各向异性纳米棒/嵌段共聚物自组装的模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,含有各向异性纳米棒的材料成为现代材料科学的一个重要研究方向。大量研究结果表明:各向异性无机纳米棒的组装结构受到生长条件、基底表面性质和胶体浓度等因素的影响。同时纳米棒能形成液晶相,使得嵌段共聚物/各向异性无机纳米棒以及rod-coil-rod三嵌段共聚物体系的组装行为变得复杂。因而对这些体系的组装机理和组装结构的影响因素仍需进一步探讨,但目前关于这方面的计算机模拟和理论还鲜有报道。
     本文主要采用Monte Carlo方法和耗散粒子动力学方法模拟研究纳米棒、嵌段共聚物/纳米棒和rod-coil-rod三嵌段共聚物的组装结构和组装机理,主要包括三个部分:(1)纳米棒的组装行为;(2)嵌段共聚物/纳米棒的组装结构的影响因素;(3)考察rod-coil-rod三嵌段共聚物组装机理及主要影响因素。全文共分为六章:
     第一章介绍纳米单元、嵌段共聚物以及嵌段共聚物/纳米粒子组装的研究进展,以及相关的计算机模拟研究成果。
     第二章介绍Monte Carlo方法和耗散粒子动力学方法的基本原理及应用,并对本论文中所用的模型及方法进行说明。
     第三章详细研究各向异性作用(头-尾作用ε_z,肩-肩作用ε_(xy))对纳米棒组装行为的影响。在r=ε_z/ε_(xy)很小和很大时纳米棒分别组装成1D线和2D板。r为中间值时,纳米棒从无序到3D柱状结构的聚集过程中发生一级相变,相变温度Tc受作用势ε_(xy)和ε_z共同决定。3D柱状结构的长径比与作用势比值r呈指数关系A=0.238r~(2.13±0.05/_。指数值不同于理论预测是由于在组装过程中水平方向上更多的作用对引起的动力学影响的结果。
     第四章考察了影响嵌段共聚物/纳米棒的组装结构的因素。研究结果发现混合体系组装结构受链段与纳米棒相互作用、嵌段共聚物浓度以及纳米棒浓度的影响,通过变化纳米棒浓度诱导六方柱结构向柱/层的混合相转变,最后转变为层结构,模拟结果与实验报导相符。组装结构的变化是由于纳米棒之间的各向异性作用和混合体系的协同作用共同引起的。
     第五章考察了rod-coil-rod三嵌段共聚物在稀溶液中的组装结构,组装过程以及影响组装结构的主要因素。在rod-coil-rod三嵌段共聚物囊泡形成过程中,首次观察到双层板结构卷曲形成囊泡的动力学过程。
     第六章为全文的总结和展望。
Recently, anisotropic nanorods in material science are increasingly becoming one ofimportant research topics in material science. A large amount of researches show thatsuperlattices of nanorods are dominated by many factors including growth conditions, nature ofsubstrate surface and colloidal concentration. The self-assembly of nanorods/copolymers androd-coil-rod block polymers becomes more complex, because nanords can form liquidcrystalline phases. Therefore, further investigations should be carried out to discover theassembling mechanism of these systems.
     In this thesis, the self-assembly behavior of nanorods, diblock polymers/nanorods androd-coil-rod block copolymers, as well as the effects on their self-assemblied structures wereinvestigated by dynamic Monte Carlo method and dissipative particle dynamics (DPD)simulation. Firstly, the assembly of nanorods was studied in detail, then the influences of theinteraction between copolymer-nanorod, the polymer concentration and the nanorodconcentration on the assembled strucutures of polymer/nanorod mixtures were investigated. Atlast, the self-assembly of rod-coil-rod triblock copolymers in dilute solution was studied byDPD simulations. The thesis is divided into six chapters as following:
     Chapter1introduced the progress of experiments, theoretical studies and computersimulations on the systems of nanorod, copolymer/nanorod and rod-coil-rod triblockcopolymer.
     Chapter2introduced the principle of Monte Carlo method and DPD method. The relativeapplication and the model used in this thesis were also elucidated.
     In Chapter3, the effect of anisotropic interaction on the assembly behavior of nanorodswas investigated.1D nanowires and2D sheet are assembled at a very small and large value of r=ε_z/ε_(xy), respectively. Here, zand xyrepresent the end-to-end and side-by-side interactionbetween nanorods, respectively. At intermediate values of r, a first-order phase transition fromdisorder to3D pillar takes place. The transition temperature Tcdepends on both interactions xyand z. The aspect ratio A of3D pillar structure is in power-law relation with the interactionratio r asA0.238r2.130.05. The exponent is different from that of theoretical prediction, which may be due to the kinetic effect resulted from more attraction pairs in the lateral directionin the assembly process.
     Chapter4presented the simulation result of diblock copolymer A_5B_5/nanorod mixtures.The attraction between block A-nanorod, the concentration of A_5B_5s and nanorods are found toexert a dramatic effect on the morphology of A_5B_5/nanorod hybrids. With an increase of thenanorod concentration, the morphology of A_5B_5/nanorod mixture changes from hexagonalcylinders to lamellar structure.
     Chapter5investigated the self-assembly of rod-coil-rod triblock copolymers in dilutesolution. A vesicular structure is assembled when the concentarion of copolymers A4B16A4is inthe range of0.75-0.20. The formation mechanism of vecisle has been investigated in detail. Thevesicle is formed through the following pathway: a bilayer disk is developed from a randomlydispersed system, it then bends and encapsulates solvents and finally closes to form a vesicle,which is the first observation for the rod-coil-rod triblock copolymers.
     A summary was given in Chapter6.
引文
[1] Collier CP, Vossmeyer T, Heath JR. Nanocrystal superlattices[J].Annu. Rev. Phys. Chem.,1998,49(1):371-404.
    [2] Weiss PS. Hierarchical assembly[J]. ACS Nano,2008,2(6):1085-1087.
    [3] Boal A K, Ilhan F, DeRouchey J E, Thurn-Albrecht T, Russell T P, Rotello V M, Self-assembly of nanoparticles into structured spherical and network aggregates [J]. Nature,2000,404(6779):746-748.
    [4] Parviz BA, Ryan D, Whitesides GM. Using Self-assembly for the fabrication of nano-scaleelectronic and photonic devices[J]. IEEE Trans. Adv.Pack.,2003,26(3):233-241.
    [5] Pileni MP. Nanocrystal self-assemblies: fabrication and collective properties [J]. J. Phys.Chem. B,2001,105(17):3358-3371.
    [6] Whitesides GM, Grzybowski B. Self-assembly at all scales[J]. Science,2002,295(5564):2418-2421.
    [7] Sayle DC, Seal S, Wang Z, Mangili BC, Price DW, Karakoti AS, Kuchibhatla SVTN, Hao Q,Moìbus Gn, Xu X. Mapping nanostructure: A systematic enumeration of nanomaterials byassembling nanobuilding blocks at crystallographic positions[J].2008, ACS Nano,2(6),1237–1251.
    [8] Mirkin CA, Letsinger RL, Mucic RC, Storhoff JJ. A DNA-based method for rationallyassembling nanoparticles into macroscopic materials [J]. Nature,1996,382(6592):607-609.
    [9] LeeYS. self-assembly and nanotechnology. wiley.2008.
    [10] Sun YG, Xia YN. Shape-controlled synthesis of gold and silver nanoparticles [J]. Science,2002,298(5601):2176-2179.
    [11] Gou LF, Murphy CJ. Solution-phase synthesis of Cu2O nanocubes[J]. Nano Lett.,2003,3(2):231-234.
    [12] Ahmadi TS,Wang ZL, Green TC, Henglein A, El-Sayed MA. Shape-controlled synthesis ofcolloidal platinum nanoparticles [J].Science,1996,272(5270):1924-1926.
    [13] Malikova N, Pastoriza-Santos I, Schierhorn M, Kotov NA, Liz-Marzan LM.Layer-by-layer assembled mixed spherical and planar gold nanoparticles: Control ofinterparticle interactions[J]. Langmuir,2002,18(9):3694–3697.
    [14] Greyson EC, Barton JE, Odom TW. Tetrahedral zinc blende tin sulfde nano-andmicrocrystals[J]. Small,2006,2(3):368–371.
    [15] Jin RC, Cao YW, Mirkin CA, Kelly KL, Schatz GC, Zheng JG. Photoinduced conversionof silver nanospheres to nanoprisms[J]. Science,2001,294(5548):1901–1903.
    [16] Shankar SS, Rai A, Ankamwar B, Singh A, Ahmad A, Sastry M. Biological synthesis oftriangular gold nanoprisms[J]. Nature Mater.,2004,3(7):482–488.
    [17] Cayre OJ, Paunov VN, Velev OD. Fabrication of asymmetrically coated colloid particlesby microcontact printing techniques[J]. J. Mater. Chem.,2003,13(10):2445-2450.
    [18] Hong L, Cacciuto A, Luijten E, Granick S. Clusters of charged Janus spheres[J]. NanoLett.,2006,6(11):2510-2514.
    [19] Love JC, Gates BD,Wolfe DB, Paul KE, Whitesides GM. Fabrication and wettingproperties of metallic half-shells with submicron diameters[J]. Nano Lett.,2002,2(8):891-894.
    [20] Jackson AM, Myerson JW, Stellacci F. Spontaneous assembly of subnanometre-ordereddomains in the ligand shell of monolayer-protected nanoparticles[J]. Nature Mater.,2004,3(5),330-336.
    [21] Manna L, Scher EC, Alivisatos AP. Synthesis of soluble and processable rod-, arrow-,teardrop,and tetrapod-shaped CdSe nanocrystals[J]. J. Am. Chem. Soc.2000,122(51):12700-12706.
    [22] Chen SH, Wang ZL, Ballato J, Foulger SH, Carroll DL. Monopod, bipod, tripod, andtetrapod gold nanocrystals[J]. J. Am. Chem. Soc.,2003,125(52):16186-16187.
    [23] Lee SM, Jun Y, Cho SN, Cheon J. Single-crystalline star-shaped nanocrystals and theirevolution: programming the geometry of nano-building blocks[J]. J. Am. Chem. Soc.,2002,124(38):11244–11245.
    [24] Tang ZY, Wang Y, Shanbhag S, Giersig M, Kotov NA. Spontaneous transformation ofCdTe nanoparticles into angled Te nanocrystals: From particles and rods to checkmarks,X-marks, and other unusual shapes[J]. J. Am. Chem. Soc.,2006,128(20):6730-6736.
    [25] Zhang G, Wang DY, M ohwald H. Decoration of microspheres with gold nanodots-givingcolloidal spheres valences[J]. Angew. Chem. Int. Ed.,2005,44(47):7767-7770.
    [26] DeVries GA, Brunnbauer M, Hu Y, Jackson AM, Long B, Neltner BT, Uzun O, WunschBH, Stellacci F. Divalent metal nanoparticles [J]. Science,2007,315(5810):358-361.
    [27] Glotzer SC, Solomon MJ. Anisotropy of building blocks and their assembly into complexstructures[J]. Nature Materials,2007,6(8):557-562.
    [28] Zhang J, Kumbhar A, He J, Das NC, Yang K, Wang JQ, Wang H, Stokes KL, Fang J.Simple cubic super crystals containing PbTe nanocubes and their core shell building blocks[J].J. Am. Chem. Soc.,2008,130(45):15203-15209.
    [29] Redl X, Black CT, Papaefthymiou GC, Sandstrom RL, Yin M, Zeng H, Murray CB,O’Brien SP. Magnetic, Electronic, and structural characterization of nonstoichiometric ironoxides at the Nanoscale[J]. J. Am. Chem. Soc.,2004,126(44):14583-14599.
    [30] Ren J, Tilley RD. Preparation, Self-Assembly, and mechanistic study of highlymonodispersed nanocubes[J].J. Am. Chem. Soc.,2007,129(11):3287-3291.
    [31] Song Q, Zhang ZJ, Shape control and associated magnetic properties of spinel cobaltferrite nanocrystals[J]. J. Am. Chem. Soc.,2004,126(19):6164-6168.
    [32] Lee CH, Kim M, Kim T, Kim A, Paek J, Lee JW, hoi SY, Kim K, Park JB, Lee K. Ambientpressure syntheses of size-controlled corundum-type In2O3nanocubes[J]. J. Am. Chem. Soc.,2006,128(29):9326-9327.
    [33] Yamamuro S, Sumiyama K. Theoretical simulation of the ROA spectra of neutral cysteineand serine[J]. Chem. Phys. Lett.,2006,418(1-3)166-167.
    [34] Harfenist SA, Wang ZL, Alvarez MM, Vezmar I, Whetten RL. Highly oriented molecularAg nanocrystal arrays[J]. J. Phys. Chem.,1996,100(33):13904-13910.
    [35] Yamamuro S, Sumiyama K, Kamiyama T. Shape-induced simple cubic arrangement inthree-dimensional nanocube self-assemblies[J]. Appl. Phys. Lett.,2008,92(11):113108.
    [36] Brown LO, Hutchison JE. Formation and electron diffraction studies of ordered2-D and3-D superlattices of amine-stabilized gold nanocrystals[J]. J. Phys. Chem. B,2001,105():8911-8916.
    [37] Luedtke WD, Landman U. Structure, dynamics, and thermodynamics of passivated goldnanocrystallites and their assemblies[J]. J. Phys. Chem.,1996,100(32):13323-13329.
    [38] Li LS, Alivisatos AP. Semiconductor nanorod liquid crystals and their assembly on asubstrate[J]. Adv. Mater.,2003,15(5):408-411.
    [39] Li LS, Walda J, Manna L, Alivisatos AP. Semiconductor nanorod liquid crystals[J]. NanoLett.,2002,2(6)557-560.
    [40] Baranov D, Fiore A, van Huis M, Giannini C, Falqui A, Lafont U, Zandbergen H, ZanellaM, Cingolani R, Manna L. Assembly of colloidal semiconductor nanorods in solution bydepletion attraction[J]. Nano Lett.,2010,10(2):743-749.
    [41] An K, Lee N, Park J, Kim SC, Hwang Y, Park JG, Kim JY, Park JH, Han MJ, Yu J, HyeonT. Synthesis, characterization, and self-Assembly of pencil-shaped CoO nanorods[J]. J. Am.Chem. Soc.,2006,128(30):9753-9760.
    [42] Titov AV, Král P. Modeling the Self-assembly of colloidal nanorod superlattices[J]. NanoLett.,2008,8(11):3605-3612.
    [43] Jana NR, Gearheart L, Murphy CJ. Wet chemical synthesis of silver nanorods andnanowiresof controllable aspect ratio[J]. Chem. Commun.,2001,(7):617-618.
    [44] Nikoobakht B, Wang ZL, El-Sayed MA. Self-assembly of gold nanorods[J]. J. Phys. Chem.B,2000,104(36):8635-8640.
    [45] Talapin DV, Shevchenko EV, Murray CB, Kornowski A, Forster S, Weller H. CdSe andCdSe/CdS nanorod solids[J]. J. Am. Chem. Soc.,2004,126(40):12984-12988.
    [46] Larsen TH, Sigman M, Ghezelbash A, Doty RC, Korgel BA. Solventless synthesis ofsopper sulfide nanorods by thermolysis of a single source thiolate-derived precursor[J]. J. Am.Chem. Soc.,2003,125(19):5638-5639.
    [47] Ahmed S, Ryan KM. Self-assembly of vertically aligned nanorod supercrystals usinghighly oriented pyrolytic graphite[J]. Nano Lett.,2007,7(8):2480-2485.
    [48] Ghezelbash A, Koo B, Korgel BA. Self-assembled stripe patterns of CdS nanorods[J].Nano Lett.,2006,6(8):1832-1836.
    [49] Onsager L. The effects of shape on the interaction of colloidal particles[J]. Ann. N. Y.Acad. Sci.,1949,51(4):627-659.
    [50] Bates FS, Fredrickson GH. Block copolymers--designer soft materials[J]. Physics Today,1999,52(2):32-38.
    [51] Opsteen JA, Cornelissen Jeroen JLM, van Hest Jan CM. Block copolymer vesicles[J]. PureAppl. Chem.,2004,76(7-8):1309–1319.
    [52] Mogi Y, Kotsuji H, Kaneko Y, Mori K, Matsushita Y, Noda I. Preparation andmorphology of triblock copolymers of the ABC type[J]. Macromolecules,1992,25(10):5408-5411.
    [53] Ding J, Carver TJ, Windle AH. self-assembly structure of block polymer in selectivereproduced by lattice monte carlo simulation[J]. Computational and Theoretical PolymerScience,2001,11(6):483-490.
    [54] Shen HW, Eisenberg A. Morphological phase diagram for a ternary system of blockcopolymer PS310-b-PAA52/dioxane/H2O[J]. J. Phys. Chem. B.,1999,103(44):9473-9487.
    [55] Norman AI, Ho DL, Lee JH, Karim A. Spontaneous formation of vesicles of diblockcopolymer EO6BO11in water: a SANS study. J. Phys. Chem. B.,2006,110(1):62-67.
    [56] Alexandre M, Dubois P. Polymer-layered silicate nanocomposites: preparation, propertiesand uses of a new class of materials[J]. Mater. Sci. Eng. Rev.,2000,28():1-63.
    [57] Balazs AC. Interactions of nanoscopic particles with phase-separating polymericmixtures[J]. Curr. Opin. Colloid Interface Sci.,2000,4(6):443-448.
    [58] Giannelis EP. Polymer-layered silicate nanocomposites:synthesis, properties andapplications[J]. Appl. Organomet Chem.1998;12(10-11):675-680.
    [59] Soo PP, Huang BY, Jang YI, Chiang YM, Sadoway DR, Mayes AM. Rubbery blockcopolymer electrolytes for solid-state rechargeable lithium batteries[J].J Electrochem. Soc.,1999,146(1):32-37.
    [60] Tseng RJ, Tsai CL, Ma LP, Ouyang JY. Digital memory device based on tobacco mosaicvirus conjugated with nanoparticles[J].Nat. Nanotechnol.,2006,1(1):72-77.
    [61] Konstantatos G, Howard I, Fischer A, Hoogland S, Clifford J, Klem E. Ultrasensitivesolution-cast quantum dot photodetectors[J]. Nature,2004,442(7099):180-183.
    [62] Gas J, Poddar P, Almand J, Srinath S, Srikanth H. Superparamagnetic polymernanocomposites with uniform Fe3O4nanoparticle dispersions[J]. Adv. Funct. Mater.2006,16(1):71-75.
    [63] Kaittanis C, Naser SA, Perez JM. One-Step, Nanoparticle-mediated bacterial detectionwith magnetic relaxation[J].Nano. Lett.,2007,7(2):380-383.
    [64] Jaramillo TF, Baeck SH, Cuenya BR, McFarland EW. Catalytic activity of supported Aunanoparticles deposited from block copolymer micelles[J]. J Am. Chem. Soc.,2003,125(24):7148-7149.
    [65] Peng G, Qiu F, Ginzburg VV, Jasnow D, Balazs AC. Phase-separating mixtures formingsupramolecular networks from nanoscale rods in binary, phase-separating nixtures [J]. Science,2000,288(5472):1802-1804.
    [66] Lekkerkerker HNW, Stroobants A. Colloids: Ordering entropy[J]. Nature (London),1998,393(6638):305-307.
    [67] Lopes WA, Jaeger HM. Hierarchical self-assembly of metal nanostructures on diblockcopolymer scaffolds[J]. Nature (London),2001,414(6865):735-738.
    [68] Adams M, Dogic Z, Keller SL, Fraden S. Entropically driven microphase transitions inmixtures of colloidal rods and spheres[J]. Nature (London),1998,393(6683):349-352.
    [69] Loudet JC, Barois P, Poulin P. Colloidal ordering from phase separation in a liquid-crystalline continuous phase[J]. Nature (London)2000;407(6804):611-613.
    [70] Zhang QL, Gupta S, Emrick T, Russell TP. Surface-functionalized CdSe nanorods forassembly in diblock copolymer templates[J]. J Am.Chem. Soc.2006,128(12):3898-3899.
    [71] Ploshnik E, Salant A, Banin U, Shenhar R. Co-assembly of block copolymers andnanorods in ultrathin flms: effects of copolymer size and nanorod flling fraction[J]. Phys.Chem. Chem. Phys.,2010,12(38):11885–11893.
    [72] Vriezema DM, Hoogboom J, Velonia K, Takazawa K, Christianen PCM, Maan JC, RowanAE, Nolte RJM. Vesicles and Polymerized Vesicles from Thiophene-Containing Rod–CoilBlock Copolymers Angew. Chem. Int. Ed.,2003,42(7):772–776.
    [73] Olsen BD, Segalman RA. Self-assembly of rod–coil block copolymers[J]. MaterialsScience and Engineering R,2008,62(2):37-66.
    [74] Yeh SW, Wei KH, Sun YS, Jeng US, Liang KS. CdS Nanoparticles induce amorphological transformation of poly(styrene-b-4-vinylpyridine) from hexagonally packedcylinders to a lamellar structure[J]. Macromolecules,2005,38(15):6559-6565
    [75] Sun YS, Jeng US, Liang KS. Morphological transformation of PS-b-PEO diblockcopolymer by selectively dispersed colloidal CdS quantum dots[J]. Macromolecules,2003,36(21):7903-7907.
    [76] Zhang X, Zhang Z, Glotzer SC. Simulation study of dipole-induced self-assembly ofnanocubes[J]. J. Phys. Chem. C,2007,111(11):4132-4137.
    [77] Huh J, Ginzburg VV, Balazs AC.Thermodynamic behavior of particle/diblock copolymermixtures: simulation and theory[J]. Macromolecules,2000,33(21):8085–8096.
    [78] He L, Zhang L, Ye Y, Liang H. Solvent-induced self-assembly of polymer-tetherednanorods[J]. J. Phys. Chem. B,2010,114(21):7189–7200.
    [1]杨玉良,张红东.高分子科学中的Monte Carlo方法.复旦大学出版社.1993.
    [2]徐钟济.蒙特卡洛方法.上海科学技术出版社,上海,1985.
    [3]Hoogerbrugge P, Koelman J. Simulating microscopic hydrodynamic phenomenon withdissipative particle dynamics[J]. Europhysics Letters,1992,19(3):155-160.
    [4]崔亭.受限高分子单链动力学的格子蒙特卡罗模拟.复旦大学博士论文,2009,4.
    [5] Wall FT. Mean dimensions of rubber-like polymer molecules[J]. J. Chem. Phys.,1953.21(11):1914-1919.
    [6]王艳.嵌段共聚物囊泡的形成机理及其调控作用的Monte Carlo模拟研究.浙江理工大学硕士论文,2009,12.
    [7] Sikorski A, Adamczyk, P., Diffusion of polymer chains in porous media. A Monte Carlostudy[J]. Polymer2010,51(2),581-586.
    [8] Hudzinskyy D, Lyulin AV, Baljon ARC, Balabaev NK, Michels MAJ. Effects of strongconfinement on the glass-transition temperature in simulated atactic polystyrene films.Macromolecules2011,44(7),2299-2310.
    [9] Magee JE, Song ZK, Curtis RA, Lue L. Structure and aggregation of a helix-formingpolymer. J. Chem. Phys.,2007,126(14):144911.
    [10] Binder K, Paul W, Strauch T, Rampf F, Ivanov V. Luettmer-Strathmann, J., Phasetransitions of single polymer chains and of polymer solutions: insights from Monte Carlosimulations. Journal of Physics-Condensed Matter2008,20(49):1-8.
    [11] Padding J, Briels W. Systematic coarse graining of the dynamics of entangled polymermelts: the road from chemistry to rheology. Journal of Physics-Condensed Matter,2011,23(23):1-31.
    [12] Wang Q. Theory and simulation of the self-assembly of rod-coil block copolymer melts:recent progress[J] Soft Matter,2011,7(8):3711-3716.
    [13] Carmesin I, Kremer K. The bond fluctuation method: A new effective algorithm for thedynamics of polymers in all spatial diemnsions[J]. Macromolecules,1988,21(9):2819-2823.
    [14] I Carmesin, K Kremer. Static and dynamic properties of2-dimensional polymer melts. J.Phys.(Paris).,1990,51(10):915-932.
    [15] Metropolis N, Rosenbluth AW, Rosenbluth MN, Teller AH, Teller. Equation of statecalculations by fast computing machines[J]. J. Chem. Phys.,1953,21(6):1087-1092.
    [16] EsPanol P, Warren P. Statistical mechanies of dissipative particle dynamics[J].Europhysics Letters,1995,30(4):191-196.
    [17] Gavrilov A, Kudryavtsev Y, Khalatur P. Microphase separation in regular and randomcopolymer melts by DPD simulations[J]. Chem. Phys. Lett.,2011,503(4-6):277-282.
    [18] Hong B, Qiu F, Zhang H. Dissipative particle dynamics simulations on inversion dynamicsof spherical micelles[J]. J Chem. Phys.2010,132(24):244901.
    [19] Yildirim E, Yurtsever M, Kenarli B. Microphase separation of phenylene oligomers withpolymeric side chains: a dissipative particle dynamics study [J]. Macronmolecular theory andsimulations,2011,20(5):340-349.
    [20]何林李.两嵌段共聚物/纳米颗粒自组装的耗散粒子动力学模拟.浙江大学博士论文,2010,10.
    [21] Pan Z, He L, Zhang L, Liang, H. The dynamic behaviors of diblock copolymer/nanorodmixtures under equilibrium and nonequilibrium conditions[J]. Polymer,2011,52(12):2711-2721.
    [22] Chen H, Ruckenstein E. Aggregation of nanoparticles in a block copolymer bilayer[J].Journal of Colloid and Interface Science,2011,363(2):573-578.
    [1] Kulik D, Htoon H, Shih CK. Photoluminescence properties of single CdS nanorods[J]. J.Appl. Phys.,2004,95(3):1056-1063.
    [2] Liu M, Guyot-Sionnest P. Preparation and optical properties of silver chalcogenide coatedgold nanorods[J]. J. Mater. Chem.,2006,16(40):3942-3945.
    [3] Jain PK, Lee KS, El-Sayed IH, El-Sayed MA. Calculated absorption and scatteringproperties of gold nanoparticles of different size, shape, and composition: applications inbiological imaging and biomedicine[J]. J. Phys. Chem. B,2006,110(14):7238-7248.
    [4] Liu H, Huang B, Wang Z. Synthesis and optical properties of assembly-controlled ZnOstructures[J]. Chinese Journal of Inorganic Chemistry,2011,27(4):752-758.
    [5] Shi X, Shen C, Wang D.Surface-enhanced raman scattering properties of highly orderedself-assemblies of gold nanorods with different aspect ratios[J]. Chinese Physics B,2011,20(7):076103.
    [6] Huang Y, Duan X, Lieber CM. Directed assembly of one-dimensional nanostructures intofunctional networks[J]. Science,2001,291(5504):630-633.
    [7] Link S, El-Sayed MA. Spectral properties and relaxation dynamics of surface plasmonelectronic oscillations in gold and silver nanodots and nanorods[J]. J. Phys. Chem. B,1999,103(40):8410-8426.
    [8] Jain PK, Eustis S, El-sayed MA. Plasmon coupling in nanorod assemblies: opticalabsorption, discrete dipole approximation simulation, and exciton-coupling model[J]. J. Phys.Chem. B,2006,110(37):18243-18253.
    [9] Gole A, Murphy CJ. Biotin streptavidin induced aggregation of gold nanorods: tuningrod-rod orientation[J]. Langmuir,2005,21(23):10756-10762.
    [10] Dujardin E, Mann S, Hsin LB, Wang CRC, Mann S. DNA driven self-assembly of goldnanorods[J]. Chem. Commun.,2001,(14):1264-1265.
    [11] Thomas KG, Barazzouk S, Ipe BI, Joseph STS, Kamat PV. Uniaxial plasmon couplingthrough longitudinal self-assembly of gold nanorods[J]. J. Phys. Chem. B,2004,108(35):13066-13068.
    [12] Joseph STS, Ipe BI, Pramod P, Thomas KG. Gold nanorods to nanochains: mechanisticinvestigations on their longitudinal assembly using alkanedithiols and interplasmon coupling[J].J. Phys. Chem. B,2006,110(1):150-157.
    [13] Tang Z, Wang Y, Shanbhag S, Giersig M, Kotov NA. Spontaneous transformation ofCdTe nanoparticles into angled Te nanocrystals: from particles and rods to checkmarks,X-marks, and other unusual shapes[J]. J. Am. Chem. Soc.,2006,128(20):6730–6736.
    [14] Shanbhag S, Tang Z, Kotov NA. Self-organization of Te nanorods into V-shapedassemblies: a brownian dynamics study and experimental insights[J]. ACS Nano,2007,1(2):126-132.
    [15] Horsch MA, Zhang Z, Glotzer SC. Self-assembly of polymer tethered-nanorods[J]. Phys.Rev. Lett.2005,95(5):056105.
    [16] Horsch MA, Zhang Z, Glotzer SC. Self-assembly of laterally polymer-nanorods[J]. NanoLett.,2006,6(11):2406-2413.
    [17] Lin S, Numasawa N, Nose T, Lin J. Brownian-molecular-dynamics simulation on selfassembly behavior of rod-coil block copolymers[J]. Macromolecules,2007,40(5):1684-1692.
    [18] Park HS, Agarwal A, Kotov NA, Lavrentovich OD. Controllable side-by-side and end-to-end assembly of Au nanorods by lyotropic chromonic materials[J]. Langmuir,2008,24(24):13833-13837.
    [19] Chang JY, Wu H, Chen H, Ling YC, Tan W. Oriented assembly of Au nanorods usingbiological recognition system[J]. Chem. Commun.,2005,(8):1092-1094.
    [20] Zhang X, Zhang Z, Glotzer SC. Simulation study of dipole-induced self-assembly ofnanocubes[J]. J. Phys. Chem. C,2007,111(11):4132-4137.
    [21] Zhang ZL, Tang ZY, Kotov NA, Glotzer SC. Simulations and analysis of self-assembly ofCdTe nanoparticles into wires and sheets[J]. Nano Lett.,2007,7(6):1670-1675.
    [22] Xi GC, Ye JH. Ultrathin SnO2nanorods: template-and surfactant-free solution phasesynthesis, growth mechanism, optical, gas-sensing, and surface adsorption properties[J]. Inorg.Chem.,2010,49(5):2302–2309.
    [23] Teich-McGoldrick SL, Bellanger M, Caussanel M, Tsetseris L, Pantelides ST, GlotzerSC,Schrimpf RD. Design considerations for CdTe nanotetrapods as electronic devices[J]. NanoLett.,2009,9(11):3683-3688.
    [24] Allen MP, Tildesley DJ. Computer simulation of liquids: Clarendon Press: Oxford,1987.
    [25] Yao KX, Yin XM, Wang TH, Zeng HC. Synthesis, Self-assembly, disassembly, andreassembly of two types of Cu2O nanocrystals unifaceted with {001} or {110} planes[J]. J. Am.Chem. Soc.,2010,132(17):6131-6144.[26] Jorge M, Auerbach SM, Monson PA. Modeling spontaneous formation of precursornanoparticles in clear-solution zeolite synthesis[J]. J. Am. Chem. Soc.,2005,127(41):14388-14400.
    [1] Scholes C, Chen G, Stevens G. Nitric oxide and carbon monoxide permeation through glassypolymeric membranes for carbon dioxide separation[J]. Chemical Engineering Reseacher&Design,2011,89(9A):1730-1736.
    [2] Baeten L, Conings B, Boyen H.Towards Efficient hybrid solar cells based on fully polymerinfiltrated ZnO nanorod arrays[J]. advanced materials,2011,23(25):2802-2805.
    [3] Kwon S, Shim M, Lee J. Ultrahigh density array of CdSe nanorods for CdSe/polymerhybrid solar cells: enhancement in short-circuit current density[J]. Journal of MaterialsChemistry,2011,21(33):12449-12453.
    [4] Xiong D, Li Z, Zou L, He Z, Liu Y, An Y, Ma R, Shi L. Modulating the catalytic activity ofAu/micelles by tunable hydrophilic channels[J]. Journal of Colloid and Interface Science,2010,341(2):273-279.
    [5] Huang J, Sun D. Dynamic Monte Carlo simulation of aggregation of nanoparticles in thepresence of diblock copolymer[J]. Journal of Colloid and Interface Science,2007,315(1):355-362.
    [6] Alexandridis, P. Tsianou, M. Block copolymer directed metal nanoparticle morphogenesisand organization[J]. European Polymer Journal,2011,47(4):569-583.
    [7] Thompson R, Matsen M, Ginzburg V, Balazs A. Block copolymer directed assembly ofnanoparticles forming mesoscopically ordered hybrid materials[J].Macromolecules,2002,35(3):1060-1071.
    [8] Thompson R, Matsen M, Ginzburg V, Balazs A. Predicting the Mesophases ofCopolymer-Nanoparticle Composites[J]. Science,2001,292(5526):2469-2472.
    [9] Briscoe J, Gallardo D, Lesnyak V. Influence of Annealing on Composition and OpticalProperties of CdTe Nanoparticle Layer-by-Layer Films[J]. Journal of nanoscience andnanotechnology,2011,11(6):5270-5273.
    [10] Ma Z, Li R. Effect of particle surface selectivity on composite nanostructures innanoparticle/diblock copolymer mixture dilute solution[J] Journal of Colloid and InterfaceScience,2011,363(1):241-249.
    [11] Sun Y, Jeng U, Liang K, Yeh S. Transitions of domain ordering and domain size in aspherical forming polystyrene block poly ethylene-oxide polymer and its composites withcolloidal CdS quantum dots[J]. Polymer,2006,47(4):1101-1107.
    [12] Lin Y, Daga V, Anderson E. Nanoparticle-driven assembly of block copolymers: a simpleroute to ordered hybrid materials[J]. J Am. Chem. Soc.,2011,133(17):6513-6516.
    [13] Yeh S, Chang Y, Chou C, Wei KH. Effect of surface-hydroxylated CdS nanoparticles onthe morphological transformation of polystyrene-block-poly (ethylene oxide) thin films[J].Macromol. Rapid Commun.,2004,25(19):1679-1686.
    [14] Modestino M, Chan E, Hexemer A. Controlling nanorod self-assembly in polymer thinfilms[J]. Macromolecules,2011,44(18):7364-7371.
    [15] Liu GF, Huang JH. Monte Carlo simulation on the structures of nanoparticle/copolymermixed system[J]. Acta Phys.-Chim. Sin.,2012,(in press).
    [16] Pinna M, Pagonabarraga I, Zvelindovsky A. Modeling of block copolymers/colloid hybridcomposite materials[J]. Macromolecules Theory and Simulation,2011,20(8):769-779.
    [17] Prost J. The physics of liquid crystals. Oxford University Press;1993.
    [18] Hribar K, Lee M, Lee D, Burdick J. Enhanced release of small molecules fromnear-infrared light responsive polymer-nanorod composites[J]. ACS nano,2011,5(4):2948-2956.
    [19] Zou W, Wang Y, Wang Z. Solvent induced formation of an ordered nanorod array ofgold/polymer composite by block copolymer film templating[J]. Nanotechnology,2011,22(33):335301
    [20]Chen K, Ma Y. Ordering stripe structures of nanoscale rods in diblock copolymerscaffolds[J]. J. Chem. Phys.,2002,116(18):7783-7786.
    [21]何林李.两嵌段共聚物/纳米颗粒自组装的耗散粒子动力学模拟.浙江大学博士论文,2010,10.
    [22] Yan L, Maresov E, Buxton G. Self-assembly of mixtures of nanorods in binary,phase-separating blends[J]. Soft Matter.,2011,7(2):595-607.
    [1] Zhang X, Chan ER, Glotzer SC. Self-assembled morphologies of monotethered polyhedraloligomeric silsesquioxane nanocubes from computer simulation[J]. J. Chem. Phys.,2005,123(18):184718.
    [2] Iacovella CR, Horsch MA, Zhang Z, Glotzer SC. Phase diagrams of self-assembledmono-tethered nanospheres from molecular simulation and comparison to surfactants[J].Langmuir,2005,21(21):9488-9494.
    [3] Chan ER, Zhang X, Lee CY, Neurock M, Glotzer SC. Simulations of tetra-tetheredorganic/inorganic nanocube polymer assemblies[J]. Macromolecules,2005,38(14):6168-6180.
    [4] He L, Zhang L, Ye Y, Liang H. Solvent-induced self-Assembly of polymer-tetherednanorods[J]. J. Phys. Chem. B,2010,114(21):7189–7200.
    [5]Bates FS, Fredrickson GH. Block copolymers--designer soft materials[J]. Physics Today,1999,52(2):32-38.
    [6] Olsen BD, Segalman RA. Self-assembly of rod–coil block copolymers[J]. Materials Scienceand Engineering R,2008,62(2):37-66.
    [7] Klok HA, Lecommandoux S. Supramolecular materials via block copolymerself-assembly[J]. Adv. Mater.2001,13(16):1217-1229.
    [8] Ryu JH, Oh NK, Zin WC, Lee M. Self-assembly of rod coil molecules into molecularlength-dependent organization[J]. J. Am. Chem. Soc.,2004,126(11):3551-3558.
    [9] Long YJ, Bae JY, Ryu JH, Lee M. Ordered nanostructures from the self-assembly ofreactive coil–rod–coil molecules[J]. Angew. Chem. Int. Ed.,2006,45(4):650-653.
    [10] Hong DJ, Lee E, Jeong H, Lee J, Zin WC, Nguyen TD,Glotzer SC, Lee M. Solid-statescrolls from hierarchical self-assembly of T-shaped rod–coil molecules[J]. Angew. Chem. Int.Ed.,2009,48(9):1664-1668.
    [11] Loos K, Bo1ker A, Zettl H, Zhang MF, Krausch G, Muller AHE. Micellar aggregates ofamylose-block-polystyrene rod-coil block copolymers in water and THF[J]. Macromolecules2005,38(3):873-879.
    [12] Koh HD, Par JW, Rahman MS, Changez M, Lee JS. Reversibly interchangeable,chain-wrapped micelles and vesicles of an amphiphilic rod-coil block copolymer[J]. Chem.Commun.2009,28(32):4824-4826.
    [13] Olsen BD, Segalman RA. Self-assembly of rod–coil block copolymers[J]. Mater. Sci. Eng.R,2008,62(2):37-66.
    [14] Cuendias AD, Hellaye ML, Lecommandoux S, Cloutet E, Cramail H. Synthesis andself-assembly of polythiophene-based rod–coil and coil–rod–coil block copolymers[J]. J. Mater.Chem.2005,15(32):3264-3267.
    [15] Park JW, Thomas EL. Anisotropic micellar nanoobjects from reactive liquid crystallinerod-coil diblock copolymers[J].Macromolecules,2004,37(10):3532-3535.
    [16] Lin JP, Lin SL, Zhang LS, Nose T. Microphase separation of rod-coil diblock copolymerin solution[J]. J. Chem. Phys.,2009,130(9):094907.
    [17] Horsch MA, Zhang ZL, Glotzer SC. Self-assembly of polymer-tethered nanorods[J]. Phys.Rev. Lett.,2005,95(5):056105.
    [18] Horsch MA, Zhang ZL, Glotzer SC. Simulation studies of self-assembly of end-tetherednanorods in solution and role of rod aspect ratio and tether length[J]. J. Chem. Phys.,2006,125(18):184903.
    [19] Horsch MA, Zhang ZL, Glotzer SC. Self-assembly of laterally-tethered nanorods[J]. NanoLett.,2006,6(11):2406-2413.
    [20] Nguyen TD, Glotzer SC. Switchable helical structures formed by the hierarchicalself-assembly of laterally tethered nanorods[J]. Small2009,5(18):2092-2098.
    [21] He P, Li X, Deng M, Chen T, Liang H. Complex micelles from the self-assembly ofcoil-rod-coil amphiphilic triblock copolymers in selective solvents[J]. Soft Matter,2010,6(7):1539-1546.
    [22] Huang J, Wang Y, Qian C. Simulation study on the formation of vesicle and influence ofsolvent[J]. Journal of Chemical Physics.2009,131(),234902.
    [23] Yu K, Eisenberg A. Bilayer morphologies of self-assembled crew-cut aggregates ofamphiphilic PS-b-PEO diblock copolymers in solution[J]. Macromolecules.1998,31(11):3509-3518.
    [24] Chen L, Shen H, Eisenberg A. Kinetics and mechanism of the rod-to-vesicle transition ofblock copolymer aggregates in dilute solution[J]. J. Phys. Chem. B.,1999,103(44):9488-9497.
    [25] Noguchi H, Takasu M. Fusion pathways of vesicles: A Brownian dynamics simulation. J.Chem. Phys.,2001,115(20):9547-9551.
    [26] Marrink SJ, Mark AE. Molecular Dynamics Simulation of the Formation, Structure, andDynamics of Small Phospholipid Vesicles[J]. J. Am. Chem. Soc.,2003,125(49):15233-15242.
    [27] Uneyama T. Density functional simulation of spontaneous formation of vesicle in blockcopolymer solutions[J]. J. Chem. Phys.,2007,126:114902.
    [28] Yamamoto S, Hyodo S. Budding and fission dynamics of two-component vesicles. J.Chem. Phys.,2003,118(17):7937-7940.
    [29] Chou SH, Wu DT, Tsao HK, Sheng YJ. Morphology and internal structure control ofrod–coil copolymer aggregates by mixed selective solvents[J]. Soft Matter,2011,7(19),9119-9129

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700