掺进Dy~(3+)后,Eu~(3+)的发光强度反而降低了。
     随着应用领域的增多,对荧光粉体的需求量也急剧增加,而以各种稀土材料为基质的荧光粉体的成本较高,这就需要寻找相对低廉的新材料来代替它们。由于碱土金属钒酸盐热稳定性高、结晶性和可见光透过性好,因此有可能是一种比较合适的发光基质。在第三章中,首次采用柠檬酸溶胶-凝胶燃烧法成功制备了以碱土钒酸盐(Ca_3(VO_4)_2、Sr_3(VO_4)_2)为基质的纳米发光材料并研究了其发光特性。对于Ca_3(VO_4)_2:Eu~(3+)发光材料,最佳退火温度是750℃,此温度下制备的Ca_3(VO_4)_2:Eu~(3+)的发光强度略大于同样的合成条件下制备的稀土钒酸盐YVO_4:Eu~(3+)的发光强度;在Ca_3(VO_4)_2基质中,Eu~(3+)的猝灭浓度为6mol%;当共掺Mn~(2+)时,由于存在Eu~(3+)→Mn~(2+)的能量传递,Eu~(3+)在Ca_3(VO_4)_2基质中的发光强度急剧降低。对于Sr_3(VO_4)_2:Eu~(3+)发光材料,由于高的退火温度导致颗粒的团聚,Sr_3(VO_4)2:Eu~(3+)的发光强度随退火温度的升高而降低;柠檬酸/硝酸盐的摩尔比是影响Sr_3(VO_4)_2:Eu~(3+)的颗粒特征、发光强度的一个重要因素,获得最高发光强度的摩尔配比是6/3;加入适量的硼酸助熔剂可以提高Sr_3(VO_4)_2:Eu~(3+)的发光强度,同不加入硼酸的样品相比,加入5mol%硼酸时所制备样品的发光强度增加了1.5倍。
     由于材料的性能与形貌有很大的关系,因此设计能对材料的形貌进行控制的合成方法一直是材料研究领域的重要课题。在第四章中,我们首次采用表面活性剂辅助的水溶液法制备了长棒状、近圆球状等不同形貌及大小的Pb_5(VO_4)_3OH纳米晶并对其形成机理和发光特性进行了研究。由于阴离子表面活性剂十二烷基苯磺酸钠(SDBS)和阳离子表面活性剂十二烷基二甲基苄基溴化铵(DDBAB)在溶液中所形成胶团的形状和大小、所带电荷及立体化学性质不同,造成在添加不同表面活性剂的溶液中所形成纳米晶的形貌及大小不同。Pb_5(VO_4)_3OH样品位于601nm处的发光峰来源于铅离子的~3P_1-~1S_0跃迁,而且晶粒的形态和大小影响到样品的发光效率。
     在环境污染治理技术中,可以利用太阳能降解有机污染物的半导体光催化技术被认为是净化环境的技术革命。随着全球性的环境污染日趋严重,开发新型半导体光催化剂和光催化剂的固载问题日益成为人们的研究热点。在第五章中,我们选择钛酸铋系氧化物(Bi_(12)TiO_(20)、Bi_4Ti_3O_(12)、Bi_2Ti_2O_7)为研究对象,采用化学溶液分解法(CSD)制备了钛酸铋系列薄膜并研究了其光催化性能。①首次采用CSD法制备了具有高光催化活性的软铋矿型Bi_(12)TiO_(20)薄膜。研究表明,500℃退火15分钟制备的涂膜层数为4的Bi_(12)TiO_(20)薄膜光催化活性最高,紫外光照射2h后,其对甲基橙的降解率就高达94%。此外,CSD法制备的Bi_(12)TiO_(20)薄膜具有较好的抗失活稳定性,且在载玻片上附着性良好,显示出极好的应用前景。②制备了铋系层状钙钛矿型Bi_4Ti_3O_(12)和(Bi_(1-x)La_x)_4Ti_3O_(12)薄膜,并首次系统研究了其光催化性能。研究表明,550℃退火15分钟制备的4层Bi_4Ti_3O_(12)薄膜光催化活性最高。La~(3+)掺杂可以提高Bi_4Ti_3O_(12)光催化薄膜的活性,La~(3+)的最佳掺杂浓度是20at%。紫外光照射2h后,(Bi_(0.8)La_(0.2))_4Ti_3O_(12)薄膜对甲基橙的降解率为83%。另外,XRD和AFM结果显示La~(3+)在(Bi_(1-x)La_x)_4Ti_3O_(12)薄膜的退火过程中起到晶粒生长抑制剂的作用。③制备了烧绿石型Bi_2Ti_2O_7薄膜和La掺杂的钛酸铋(BLT)薄膜,并首次系统研究了它的光催化性能。研究表明,550℃退火30分钟制备的6层Bi_2Ti_2O_7薄膜光催化活性最高;La~(3+)掺杂能促进钛酸铋从烧绿石相到层状钙钛矿相的相转变,因此La~(3+)可被认为是层状钙钛矿相的稳定剂;La~(3+)掺杂可以提高Bi_2Ti_2O_7光催化薄膜的活性,La~(3+)的最佳掺杂浓度是5at%,紫外光照射2h后,BLT薄膜对甲基橙的降解率为61%。另外,XRD和AFM结果显示La~(3+)在BLT薄膜的退火过程中也起到晶粒生长抑制剂的作用。
     在第六章中,我们对本论文的工作进行了总结。
This dissertation includes two parts. The first part involves the studies on preparation, characterization and photoluminescence performance of Vanadate Nanomaterials. This is the main content of this dissertation. The second part is focused on the studies on preparation, characterization and photo-catalytic performance of bismuth titanate series thin films.
     Luminescence materials have found wide applications in many fields, such as display, illumination and photo-electronic devices. With the rapid development of nanotechnology, nanoscaled luminescence materials have drawn much attention and been the hot topic because these materials have many miraculous properties compared with the bulk materials. Vanadates have excellent thermal and chemical stability. Their luminescence properties, however, have not drawn enough attention. In order to explore novel luminescence systems with high efficiency, in this thesis, we synthesized vanadate nanomaterials via different methods and studied their luminescence properties systemically.
     In Chapter 1, we briefly illustrated the corresponding luminescence theory of solids, the preparation methods and the unique properties of nanomaterials and nanosized luminescence materials. The research progress in the field of nanosized vanadate luminescence materials was also summarized.
     In Chapter 2, we studied the synthesis and characterization of nanosized rare earth vanadate (YVO_4 and LaVO_4) luminescence materials. (1)YVO_4: Eu~(3+) nanocrystals with different sizes have been synthesized via a citric acid sol-gel combustion method using citric acid as a fuel/reductant and nitrates as oxidants. Their PL properties have been also systematically studied. The influence of processing conditions, such as the calcination temperature, the citric acid/nitrates molar ratio and the amounts of lithium nitrate (LiNO_3) additive, on the powder characteristics and fluorescence properties of the resultant yttrium orthvanadate doped with 5mol% Eu~(3+) have been investigated. From the results, we can conclude: The emission intensity of Eu~(3+) in YVO_4: Eu~(3+) increases with the increasing of the calcination temperature (T), which shows that high calcination temperature is favorable for high luminescence intensity of the samples within nanometer scale. The citric acid/nitrates ratio (9) is a predominant factor for the growth of YVO_4: Eu~(3+) nanocrystals with different particles sizes, which affects their PL emission intensity greatly. The optimumφis 5/2 for the highest luminescence intensity. The luminescence intensity of this compound is enhanced remarkably by the incorporation of Li~+ ions. The luminescence intensity of YVO_4: Eu~(3+) with addition of 5mol% Li~+ ions increases as much as 11 times compared with the Li~+ ions-free YVO_4: Eu~(3+) sample. (2)YVO_4: Er~(3+) and YVO_4: Er~(3+), Mn~(2+) nanocrystals have been synthesized by precipitation means and the luminescence properties have been investigated systematically. The following conclusions can be obtained from our study: The emission intensity of Er~(3+)in the YVO_4 host at 553 nm can reach the optimum value when the concentration of Er~(3+)is 0.3 mol%, which is a result of concentration quenching. The crystallinity of YVO_4 particles improves gradually with increasing the annealing temperature, which leads to the increasing of the PL intensity of YVO_4: Er~(3+)o.oo3 samples. As the energy transfer from Mn~(2+) to Er~(3+) exists, the PL intensity of YVO_4: Er~(3+)_(0.003), Mn~(2+)_(0.001) is about 1.5 times of that of YVO_4:Er~(3+)_(0.003) (3) LaVO_4:Eu~(3+) nanocrystals with different sizes and morphologies have been synthesized via a precipitation method. The PL properties have also been systematically studied. From the results, we can conclude: The reaction pH is a predominant influencing factor for the growth of LaVO_4: Eu~(3+) nanocrystals with different sizes and morphologies, and their sizes and morphologies affect their PL emission intensities evidently. The emission intensity is highly dependent on the dopant concentration and the optimum concentration of dopant is 3mol%. The emission intensity of Eu~(3+) in LaVO_4 matrix is lowered after co-doped with Dy~(3+) due to the energy transfer from Eu~(3+) to Dy~(3+).
     In Chapter 3, we studied the combustion synthesis and characterization of nanosized alkaline earth vanadate (Ca_3(VO_4)_2 and Sr_3(VO_4)_2) luminescence materials. Ca_3(VO_4)_2:Eu~(3+), Mn~(2+) powders with different sizes and morphologies have been synthesized via a citric acid sol-gel combustion method using citric acid as a fuel/reductant and nitrates as oxidants. The PL properties have been also systematically studied. The optimized annealing temperature is 750℃in the present case. The emission intensity at 613 nm of Eu~(3+) in the Ca_3(VO_4)_2 host can reach the optimum value when the concentration of Eu~(3+) is 6 mol%, because of the existence of concentration quenching. The emission intensity of Ca_3(VO_4)_2: Eu~(3+), Mn~(2+) decreases owing to the energy transfer from Eu~(3+) to Mn~(2+). Sr_3(VO_4)_2: Eu~(3+) nanocrystals with different sizes and morphologies have also been synthesized via a citric acid combustion method. The effects of processing parameters, such as the molar ratio of citric acid to nitrates (φ), calcination temperature (T) and the amounts of the additive boric acid HBO_3 (B) on the powder characteristics and fluorescence properties of the resultant Sr_3(VO_4)_2 doped with 5% Eu~(3+) have been investigated. From the results, we can conclude: The molar ratio of citric acid to nitrates (φ) is a predominant influencing factor for the growth of Sr_3(VO_4)_2: Eu~(3+) nanocrystals with different particle sizes and emission intensities evidently. The optimumφis 6/3 for the highest luminescence intensity. The emission intensity of Sr_3(VO_4)_2 : Eu~(3+) decreases with the increasing of the calcination temperature (T), owing to the falling of the specific surface areas. The optimum addition amount of boric acid is 5 mol% of the total reagent. The emission intensity of Sr_3(VO_4)_2: Eu~(3+) increases 1.5 times compared with the particles prepared without the additive.
     In Chapter 4, rod-like or spherical Pb_5(VO_4)_3OH nanocrystals have been successfully prepared through a precipitation process in the presence of sodium dodecylbenzenesulfonate (SDBS) or dodecyldimethylbenzylammonium bromide (DDBAB), respectively. The effect of ion-surfactants in the formation process of nanocrystals may be correlated with the charge and stereochemistry properties of the surfactants. The 601 nm emission of the Pb_5(VO_4)_3OH nanocrystals is ascribed to the ~3P_1-~1S_0 transition of Pb~(2+) ions.
     As one of the novel pollutant treatment method, photocatalysis gains more and more attentions in the field of environmental purification. Developing new photocatalysts and the supported technique of photocatalysts have always been the hot topic of the researchers. In Chapter 5, we chose bismuth titanate (Bi_(12)TiO_(20) Bi_4Ti_3O_(12) and Bi_2Ti_2O_7) as the study target, prepared bismuth titanate series thin films by CSD(chemical solution decomposition) method and systematically examined their photocatalytic performance. (1)Sillenite Bi_(12)TiO_(20) thin films with high photocatalytic activity have been firstly prepared. When annealed at 500℃for 15 minutes, the prepared sample with 4 coatings exhibits the highest photocatalytic activity. After irradiation for 2 h, the methyl orange solution is degraded by 94% on the Bi_(12)TiO_(20) thin films annealed at 500℃for 15 minutes. Moreover, Bi_(12)TiO_(20) thin films prepared by CSD method show a good anti-inactivation stability and adhere well on the silicate substrate after they have been used for many times. (2)Bi_4Ti_3O_(12) and (Bi_(1-x)La_x)_4Ti_3O_(12) with bismuth-layered perovskite structure thin films were successfully prepared and their photocatalytic properties have been firstly investigated. When annealed at 550℃for 15 minutes, the prepared Bi_4Ti_3O_(12) thin films by 4 coating cycles exhibited the highest photocatalytic activity. La~(3+) doping could improve the photocatalytic activity of Bi_4Ti_3O_(12) thin films. An optimal La~(3+) dopant amount for (Bi_(1-x)La_x)_4Ti_3O_(12) thin films is 20 at%. After irradiation for 2h, the methyl orange solution was degraded by 83% on the (Bi_(0.8)La_(0.2))_4Ti_3O_(12) films. Additionally, substituted La~(3+) ions can act as a grain-growth inhibitor in perovskite (Bi_(1-x)La_x)_4Ti_3O_(12) thin films. (3)Dopant-free Bi_2Ti_2O_7(BT) thin films with pyrochlore structure and La-doped bismuth titanate (BLT) thin films were successfully prepared and their photocatalytic properties were firstly investigated. When annealed at 550℃for 30 minutes, the prepared BT thin films by 6 coatings cycles exhibited the highest photocatalytic activity. La~(3+) doping could improve the photocatalytic activity of BT thin films. An optimal La~(3+) dopant amount for BLT thin films is 5 at%. After irradiation for 2 h, the methyl orange solution was degraded by 61% on the BLT films annealed at 550℃for 30 minutes. In addition, substituted La~(3+) ions can act as a stabilizer of perovskite BLT and a grain-growth inhibitor in BLT thin films.
     In Chapter 6, a concise summary of our work was given.
引文
[1] 孙家跃,杜海燕,胡文祥,固体发光材料,化学工业出版社出版,2003.
    [2] 于立新,曹林,张东丽,天然矿物发光性能研究现状,世界地质,2000,19:342-345.
    [3] 高晓明,邱克辉,赵改青,傅茂媛,光致发光材料的研究与进展,科技进步与技术,2003:276-277.
    [4] 葛葆桂,电致发光原理及应用,测绘出版社,1985.
    [5] J. M. P. J. Verstegen, D. Radielovic, L. E. Vrenken, New generation of deluxe fluorescent lamps, combining an efficacy of 80lumens/W or more with a color-rendering index of approximately 85, J. Electrochen. Soc. 1974, 121:1627-1631.
    [6] J. M. P. J. Verstegen, A. L. N. Stevels, Relation between crystal structure and luminescence in β-alumian and magnetoplumbite phases, J. Lumin. 1974, 9: 406-414.
    [7] R. N. Bhargava, D. Gallagher, Optical properties of manganese-doped nanocrystals of ZnS, Phys. Rev. Lett. 1994, 72:416-419.
    [8] 张密林,安丽娟等,纳米发光材料的研究进展,化学工程师,2004,1:30-32.
    [9] 周永慧,林君,张洪杰,纳米发光材料研究的若干进展,化学研究与应用,2001,13:117-122.
    [10] 中国科学院、吉林物理所、中国科技大学《固体发光》编写组,固体发光,1976.3.
    [11] 许碧琼,吴玉通,新型发光材料,绿色长余辉磷光材料的研究,华侨大学学报(自然科学版),1995,16:300-333.
    [12] 方俊鑫,陆栋主编,固体物理学(下册),上海科学技术出版社出版,1981.
    [13] 黄波主编,固体材料及其应用,华东理工大学出版社,1994.
    [14] 张立德,牟季美,纳米材料和纳米结构,科学出版社,2002.
    [15] 杨剑,滕凤恩,纳米材料综述,材料导报,1997,11:6-32.
    [16] 李维芬,纳米材料的性质,现代化工,1999,19:44-17.
    [17] 张慰萍,尹民,稀土掺杂的纳米发光材料的制备和发光,2000,21:314-319.
    [18] B. M. Tissue, Synthesis and luminescence of lanthanide ions in nanoscale insulating hosts, Chem. Mater. 1998, 10: 2837.
    [19] 于江波,袁曦明,陈敬中,纳米发光材料的研究现状及进展,材料导报,2001,15:30-32.
    [20] 刘维平,邱定蕃,卢惠民,纳米材料制备方法及应用领域,化I矿物与加工,2003,12:1-5.
    [21] Y. Tan, X. Dai, Y. Li, D. Zhu, Preparation of gold, platinum, palladium and silver nanoparticles by the reduction of their salts with a weak reductant-potassium bitartrate, J. Mater. Chem. 2003, 13: 1069-1075.
    [22] P. D. Cozzoli, M. L. Curri, A. Agostiano, G.. Leo, M. Lomascolo, ZnO Nanocrystals by a Non-hydrolytic Route: Synthesis and Characterization, J. Phys. Chem. B 2003, 107: 4756-4762.
    [23] 丁子上,翁文剑,溶胶—凝胶技术制备材料的发展,硅酸盐学报,1993,5:443-445
    [24] Y. Lu, Y Yin, B. T. Mayers, Y Xia, Modifying the surface properties of superparamagnetic iron oxide nanoparticles through a sol-gel approach, Nano Lett. 2002, 2: 183-186.
    [25] C. liu, B. Zhou, A. J. Rondinone, Z. J. Zhang. Sol-Gel synthesis of free-standing ferroelectric lead zirconate titanate nanoparticles, J. Am. Chem. Soc. 2001, 123: 4344-4345.
    [26] 施尔畏,夏长泰,王步国等,水热法的应用及发展,无机材料学报,1996,2:67-71.
    [27] Y. T. Qian, Y. Su, Y. Xie, Hydrothermal preparation and characterization of nanocrystalline powder of sphalerite, Mater. Res. Bull. 1995, 30:601-605.
    [28] A. Dias, V. T. L. Buono, J. M. C. Vilela, Particle size and morphology of hydrothermally processed MnZn ferrites observed by atomic force microscope, J. Mater. Sci. 1997, 32:4715-4718
    [29] Q. Peng, Y. Dong, Z. Deng, X. Sun, Low-Temperature Elemental-Direct-Reaction Route to Ⅱ-Ⅵ Semiconductor Nanocrystalline ZnSe and CdSe, Inorg. Chem. 2001, 40: 3840-3841.
    [30] X. Chen, R. Fan, Low-Temperature Hydrothermal Synthesis of Transition Metal Dichalcogenides, Chem. Mater. 2001, 13: 802-805.
    [31] J. Yang, G. -H. Cheng, J. -H. Zeng, S. -H. Yu, X. -M. Liu, Y. -T. Qian, Shape Control and Characterization of Transition Metal Diselenides MSe2 (M = Ni, Co, Fe) Prepared by a Solvothermal-Reduction Process, Chem. Mater. 2001, 13: 848-853.
    [32] 殷声主编,燃烧合成,冶金工业出版社,2004.
    [33] 刘晃清,王玲玲,高勇,陈芳芳,低温燃烧法制备Y2 O3:Eu纳米材料的研究进展,材料导报,2005,19:128-130.
    [34] 李汶霞,殷声,低温燃烧合成陶瓷微粉,硅酸盐学报,1999,27:71-77.
    [35] T. Mimani, Instant synthesis of nanoscale spinel aluminates, J. Alloys Comp. 2001, 315: 123-128.
    [36] L. E. Shea, J. M. Mckittrick, O. A. Lopez, E. Sluzky, Synthesis of red-emitting, small particle size oxide phosphors using an optimized combustion process, J. Am. Ceram. Soc. 1996, 79: 3257-3265.
    [37] A. Feng, Z. A. Munir, Field-assisted self-propagating synthesis of SiC, J. Appl. Phys. 1994, 76:1927-1928.
    [38] T. V. Anuradha, S. Ranganathan, T. Mimanai, Combustion synthesis of nanostructured barium titanate, Scripta Mater. 2001, 44: 2237-2241.
    [39] F. Gu, S. F. Wang, M. K. Lu, G. J. Zhou, D. Xu, D. R. Yuan, Structure evaluation and highly enhanced luminescence of Dy~(3+)-doped ZnO nanocrystals by Li+ doping via combustion method, Langmuir 2004, 20:3528-3531.
    [40] Z. Fu, S. Zhou, Combustion synthesis and luminescence properties of nanocrystalline monoclinic SrAL_2O_4:Eu~(2+), Chem. Phys. Lett. 2004, 395: 285-289.
    [41] F. Li, K. Hu, J. Li, D. Zhang, G. Chen, Combustion synthesis of γ-lithium aluminate by using various fuels, J. Nuclear Mater. 2002, 300: 82.
    [42] G. C. Kim, Emission color tuning from blue to green through cross-relaxation in heavily Tb~(3+)-doped YA 103, Mater. Res. Bull. 2001, 36:1603-1608.
    [43] Z. X. Yue, L. T. Li, J. Zhou, Preparation and characterization of NiCuZn ferrite nanocrystalline powders by auto-combustion of nitrate-citrate gels, Mater. Sci. Eng. B-solid. 1999, 64: 68-72.
    [44] F. Gu, S. F. Wang, M. K. Lu, et al., Combustion synthesis and luminescence properties of Dy~(3+)-doped MgO nanocrystals, J. Cryst. Growth. 2004, 260: 507-510.
    [45] D. A. Fumo, M. R. Morelli, A. M. Segadaes, Combustion synthesis of calcium aluminates, Mater. Res. Bull. 1996, 31: 1243-1255.
    [46] G. Tessari, M. Bettinelli, A. Speghini, Synthesis and optical properties of nanosized powders: lanthanide-doped Y203, Appl. Surf. Sci. 1999, 144-145: 686-689.
    [47] 蒋绪川,软模板法硫化物纳米材料的合成研究,中国科学技术大学博士学位论文,2001.
    [48] 宋彩霞,王德宝,古国华等,表面活性剂有序聚集体在纳米材料制备中的应用,材料导报,2002,16(9):56-590.
    [49] 李玲,表面活性剂与纳米技术,化学工业出版社,2003.
    [50] 王淑芬,几种氧(硫)化物纳米材料的制备及发光性质的研究,山东大学博士学位论文,2006,4.
    [51] X. M. Sun, X. Chen, Z. X. Deng, Y. D. Li, A CTAB-assisted hydrothermal orientation growth of ZnO nanorods, Mater. Chem. Phys. 2002, 78: 99-104.
    [52] J. Lin, W. Zhou, C. J. O'Connor, Formation of ordered arrays of gold nanoparticles from CTAB reverse micelles, Mater. Lett. 2001, 49: 282-286.
    [53] Z. Li, J. Zhang, J. Du, Preparation and self-assembly of nanostructured BaCrOa from CTAB reverse microemulsions, Mater. Chem. Phys. 2005, 91:40-43
    [54] Y. Li, J. Wang, Z. Gu, Templated synthesis of CdS nanowires in hexagonal liquid crystal systems, Acta Physico-Chimica Sinica. 1999, 15: 1-4.
    [55] S. Q. Qiu, J. X. Dong, G. X. Chen, Preparation of Cu nanoparticles from water-in-oil microemulsions, J. Colloid Interface Sci. 1999, 216: 230- 234.
    [56] K. Riwotzki, M. Hasse. Wet-chemical synthesis of doped colloidal nanoparticles: YVO_4: (Ln=Eu,Sm,Dy). J. Phys. Chem. B1998, 102: 10129-10235.
    [57] A. Huignard, V. Buissette, A-C Franville, T. Gacoin, J-P Boilot. Emission Processes in YVO4: Eu Nanoparticles. J. Phys. Chem. B 2003, 107: 6754-6759.
    [58] K. Riwotzki, M. Hasse. Colloidal YVO_4: Eu and YP_(0.95)V_(0.05)O_4: Eu nanoparticles: luminescence and energy transfer process. J. Phys. Chem. B 2001, 105: 12709-12713.
    [59] Y. Q. Yu, S. H. Zhou, S. Y. Zhang, Luminescence of the compounds Y_(0.5-x)Li_(1.5)VO_4: (Dy, Eu) x, J. Alloy. Comp. 351: 84-86.
    [60] 张庆礼,郭常新,施朝淑,GdVO_4:Eu~(3+)的激发光谱特性研究,发光学报,2000,21:353-358.
    [61] F. C. Palilla, A. K. Levine, M. Rinkevics. J. Electrochem. Soc. 1965, 112: 776-779.
    [62] G. Panayiotakis, D. Cavouras, I. Kandarakis, C. Nomicos. A study of X-ray luminescence and spectral compatibility of europium-activatedyttrium- vanadate (YVO_4: Eu) screensfor medical imaging applications. Appl. Phys. A. Materials Science &Processing 1996, 62: 483-486.
    [63] K. S. Sohn, W. Zeon, H. Chang, S. K. Lee, H. D. Park, Combinatorial Search for New Red Phosphors of High Efficiency at VUV Excitation BasedontheYRO_4 (R=As, Nb, P, V) System, Chem. Mater. 2002, 14: 2140-2148.
    [64] 曾小青,洪广言,尤洪鹏等,YP_(1-X)V_xO_4:Eu~(3+)在真空紫外区发光的优化,发光学报,2001,22:55-58.
    [65] K. Riwotzki, M. Haase, Wet-Chemical Synthesis of Doped Colloidal Nanoparticles YVO_4: Ln (Ln = Eu, Sm, Dy, J. Phys. Chem. B. 1998, 12: 10129.
    [66] T. Minami, T. Utsubo, T. Miyata, Y. Suzuki, PL and EL properties of Tm-activated vanadium oxide-based phosphor thin films, Thin Solid Films 2003, 445: 377-381.
    [67] S. Shionoya, Y. M. William (Eds.), Phosphor Handbook, CRC Press, 1994.
    [68] M. Hasse, K. Riwotzki, H. Meyssamy, A. kornowki. Synthesis and properties of colloid lanthanide-doped nanocrystals. J. Alloy. Comp. 2000, 303-304:191-197.
    [69] H. W. Zhang, X. Y. Fu, S. Y. Niu, G. Q. Sun, and Qin Xin, Low temperature synthesis of nanocrystalline YVO_4:Eu via polyacrylamide gel method, J. Solid State Chem. 2004, 177: 2649-2654.
    [70] S. Erdei, R. Schlecht, D. Ravichand. Hydrolyzed colloid reaction (HCR) technique for phosphor powder preparation. Dispalys 1999, 19:173-178.
    [71] S. Erdei, F. W. Ainger, L. E. Cross, W. B. White. Preparation of Eu~(3+): YVO_4 red and Ce~(3+), Tb~(3+): LaPO_4 green phosphors by Hydrolyzed colloid reaction (HCR) technique, Mater. Lett. 1997, 30: 389-393.
    [72] V. Buissette, A. Huignard, T. Gacoin, J. -P. Boilota, Luminescence properties of YVO_4: Ln (Ln=d, Yb, and Yb-Er) nanoparticles, Surface Science 2003, 532-535: 444-449.
    [73] A. Huignard, V. Buissette, G. Laurent, T. Gacoin, J-P. Boilot. Synthesis and characterizations of YVO4: Eu colloids. Chem. Mater. 2002, 14: 2264-2269.
    [74] C. J. Jia, L. D. Sun, F. Luo, X. C. Jiang, L. H. Wei, C. H. Yan. Structural transformation induced improved luminescence properties for LaVO4:Eu nanocrystal. Appl. Phys. Lett. 2004, 84: 5305-5307.
    [75] A. Aia. Michael. Structure and luminescence of the phosphate-vanadates ofyttrium, Gadolinium, Lutetium and Lanthanum. J. Electrochem. Soc.1967, 114: 367-370
    [76]K. Riwotzki and M. Haase, Colloidal YVO4: Eu and YP0.95V0.05O4:Eu Nanoparticles: Luminescence and Energy Transfer Processes, J. Phys. Chem. B. 2001, 105: 12709-12713.
    [77] M. Yu, J. Lin, Y.H. Zhou, M.L. Pang, Luminescence properties of RP1-x VxO4 : A (R=Y, Gd, La; A=Sm 3+, Er3+, x=0, 0.5, 1)thin films prepared by Pechini sol-gel process, Thin Solid Films 2003, 444: 245-253.
    [78]T. Minami, T. Utsubo, T. Miyata, Y. Suzuki, PL and EL properties of Tm-activated vanadium oxide-based phosphor thin films, Thin Solid Films 2003,445:377-381.
    [79]H. W. Zhang, X. Y. Fu, S. Y . Niu, G. Q. Sun, Q. Xin, Photoluminescence of YVO_4: Tm phosphor prepared by a polymerizable complex method, Solid State Communications 2004, 132: 527-531.
    [80]W. P. Zhang, P. B. Xie, C. K. Duan, K. Yan, Preparation and size effect on concentration quenching of nanocrystalline Y_2SiO_5: Eu, Chem.Phys.Lett. 1998, 292:133-136
    [1] 中国科学院、吉林物理所、中国科技大学《固体发光》编写组,固体发光,1976.
    [2] K. Riwotzki and M. Haase, Colloidal YVO4: Eu and YP_(0.95)V_(0.05)O_4: Eu Nanoparticles: Luminescence and Energy Transfer Processes, J. Phys. Chem. B. 2001, 105: 12709-12713.
    [3] A. S. Osvaldo, A. C. Simone, R. I. Renata, A new procedure to obtain Eu~(3+) doped oxide and oxosalt phosphors, J. Alloys compd. 2000, 303-304:316-319.
    [4] G. Panayiotakis, D. Cavouras, I. Kandarakis, C. Nomicos, A study of X-ray luminescence and spectral compatibility of europium-activated yttrium-vanadate (YVO_4: Eu) screens for medical imaging applications Appl. Phys. A. 1996, 62: 483-486.
    [5] K. S. Sohn, W. Zeon, H. chang, S. K. Lee, H. D. Park, Combinatorial Search for New Red Phosphors of High Efficiency at VUV Excitation Based on the YRO_4 (R =As, Nb, P, V) System, Chem. Mater. 2002, 14: 2140-2148.
    [6] A. Huignard, V. Buissette, G. Laurent, T. Gacoin, J-P. Boilot. Synthesis and characterizations of YVO_4: Eu colloids. Chem. Mater. 2002, 14: 2264-2269.
    [7] S. Erdei, R. Schlecht, D. Ravichand. Hydrolyzed colloid reaction (HCR) technique for phosphor powder preparation. Dispalys. 1999, 19:173-178.
    [8] H. W. Zhang, X. Y. Fu, S. Y. Niu, G. Q. Sun, and Q. X, Low temperature synthesis of nanocrystalline YVO_4:Eu via polyacrylamide gel method, J. Solid State Chem. 2004, 177: 2649-2654.
    [9] F. M. Nirwanl, T. K. Gundu Rao, P. K. Gupta, and R. B. Pode, Studies of defects in YVO_4: Pb~(2+), Eu~(3+) red phosphor material, Phys. Stat. Sol. (a) 198 (2003) 447-456.
    [10] L. D. Sun, Y. X. Zhang, J. Zhang, C. H. Yan, Fabrication of size controllable YVO_4 nanoparticles via microemulsion-mediated synthetic process, Solide State Commun. 2002,124:35-38
    [11] Y. C. Han, S. P. Li, X. Y. Wang, X. M. Chen. Synthesis and sintering of nanocrystalline hydroxyapatite powders by citric acid sol-gel combustion method, Mater. Res. Bull. 2004, 39: 25-32.
    [12]Y. Q. Yu, S. H. Zhou, S. Y. Zhang, Luminescence of the compounds Y_(0.5-x)Li_(1.5)VO_4: (Dy~(3+), Eu~(3+))_x, J. Alloys Compd. 2003, 351: 84-86.
    [13]K. Riwotzki, M. Haase, Wet-Chemical Synthesis of Doped Colloidal Nanoparticles: YVO_4: Ln (Ln = Eu, Sm, Dy), J. Phys. Chem. B. 1998, 102: 10129-10135.
    [14]E. Antic-Fidancev, M. Lemaitre-Blaise, Optical evidence of the zircon-type lanthanum orthovanadate, Ann.Chim.Sci.Man. 1998, 23: 273-276.
    [15]K. Riwotzki and M.Hasse, J.Phys.Chem.B1998, 102: 10129-10135.
    [16]U. S. Sias a, E.C. Moreira b, E. Ribeiro c, The influence of the implantation temperature on the photoluminescence characteristics of Si nanocrystals embedded into SiO_2 matrix, Nucl. Instr. and Meth. B. 2004, 218: 405-409.
    [17]J. Mckittrick, L. E. Shea, C. F. Bacalski, E. J. Bosze, The influence of processing parameters on luminescent oxides produced by combustion synthesis, Displays 1999, 19: 169-172.
    [18]R. D. Purohit, B. P. Sharma, K. T. Pillai, A.K. Tyagi. Ultrafine ceria powders via glycine-nitrate combustion, Mater. Res. Bull. 2001, 36: 2711-2721.
    [19]V. C. Sousa, A.M. Segadaes, M.R. Morelli, R.H.G.A. Kiminami, Int. Combustion synthesized ZnO powders for varistor ceramics, J. Inorg. Mater. 1999, 1: 235-241.
    [20] L. D. Sun, C. Qian, C.S. Liao, X.L. Wang, Luminescent properties of Li~+ doped nanosized Y_2O_3: Eu, Solide State Commun. 2001, 119: 393-396.
    [21]L. H. Tian, S. I. Mho, Solide State Commun. Enhanced luminescence of SrTiO_3: Pr~(3+) by incorporation of Li~+ ion, 2003, 125: 647-651.
    [22] S. Biamino, C. Badini, Combustion synthesis of lanthanum chromite starting from water solutions: Investigation of process mechanism by DTA-TGA-MS, J. Eur. Ceram Soc. 2004, 24: 3021-3034.
    [23]Y. C. Han, S. P. Li, X. Y. Wang, X. M. Chen, Synthesis and sintering of nanocrystalline hydroxyapatite powders by citric acid sol-gel combustion method, Mater. Res. Bull. 2004, 39: 25-32.
    [24]N. Van Landschoot, E.M. Kelder, J. Schoonman, Citric acid-assisted synthesis and characterization of doped LiCoVO_4, Solid State Ionics. 2004, 166: 307-316
    [25] J. R. Liu, M. Wang, X. Lin, D. C. Yin, W. D. Huang. Citric acid complex method of preparing inverse spinel LiNiVC>4 cathode material for lithium batteries, J. Power Sources. 2002, 108:113-116.
    [26] V. Buissette, A. Huignard, T. Gacoin, and J.-P. Boilot, Luminescence properties of YVO_4: Ln (Ln=Nd, Yb, and Yb-Er) nanoparticles, Surface science. 2003, 532-535: 444-449
    [27] H. W. Zhang, X. Y Fu, S. Y. Niu, Photoluminescence of YVO_4: Tm phosphor prepared by a polymerizable complex method, Solid State commun. 2004, 132: 527-531.
    [28] J. L. Doualan, P. Le Boulanger, S. Girard, Excited state absorption of erbium-doped laser crystals, J. Lumin. 1997, 72-74: 179-182.
    [29] A. S. Oliveira, M. T. de Araujo, A. S. Gouvia-Neto, Upconversion fluorescence spectroscopy of Er~(3+)/Yb~(3+)-doped heavy metal Bi_2O_3-Na_2O-Nb_2O_5-GeO_2 glass,J.Appl. Phys. 1998, 83: 604-606.
    [30] R. Reisfeld, E. Greenberg, Energy transfer between managanese(II) and erbium(III) in various fluoride glasses, J.Solid State of chem. 53(1984) 236-245.
    [31]S. F. Wang, F. Gu, M. K. Lu, Preparation and luminescent characteristics of Mn~(2+), Er~(3+) co-doped ZrO_2 nanocrystals, J. Cryst. Growth. 2003, 257: 84-88.
    [32] W. L. Liu, H. R. Xia, H. Han, X. Q. Wang, Electrical properties of Sm-doped bismuth titanate thin films prepared on Si (100) by metalorganic decomposition, Mater. Res. Bull. 2004, 39: 1215-1221.
    [33] F. C. D. Lemos, D. M. A. Melo, J. E. C. da Silva, Photoluminescence of Er~(3+) doped in PbTiO_3 perovskite-type obtained via polymeric precursor method, Opt. Commun. 2004, 231: 251-255.
    [34] S. F. Wang, F. Gu, M. K. Lii, C. F. Song, Photoluminescence of sol-gel derived ZnTiO_3:Ni~(2+) nanocrystals, Chem. Phys. Lett. 2003, 373: 223-227.
    [35] C. Shen, Q. Liu, Q. F. Liu, Photoluminescence properties of Er~(3+)-doped Ba_(0.5)Sr_(0.5)TiO_3 prepared by sol-gel synthesis, Mater. Sci. Eng. B 111(2004) 31-35.
    [36] A. Huignard, V. Buissette, A. C. Franville, Emission Processes in YVO_4: Eu Nanoparticles, J. Phys. Chem. B. 2003, 107: 6754-6759.
    [37] A. Huignard, T. Gacoin, J. P. Boilot, Synthesis and Luminescence Properties of Colloidal YVO_4: Eu Phosphors, Chem. Mater. 2000, 12: 1090-1094.
    [38] E. Cavalli, M. Bettinelli, A. Belletti, A. Speghini, Optical spectra of yttrium phosphate and yttrium vanadate single crystals activated with Dy~(3+), J. Alloys Compd. 2002, 341: 107-110.
    [39] L. Z. Zhang, Z. S. Hu, Z. B. Lin, G. F Wang, Growth and spectral properties of Nd~(3+): LaVO_4 crystal, J. Cryst. Growth. 2004, 260: 460-463.
    [40] S. J. Chen, J. H. Zhou, X.T. Chen, J. Li, L. H. Li, Fabrication of nanocrystalline ZnWO_4 with different morphologies and sizes via hydrothermal route, Chem. Phys. Lett. 2003, 375: 185-190.
    [41] S. Buddhudu, M. Morita, Temperature-dependent luminescence and energy transfer in europium and rare earth codoped nanostructured xerogel and sol-gel silica glasses, J. Lumin. 1999, 83-84: 199-203.
    [42] E. Antic-Fidancev, M. Lemaitre-Blaise, Optical evidence of the zircon-type lanthanum orthovanadate, Ann. Chim. Sci. Man. 23(1998)273-276.
    [43] Pramod K. Sharma, R. Nass, H. Schmidt, Effect of solvent, host precursor, dopant concentration and crystallite size on the fluorescence properties of Eu(Ⅲ) doped yttria, Opt. Mater. 1998, 10: 161-169.
    [44] C. F. Song, P. Yang, M. K. Lu, D. Xu, Enhanced blue emission from Eu, Dy co-doped sol-gel Al_2O_3-SiO_2 glasses, J. Phys. Chem. Solids. 2003, 64: 491-494.
    [1] A. Grzechnil, P. F. Mcmillan, High Pressure Behavior of Sr_3(VO_4)_2 and Ba_3(VO_4)_2, J. Solid State Chem. 1997, 132: 156-162.
    [2] L. D. Merkle, A. Pinto, H. Verdum, Laser action from Mn5+ in Ba_3(VO_4)_2, Appl. Phys. Lett. 1992, 61: 2386-2388.
    [3] B. Buijsse, J. Schmidt, I. Y. Chan, D. J. Singl, Electron spin-echo-detected excitation spectroscopy of manganese-doped Ba_3(VO_4)_2: Identification of tetrahedral Mn~(5+) as the active laser center, Phys. Rev. B. 1995, 51:6215-6220.
    [4] A. Grzechnil, P. F. Mcmillan, In situ high pressure Raman spectra of Ba_3(VO_4)_2, Solid State Commun. 1997, 102: 569-574.
    [5] S. Biamino, C. Badini, Combustion synthesis of lanthanum chromite starting from water solutions: Investigation of process mechanism by DTA-TGA-MS, J. Eur. Ceram. Soc. 2004, 24: 3021-3034.
    [6] Y. C. Han, S. P. Li, X. Y. Wang, X. M. Chen. Synthesis and sintering of nanocrystalline hydroxyapatite powders by citric acid sol-gel combustion method, Mater. Res. Bull. 2004, 39: 25-32.
    [7] B. Liu, C.S. Shi, Q.L. Zhang, Temperature dependence of GdVO_4:Eu~(3+) luminescence, J. Alloys Compd. 2002, 333: 215-218.
    [8] N. Van Landschoot, E.M. Kelder, J. Schoonman, Citric acid-assisted synthesis and characterization of doped LiCoVO_4, Solid State ionics 2004, 166: 307-316.
    [9] M. Haase, K. Riwotzki, H. Meyssamy, A.kornowski, Synthesis and properties of colloidal lanthanide-doped nanocrystals, J. Alloys Compd. 2000, 303-304: 191-197.
    [10]A. Huignard, V. Buissette, A-C. Franville, J. Phys. Chem. B 2003, 107: 6754-6759.
    [11]K. Riwotzki, M. Haase, Wet-Chemical Synthesis of Doped Colloidal Nanoparticles: YVO_4: Ln (Ln = Eu, Sm, Dy), J. Phys. Chem. B 1998, 102: 10129-10135.
    [12]U. S. Sias, E. C. Moreira, E. Ribeiro, H. Boudinov, The influence of the implantation temperature on the photoluminescence characteristics of Si nanocrystals embedded into SiO_2 matrix, Nucl. Instr. and Meth. B 2004, 218: 405-409.
    [13] S. F. Wang, F. Gu, M. K. Lu, C.F. Song, Photoluminescence of sol-gel derived ZnTiO_3: Ni~(2+) nanocrystals, Chem. Phys. Lett. 2003, 373: 223-227.
    [14]W. G. Zou, Z.Y. Yang, M. k. Lu, Effect of Mn~(2+) ions on the photoluminescence characteristics of Eu~(3+)-doped Zn_3(BO_3)_2 nanoparticles, Displays 2005, 26: 143-146.
    [15]R. Reisfeld, E. Greenberg, Energy transfer between managanese(II) and erbium(III) in various fluoride glasses, J. Solid State Chem. 1984, 53: 236-245.
    [16]S. F. Wang, F. Gu, M. K. Lii, Preparation and luminescent characteristics of Mn~(2+), Er~(3+) co-doped ZrO_2 nanocrystals, J. Cryst. Growth. 2003, 257: 84-88.
    [17]S. H. M. Poort, A. Meijerink, G Blasse, On the luminescence of GdF_3: Ce~(3+), Mn~(2+), Solid State Commun. 1997, 103: 537-540.
    [18]N. El Jouhari, G. Parent, G Le Flem, Ce~(3+)→Mn~(2+) energy transfer in the LaMgB_5O_(10): Ce, Mn photoluminescent glasses, Ann. Chim. Sci. Mat. 1998, 23: 267-271.
    [19]S. W. Lu, B. I. Lee, Z. L. Wang, Synthesis and photoluminescence enhancement of Mn~(2+)-doped ZnS nanocrystals, J. Lumin. 2001, 92: 73-78.
    [20] S. P. Simner, J. S. Hardy, J.W. Stevenson, Sintering of lanthanum chromite using strontium vanadate, Solid State Ionics 2000, 128: 53-63.
    [21]Y. C. Han, S. P. Li, X. Y. Wang, X. M. Chen. Synthesis and sintering of nanocrystalline hydroxyapatite powders by citric acid sol-gel combustion method, Mater. Res. Bull. 2004, 39: 25-32.
    [22] J. R. liu, M. wang, X. Lin, D. C. Yin, W. D. Huang. Citric acid complex method of preparing inverse spinel LiNiVO_4 cathode material for lithium batteries, J. Power sources. 2002, 108: 113-116.
    [23] Y. Q. YU, S. H. Zhou, S. Y. Zhang, Luminescence of the compounds Y_(0.5-x)Li_(1.5)VO_4: (Dy~(3+), Eu~(3+))_x, J. Alloys Compd. 2003, 351: 84-86.
    [24] S. Buddhudu, M. Morita, Temperature-dependent luminescence and energy transfer in europium and rare earth codoped nanostructured xerogel and sol-gel silica glasses, J. Lumin. 1999, 83-84: 199-203.
    [25] J. McKittrick, L. E. Shea, C. F. Bacalski, E. J. Bosze, The influence of processing parameters on luminescent oxides produced by combustion synthesis, Displays 1999, 19: 169-172.
    [26] R. D. Purohit, B. P. Sharma, K. T. Pillai, A.K. Tyagi. Ultrafine ceria powders via glycine-nitrate combustion, Mater. Res. Bull. 2001, 36: 2711-2721.
    [27] V. C. Sousa, A. M. Segadaes, M. R. Morelli, Combustion synthesized ZnO powders for varistor ceramics, Int. J. Inorg. Mater. 1999, 1: 235-241.
    [28] D. S. Jung, S. K. Hong, H. J. Lee, Y. C. Kang, Effect of boric acid flux on the characteristics of (CeTb)MgAl_(11)O_(19) phosphor particles prepared by spray pyrolysis, J. Alloys Compd. 2005, 398: 309-314.
    [29]Y. C. Kang, H. S. Roh, S. B. Park, Sodium Carbonate Flux Effects on the Luminescence Characteristics of (Y_(0.5)Gd_(0.5))_2O_3:Eu Phosphor Particles Prepared by Spray Pyrolysis, J. Am. Ceram. Soc. 2001, 84: 447-449.
    [1] M. P. Pileni, Nanosized Particles Made in Colloidal Assemblies, Langrnuir 1997, 13: 3266-3276.
    [2] M. P. Pileni, Nanocrystals: fabrication, organization and collective properties, C. R. Chimie. 2003, 6: 965-978.
    [3] A. P. Alivisatos, Semiconductor Clusters, Nanocrystals, and Quantum Dots, Science 1996, 271: 933-937.
    [4] Y. C. Han, S. P. Li, X. Y. Wang, X. M. Chen. Synthesis and sintering of nanocrystalline hydroxyapatite powders by citric acid sol-gel combustion method, Mater. Res. Bull. 2004, 39: 25-32.
    [5] C. Pacholaski, A. Kornowski, H. Weller, Self-Assembly of ZnO: From Nanodots to Nanorods, Angew. Chem. Int. Ed. 2002, 41: 1188-1191.
    [6] J. J. Zhu, Q. F. Qiu, H. Wang, J. R. Zhang, J. M. Zhu, Z. Q. Chen, Synthesis of silver nanowires by a sonoelectrochemical method, Inorg. Chem. Commun. 2002, 5: 242-244.
    [7] Y. D. Wang, C. L. Ma, X .D. Sun, H. D. Li, Inorg. Chem. Commun. 2002, 5: 751-755.
    [8] B. Xie, Y. Wu, Y. Jiang, F. Q. Li, J. Wu, S. W. Yuan, W.C. Yu, Y. T. Qian, Shape-controlled synthesis of BaWO4 crystals under different surfactants, J. Cryst. Growth. 2002, 235: 283-286.
    [9] L. D. Sun, Y. G Zhang, J. zhang, C. H. Yan, C. S. Liao, Y. Q. Lu, Fabrication of size controllable YVO_4 nanoparticles via microemulsion-mediated synthetic process, Solid State Commun. 2002, 124: 35-38.
    [10]Y. K. Liu, D. D. Hou, G G Wang, Synthesis and characterization of SnS nanowires in cetyltrimethylammoniumbromide (CTAB) aqueous solution, Chem. Phys. Lett. 2003, 379: 67-73.
    [11]U. Rambabu, D. P. Amalnerkar, B. B. Kale, S. Buddhudu, Fluorescence spectra of Eu~(3+)-doped LnVO_4 (Ln = La and Y) powder phosphors, Mater. Res. Bull. 2000, 35: 929-936.
    [12]M.Yu, Y. H. Zhou, M. L. Pang, Luminescence properties of RP_(1-x)V_xO_4: A (R=Y, Gd, La; A=Sm~(3+), Er~(3+) x=0, 0.5, 1) thin films prepared by Pechini sol-gel process, Thin Solid Films 2003, 444: 245-253.
    [13]L. Z. Zhang, Z. Hu, Z. B. Lin, G F. Wang, Growth and spectral properties of Nd~(3+):LaVO_4 crystal, J. Cryst. Growth. 2004, 260: 460-463.
    [14]Y. T. Kim, Gopukumar, K. B. Kim, B. W. Cho, Novel synthesis of high-capacity cobalt vanadate for use in lithium secondary cells, J. Power sources. 2002, 112: 504-508.
    [15]E. Andrukaitis, Lithium intercalation into the copper, nickel or manganese vanadates Me(VO_3)_2 · yH2O, J. Power sources. 1997, 68: 652-655.
    [16]E. Andrukaitis, J. P. Cooper, J. H. Smit, Lithium intercalation in the divalent metal vanadates MeV_2O_6 (Me=Cu, Co, Ni, Mn or Zn), J. Power sources. 1995, 54: 465-469.
    [17]S. Prasad, S. B. Goncalves, Electrometric studies on the system acid-vanadate and the formation of heavy metal vanadates, Catal. Today. 2000, 57: 339-348.
    [18] J. Ye, Z. Zou, H. Arakawa, M. Oshikir, Correlation of crystal and electronic structures with photophysical properties of water splitting photocatalysts InMO_4 (M=V~(5+), Nb~(5+), Ta~(5+)), J. Photochem. Photobiol. A 2002, 148: 79-83.
    [19]H. Harada, C. Hosoki, A. Kudo, Overall water splitting by sonophotocatalytic reaction: the role of powdered photocatalyst and an attempt to decompose water using a visible-light sensitive photocatalyst, J. Photochem. Photobiol. A 2001, 141:219-224.
    [20] A. Benmoussa, M. Mikou, J. L. Lacout, Lead phosphate hydroxyapatite high-performance liquid chromatography, J. Chromatogr. A. 1995, 694: 486-491.
    [21]Y. A. Hizhnyi, S. G Nediko, Investigation of the luminescent properties of pure and defect lead tungstate crystals by electronic structure calculations, J. lumin. 2003,102-103: 688-693.
    [22]S. G. Dixit, A. R. Mahadeshwar, S. K. Haram, Some aspects of the role of surfactants in the formation of nanoparticles, Colloids Surf. A: Physicochem. Eng. Aspects. 1998, 133: 69-75.
    [23] H. Wei, Q. Shen, Y. Zhao, D. J. Wang, D. F. Xu, Crystallization habit of calcium carbonate in the presence of sodium dodecyl sulfate and/or polypyrrolidone, J. Cryst. Growth. 2004, 260: 511-516.
    [24]L.Yan, Y. D. Li, Z. X. Deng, J. Zhuang, X. M. Sun, Surfactant-assisted hydrothermal synthesis of hydroxyapatite nanorods, Int. J. Inorg. Mater. 2001, 3: 633-637.
    [25] X. M. Sun, X. Chen, Z. X. Deng, Y. D. Li, A CTAB-assisted hydrothermal orientation growth of ZnO nanorods, Mater. Chem. Phys. 2003,78: 99-104
    [26] H. F. Folkerts, M. A. Hamatra, G Blasse, The luminescence of Pb~(2+) in alkaline earth sulfates, Chem. Phys. Lett. 1995, 246: 135-138.
    [27] H. F. Folkerts, M. A. Hamatra, G Blasse, Different types of s2 ion luminescence in compounds with eulytite structure, Chem. Phys. Lett. 1996, 249: 59-63.
    [28] H. F. Folkerts, M. A. Hamatra, G. Blasse, The luminescence of Pb~(2+) in lead compounds with one-dimensional chains, Solid State Commun. 1996, 99: 655-658.
    [29] H. F. Folkerts, M. A. Hamatra, G Blasse, The luminescence of Pb~(2+) in alkaline earth sulfates, Chem. Phys. Lett. 1995, 246: 135-138.
    [30]F. Gu, M. K. Lu, S. F. Wang, Y. X. Qi, C.F. Song, GJ. Zhou, Luminescence characteristics of ZrO_2: Pb nanopowders, Appl. Phys. A, 2004, 78: 1059-1061.
    [31]H. F. Folkerts, J. Zuidema, G Blasse, Different types of s2 ion luminescence in compounds with eulytite structure, Chem. Phys. Lett. 1996, 249: 59-63.
    [32] H. F. Folkerts, F. Ghianni, G. Blasse, In alkaline-earth search for D-level emission of Pb~(2+) in alkaline-earth aluminates and gallates, J. Phys. Chem. Solids, 1996, 57: 1659-1665.
    [1] 高濂,郑珊,张青红,纳米氧化钛光催化材料及应用,化学工业出版社,2002.
    [2] A. L Linsebigler, G. Q. Lu, J. T. Yates, Photocatalysis on TiO2 Surfaces: Principles, Mechanisms, and Selected Results, Chem. Rev. 1995, 95: 735-758.
    [3] 张彭义,余刚,蒋展鹏,半导体光催化剂及其改性技术进展,环境科学进展,1997,5(3):1-10.
    [4] 于向阳,梁文,程继健.提高二氧化钛催化性能的途径.硅酸盐通报,2000(1):53-57.
    [5] 张金龙,陈峰,何斌,光催化,华东理工大学出版社,2004.
    [6] H. Harada, T. Ueda, T. J. Sakata, Semiconductor effect on the selective photocatalytic reaction of α-hydroxycarboxylic acids, Phys. Chem., 1989, 93: 1542-1548.
    [7] A. L. Pruden, D. F. Ollis, Degradation of chloroform by photoassisted heterogeneous catalysis in dilute aqueous suspensions of titanium dioxide, Environ. Sci. Technol., 1983, 17: 628-631.
    [8] 赵洁,邱克辉,董宏伟,锐钛型纳米TiO_2光催化降解与环保应用研究进展,2006,4:50-55.
    [9] 韩世同,习海玲,史瑞雪等,半导体光催化研究进展与展望,化学物理学报,2003,16:339-349.
    [10] 王光辉,纳米TiO_2光催化技术及其在环境污染治理中的应用,环境科学与技术,2001,6:18-20.
    [11] 王彦敏,TiO_2纳米光催化剂的改性及其降解有机物的研究,山东轻工业学院硕士论文,2005.
    [12] J. G. Yu, X. J. Zhao. Effect of surface treatment on the photocatalytic activity and hydrophilic property of the sol-gel derived TiO_2 thin films, Mater. Res. Bull. 2001, 36:97-107.
    [13] 余家国,赵修建,催化学报,多孔TiO_2薄膜的表面微结构对甲基橙光催化脱色的影响,2000,21(3):213-216.
    [14] 陈中颖,余刚,张彭义等,碳黑改性纳米TiO_2薄膜光催化降解有机污染物,科学通报,2001,46(23):1961-1965.
    [15] 陈中颖,余刚,张彭义等,碳黑改性T iO_2薄膜光催化剂的研制,环境污染与 防治,2002,24(3):150-153.
    [16] 刘献杰,闫军,杜仕国等,纳米二氧化钛光催化薄膜的研究进展,材料导报,2005,19:95-97.
    [17] 赵洁,邱克辉,董宏伟,锐钛型纳米TiO_2光催化降解与环保应用研究进展,中国非金属矿工业导刊,2006,4:50-55.
    [18] 李炜罡,霍冀川,刘树信等,负载型TiO_2光催化剂研究进展,陶瓷学报,2004,25:133-138.
    [19] 王祖鸩,张凤宝,张前程,负载型TiO_2光催化剂的研究进展,化学工业与工程,2004,21:248-254.
    [20] 余灯华,廖世军,江国东,几种新型光催化剂及其研究进展,工业催化,2003,11:48-51.
    [21] 黄智等,光催化剂新技术研究进展,现代化工,2005,25增刊,89-93.
    [22] 杨娟,无机层状化合物及其柱撑产物光解水制氢,江苏大学学报(自然科学版),2003,24:53-56.
    [23] Z. G. Zou and H. Arakawa, Direct water splitting into H_2 and O_2 under visible light irradiation with a new series of mixed oxide semiconductor photocatalysts, Journal of Photochemistry and PhotobiologyA: Chemistry 2003, 158: 145-162.
    [24] 涂海滨,张高科,铋系光催化剂研究进展,天津化工,2006,20:11-13
    [25] A. Kudo, S. Hijii, H_2 or O_2 Evolution from Aqueous Solutions on Layered Oxide Photocatalysts Consisting of Bi~(3+) with 6s~2 Configuration and d~0 Transition Metal Ions, Chem. Lett. 1999, 28: 1103-1113.
    [26] 许效红,姚伟峰,张寅等,钛酸铋系化合物的光催化性能研究,化学学报,2005,63:5-10.
    [27] 周爱秋等,Bil_2TiO_(20)纳米粉体的制备及其光吸收特性研究,化学物理学报,2004,17:305-308.
    [28] W. F. Yao, H. Wang, X. H. Xu, Characterization and photocatalytic properties of Ba doped Bi_(12)TiO_(20), J. Mol. Catal. A: Chem. 2003, 202: 305-311.
    [29] W. F. Yao, H. Wang, X. H. Xu, Synthesis and photocatalytic property of bismuth titanate Bi_4Ti_3O_(12), Mater. Lett. 2003, 57:1899-1902.
    [30] W. F. Yao, H. Wang, X. H. Xu, Photocatalytic property of Zn-doped Bi_(12)TiO_(20), J. Mater. Sci. Lett. 2003, 22: 989-992.
    [31] W. F. Yao, H. Wang, X. H. Xu, Photocatalytic property of bismuth titanate Bi_(12)TiO_(20) crystals, Appl. Catal. A: Gen. 2003, 243:185-190.
    [32] W. F. Yao, H. Wang, X. H. Xu, Preparation and photocatalytic property of La (Fe)-doped bismuth titanate, Appl. Catal. A: General. 2003, 251: 235-239.
    [33] W. F. Yao, H. Wang, X. H. Xu, S. X. Shang, Synthesis and photocatalytic property of bismuth titanate Bi_4Ti_3O_(12), Mater. Lett. 2003, 57:1899-1902.
    [34] W. F. Yao, X. H. Xu, H. Wang, J. T. Zhou, Photocatalytic property of perovskite bismuth titanate, Appl. Catal. B: Environ. 2004, 52:109-116.
    [35] W. F. Yao, H. Wang, X. H. Xu, J. T. Zhou, Photocatalytic property of bismuth titanate Bi_2Ti_2O_7, Appl. Catal. A: General. 2004, 259: 29-33.
    [36] I. V. Kityk, A. Majchrowski, J. Ebothe, B. Sahraoui, Nonlinear optical effects in Bi_(12)TiO_(20) nanocrystallites embedded within a photopolymer matrix, Opt. Commun. 2004, 236: 123-129.
    [37] J. Zmija, M. T. Borowiec, A. Majchrowsk, H. Szymczak, T. Zayarnyuk, Highly photoconducting sillenite single crystals, Cryst. Eng. 2002, 5: 273-282.
    [38] A. Anand, C. S. Narayanamurthy, Faraday rotation measurement with photorefractive Bi_(12)TiO_(20), Opt. Laser. Technol. 2002, 34: 605-611.
    [39] V. Marinovaa, Mei-Li Hsieha, Shiuan Huei Linb, Ken Yuh Hsu, Effect of ruthenium doping on the optical and photorefraetive properties of Bi_(12)TiO_(20) single crystals, Opt. Commun. 2002, 203: 377-384.
    [40] S. C. Jung, S. J. Kim, N. Imaishi, Effect of TiO_2 thin film thickness and specific surface area by low-pressure metal-organic chemical vapor deposition on photocatalytic activities, Appl. Catal. B: Environ. 2005, 55: 253-257.
    [41] J. Harjuoja, S. Vayrynen, M. Putkonen, Crystallization of bismuth titanate and bismuth silicate grown as thin films by atomic layer deposition, J. Cryst. Growth. 2006, 286: 376-383.
    [42] X. M. Wu, S. W. Wang, H. Wang, Z. Wang, Preparation and characterization of Bi_2Ti_2O_7 thin films by chemical solution deposition technique, Thin Solid Films 2000, 370: 30-32.
    [43] C. H. Yang, Z. Wang, J. F. Hu, Characteristics of metal-ferroelectric-insulator- semiconductor structure using a Nd-doped Bi_4Ti_3O_(12) ferroelectric layer, J. Cryst. Growth. 2004, 267: 543-547.
    [44] X. N. Yang, B. B. Huang, H. B. Wang, Leakage current behavior of La-doped Bi_2Ti_2O_7 thin films by a chemical solution deposition method, Mater. Lett. 2004, 58: 3725-3728.
    [45] W. F. Yao, H. Wang, S. X. Shang, Preparation and characterization of bismuth titanate Bi_(12) TiO_(20) nanocrystals, J. Mater. Sci. Lett. 2002, 21: 1803-1805.
    [46]L. I. Maissel, R. Glang, Eds, 《Handbook of Thin Film Technology》 (MaGraw-Hill, New York) 1970.
    [47] T. D. Bonifield, 《 In deposition Technologies of Film and Coatings: Developments and Applications》 R. F. Bunshah, Ed., (Noyles, Park Ridge, NJ) 1982.
    [48] R. W. Vest, Metallo-organic decomposition (MOD) processing of ferroelectric and electrooptical films: a review, Ferroelectrics 1990, 102: 53-68.
    [49]Z. P. Cao, A. L. Ding, X. Y. He, W. X. Cheng, P. S. Qiu, Preparation and characteristics of nanoporous PLZT ferroelectric thin films prepared via a one-step CSD process, J. Cryst. Growth 2005, 273: 489-493.
    [50] W. F. Yao, H. Wang, X. H. Xu, J. T. Zhou, X. N. Yang, Y. Zhang, S. X. Shang, M. Wang, Sillenites materials as novel photocatakysts for methyl orange decomposition, Chemical physics letters 2003, 377: 501-506.
    [51]S. W. Wang, H. Wang, X. H. Xu, Y. Hou, S. X. Shang, C.L. Wang, J. F. Hu, M. Wang, Pb(Zr,Ti)O_3 thin films prepared on PbTiO_3/Si(100) by chemical solution decomposition technique, Ferroelectrics 2001, 252: 225-232.
    [52] P. C. Joshi, S. B. Krupanidhi, Structural and electrical studies on rapid thermally processed ferroelectric Bi_4Ti_3O_(12) thin films by metallo-organic solution deposition, J. Appl. Phys., 1992, 72: 5827-5833.
    [53] P. C. Joshi, S. B. Desu, Structural and electrical characteristics of rapid thermally processed ferroelectric Bi_4Ti_3O_(12) thin films prepared by metalorganic solution deposition technique, J. Appl. Phys. 1996, 80: 2349-2351.
    [54] P. C. Joshi, S. Stowell, S. B. Desu, Structural and electrical properties of crystalline (1-x)Ta_2O_(5-x)Al_2O_3 thin films fabricated by metalorganic solution deposition technique, Appl. Phys. Lett. 1997, 71: 1341-1343.
    [55] O. A. Fouad, A. A. Ismail, Z. I. Zaki, Zinc oxide thin films prepared by thermal evaporation deposition and its photocatalytic activity, Appl. Catal. B: Environ. 2006, 62: 144-149.
    [56] W. L. Liu, H. R. Xia, H. Han, X. Q. Wang, Electrical properties of Sin-doped bismuth titanate thin films prepared on Si(100) by metalorganic decomposition, Mater. Res. Bull. 2004, 39: 1215-1221.
    [57] X. H. Wu, Q. Wei, Z. H. Jiang, Influence of Fe~(3+) ions on the photocatalytic activity of TiO_2 films prepared by micro-plasma oxidation method, Thin Solid Films 2006, 496: 288-2392.
    [58] V. M. Skorikov, I. S. Zakharov, V. V. Volkov, E. A. Spirin, Optical Properties and Photoconductivity of Bismuth Titanate, Inorg. Mater. 2001, 37(11): 1149-1154.
    [59] S. K. Zheng, T. M. Wang, G. Xiang, C. Wang, Photocatalytic activity of nanostructured TiO_2 thin films prepared by dc magnetron sputtering method, Vacuum 2001, 62: 361-366.
    [60] L. Ge, M. X. Xu, M. Sun, Synthesis and characterization of TiO_2 photocatalytic thin films prepared from refluxed PTA sols, Mater. Lett. 2006, 60: 287-290.
    [61] B. S. Liu, X. J. Zhao, Q. N. Zhao, C. L. Li, X. He, The effect of O_2 partial pressure on the structure and photocatalytic property of TiO_2 films prepared by sputtering, Mater. Chem. Phys. 2005, 90:207-212.
    [62] Y. Tachibana, K. Hara, K. Sayama, H. Arakawa, Quantitative Analysis of Light-Harvesting Efficiency and Electron-Transfer Yield in Ruthenium-Dye-Sensitized Nanocrystalline TiO_2 Solar Cells, Chem. Mater. 2002, 14: 2527-2535.
    [63] J. G. Yu, X. J. Zhao, Q. N. Zhao, Photocatalytic activity of nanometer TiO_2 thin films prepared by the sol-gel method, Mater. Chem. Phys. 2001, 69: 25-29.
    [64] J. Shang, W. Q. Yao, Y. F. Zhu, N. Z. Wu, Structure and photocatalytic performances of glass/SnO_2/TiO_2 interface composite film, Appl. Catal. A: Gen. 2004, 257: 25-32.
    [65] W. L. Liu. H. R. Xia, H. Han, X. Q. Wang, Synthesis and structure of bismuth titanate nanopowders prepared by metalorganic decomposition method. J. Mater. Sci. 2005,40: 1827-1829.
    [66] Y. L. Du, M. S. Zhang, Q. Chen, Z. Yin, Investigation of size-driven phase transition in bismuth titanate nanocrystals by Raman spectroscopy, Appl. Phys. A. 2003,76:1099-1103.
    [67]Fouskova and L. E. Cross, Dielectric Properties of Bismuth Titanate, J. Appl. Phys. 1970,41:2834-2838.
    [68] J. F. Scott, C. A. Paz. De Araujo and B. M. Melnick, Loss mechanisms in fine-grained ferroelectric ceramic thin films for ULSI memories, J. Alloys Compd. 1994,211-212:451-454.
    [69]K. S. Hwang, C. K. Kim, S. B. Kim, J. T. Kwon, Preparation of epitaxial and polycrystalline bismuth titanate thin films on single crystal (100) MgO by chemical solution deposition, Surface Coatings Technol. 2002, 150: 177-181.
    [70]T. Nakamura, R. Muhammet, M. Shimizu, S. Shiosaki, Preparation of C-Axis-Oriented Bi_4Ti_3O_(12) Thin Films by Metalorganic Chemical Vapor Deposition, Jpn. J. Appl. Phys. 1993, 32: 4086-4088.
    [71]H. Buhay, S. Shinharoy, W. H. Kasner, M. H. Francombe, Pulsed laser deposition and ferroelectric characterization of bismuth titanate films, Appl. Phys. Lett. 1991, 58: 1470-1472.
    [72] S. Choopun, T. Matsumoto, T. Kawai, Low-temperature growth of Bi_4Ti_3O_(12) epitaxial films on SrTiO_3(001) and Bi_2Sr_2CaCu_2O_8(001) single crystals by laser molecular beam epitaxy, Appl. Phys. Lett. 1995, 67: 1072-1074.
    [73] S. Y. Wu, J. Takei and M. H. Franconbe, Electro-optic contrast observations in single-domain epitaxial films of bismuth titanate, Appl. Phys.Lett. 1973, 22: 26-28.
    [74] F. Gu, S. F. Wang, M. K. Lu, Photoluminescence Properties of SnO2 Nanoparticles Synthesized by Sol-Gel Method, J. Phy. Chem. B, 2004, 108: 8119-8123.
    [75] L. Pintilie, I. Pintilie, M. Alexe, Photoconductive properties of Bi_4Ti-3O_(12)/Si heterostructures with different thickness of the Bi_4Ti_3O_(12) film, J. Eur. Ceram. Soc. 1999, 19: 1473-1476.
    [76] C.M. Visinescu, R. Sanjines, F. Levy, V.I. Parvulescu, Photocatalytic degradation of acetone by Ni-doped titania thin films prepared by dc reactive sputtering, Appl. Catal. B: Environ. 2005, 60: 155-162.
    [77] A. Kudo, H. Kato, Effect of lanthanide-doping into NaTaO_3 photocatalysts for efficient water splitting, Chem. Phys. Lett. 2000, 331: 373-377.
    [78]F. B. Li, X. Z. Li, C.H. Ao ,S. C. Lee, M. F. Hou, Enhanced photocatalytic degradation of VOCs using Ln~(3+)-TiO_2 catalysts for indoor air purification, Chemosphere 2005, 59: 787-800.
    [79] J. C. Yu, J. Yu, W Ho, Z. Jiang, L. Zhang, Effects of F- Doping on the Photocatalytic Activity and Microstructures of Nanocrystalline TiO2 Powders, Chem. Mater. 2002, 14: 3808-3816.
    [80] A. Q. Jiang, Z. X. Hu, L.D. Zhang, The induced phase transformation and oxygen vacancy relaxation in La-modified bismuth titanate ceramics, Appl. Phys. Lett. 1999,74: 114-116.
    [81]L.Q. Jing, X. J. Sun, B. F. Xin, B. Q. Wang, W. M. Cai, The preparation and characterization of La doped TiO_2 nanoparticles and their photocatalytic activity, J. Solid State Chem. 2004, 177: 3375-3382.
    [82] Y. M. Wang, S. W. Liu, M. K. Lu, S. F. Wang, F. Gu, Preparation and photocatalytic properties of Zr~(4+)-doped TiO_2 nanocrystals, J. Mol. Catal. A: Chem. 2004,215: 137-142.
    [83] L. Ge, M. X. Xu, M. Sun, Synthesis and characterization of TiO_2 photocatalytic thin films prepared from refluxed PTA sols, Mater. Lett. 2006, 60: 287-290.
    [84]A. L. Hector, S. B. Wiggin, Synthesis and structural study of stoichiometric Bi_2Ti_2O_7 pyrochlore, Journal of Solid State Chemistry 2004, 177: 139-145.
    [85]L.W. Fu, H. Wang, S. X. Shang, Preparation and characterization of Bi_2Ti_2O_7 thin films grown by metalorganic chemical vapor deposition, J. Cryst. Growth. 1994, 139: 319-322.
    [86] X .M. Wu, S. W. Wang, H. Wang, Z. Wang, S. X. Shang, Preparation and characterization of Bi_2Ti_2O_7 thin films by chemical solution deposition technique, Thin Solid Films 2000, 370: 30-32.
    [87]Z. B. Xiao, X. M. Wu, S. W. Wang, Preparation and properties of Bi_2Ti_2O_7 thin films by chemical solution deposition, Mater. Res. Bull. 2001, 36:1949-1956.
    [88] S. C. Jung, S. J. Kim, N. Imaishi, Effect of TiO_2 thin film thickness and specific surface area by low-pressure metal-organic chemical vapor deposition on photocatalytic activities, Appl. Catal. B: Environ. 2005, 55:253-257.
    [89] L. W. Fu, H. Wang, S. X. Shang, X. L. Wang, P.M. Xu, Preparation and characterization of Bi_2Ti_2O_7 thin films grown by metalorganic chemical vapor deposition, J. Cryst. Growth. 1994, 139: 319-322.
    [90] W. B. Wu, K. Fumoto, Y. Oishi, M. Okuyama, Y.Hamakawa, Bismuth Titanate Thin Films on Si with Buffer Layers Prepared by Laser Ablation and Their Electrical Properties. Jpn. J. Appl. Phys. 1996, 35:1560-1563.
    [91]Z. Wang, D. L. Sun, J. F. Hu, D. L. Cui, X. H. X, The reactive ion etching of Bi_2Ti_2O_7 thin films on silicon substrates and its image in atomic force microscopy, J. Cryst. Growth. 2002, 235: 411-414.
    [92] S. W Wang, H. Wang, X. M. Wu, S. X. Shang, Rapid thermal processing of Bi_2Ti_2O_7 thin films grown by chemical solution decomposition, J. Cryst. Growth. 2001,224:323-326.
    [93] A. Q. Jiang, Z. X. Hu, L. D. Zhang, The induced phase transformation and oxygen vacancy relaxation in La-modified bismuth titanate ceramics, Appl. Phys. Lett. 1999,74: 114-116.
    [94] C.M. Visinescu, R. Sanjines, F. Levy, V.I. Parvulescu, Photocatalytic degradation of acetone by Ni-doped titania thin films prepared by dc reactive sputtering, Appl. Catal. B: Environ. 2005, 60:155-162.
    [95] S. A. Yuan, Q. R. Sheng, J. L. Zhang, Synthesis of La~(3+) doped mesoporous titania with highly crystallized walls, Micropor. Mesopor. Mat. 2005, 79: 93-99.
    [96] J. S. Wang., S. Yin, M. Komatsu, T. Sato, Lanthanum and nitrogen co-doped SrTiO_3 powders as visible light sensitive photocatalyst, J. Euro. Ceram. Soc. 2005, 25:3207-3212.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700