表面改性碳纳米管/环氧树脂复合材料力学性能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
碳纳米管是一种新型的一维纳米材料,具有优异的力学性能,独特的微观结构,极大的长径比和比表面积,有望成为先进复合材料的理想增强体。但是碳纳米管本身容易团聚,这使得碳纳米管在聚合物中难以均匀分散,而且由于碳纳米管的表面惰性,使得碳纳米管与聚合物之间界面结合力较弱。这使得碳纳米管在复合材料中的应用受到一定的限制。为了解决这些问题,本论文通过对多壁碳纳米管进行表面改性处理,以改善碳纳米管在环氧树脂中的分散性以及和环氧树脂之间的界面结合力。并采用溶液混合法,制备了碳纳米管/环氧树脂复合材料。使用FT-IR、TEM、FE-SEM和万能材料拉伸机等仪器对材料的结构和性能进行了测试和表征,并分析了微观结构与性能之间的关系。结果表明:
     (1)在温和的反应条件下,酸处理(V_(H_2SO_4)/V_(HNO_3)=3:1)可使无定型碳和催化剂等杂质去除,并且在不损坏碳纳米管结构的基础上使MWCNT表面产生羧基、羟基等活性基团。酸化处理后的碳纳米管经进一步酰胺化反应可在表面接枝三乙烯四胺,实现碳管的胺功能化。
     (2)采用等离子体处理方式对碳纳米管进行表面改性处理后,同样能够在碳纳米管表面接上羰基,胺基等活性基团,提高碳纳米管在环氧树脂中的分散性。
     (3)力学性能测试发现,加入原始碳纳米管对环氧树脂的力学性能的改善并不明显,且当含量大于0.75%后,环氧树脂的力学性能变差。而加入改性处理后的碳纳米管的环氧树脂的力学性能都有较大的提高。环氧树脂力学性能也与碳纳米管的含量相关,当加入原始碳纳米管及表面化学改性处理碳纳米管含量为0.75%时,碳纳米管/环氧树脂复合材料的力学性能最好。由于等离子体处理碳纳米管的分散性及与环氧树脂基体界面结合最好,因而加入等离子体处理碳纳米管的含量增加到1%时,复合材料的力学性能最好。
Caron nanotubes(CNT) is a new one-dimensional nanometer material, it exhibit an excellent mechanical property: the super high tensile strength, toughness and Young's modulus, and a unique microstructure: high specific surface area and high aspect ratio, which can be considered as an ideal reinforcement additive for advanced composites. However, the agglomeration of CNT into bundles results in poor CNT dispersion in polymer matrix, and the inactive surface of CNT makes weak interfacial bonding between polymer matrix and CNT. This makes the application of CNT in composites has been limited. To overcome these problems, in this paper, by modification the surface of MWCNT, to improve the dispersion of MWCNT in epoxy resin and the interfacial bonding between epoxy resin. MWCNT/epoxy resin composites were prepared using solution mixing method. The mechanical properties and the relationship between microstructure and properties of the composites were investigated by FT-IR、TEM、FE-SEM and tensile testing machine. The results indicated that:
     (1) Under mild reaction, acid solution (VH2SO4/VHNO3=3:1) could remove the impurities presented in the pristine MWCNT such as amorphous carbon and metal catalysts and produce carboxyl、hydroxylic groups on the surface of MWCNT without great damage to the structure of MWCNT. The surface of the MWCNT treated by acid could graft triethylene-tetramine(TETA) groups successfully by amidation route.
     (2)After modification the surface of MWCNT by plasma, it also can produce carbonyl、amidine groups on the surface of MWCNT. So as to improve the dispersion of MWCNT in epoxy resin and the interfacial bonding between epoxy resin.
     (3)From the result of the testing of mechanical properties, we can find that: When the pristine MWCNT added into the epoxy resin couldn’t improve the mechanical properties of epoxy resin obviously. And when the contents of the pristine MWCNT more than 0.75%, the mechanical properties of the epoxy resin were deteriorate. But when the MWCNT after modification added into epoxy resin it could improve the mechanical properties of the epoxy resin. The mechanical properties of epoxy resin also related with the contents of the MWCNT. When the contents of the pristine MWCNT and the surface chemical modification MWCNT reached 0.75%, the mechanical properties of the epoxy resin were the best. As the good dispersion in epoxy resin, and the better interfacial bonding with the epoxy, the contents of the MWCNT after plasma modification could reach 1%, At this point, the mechanical properties of the epoxy resin were the best.
引文
[1] Roy R. Ceramics by the Solution-Sol-Gel Route [J]. Science, 1987, 238: 1664-1669.
    [2] Iijima S. Helical microtubes of graphitic carbon [J]. Nature, 1991, 354: 56-58.
    [3] Iijima S, Ichihashi T. Single-shell carbon nanotubes of 1-nm diameter [J]. Nature, 1993, 363: 603-605.
    [4] Bethune D S, Kiang C H, de Vries M S, et al. Cobalt-catalysed growth of carbon nanotubes with single-atomic-layer walls [J]. Nature, 1993, 363: 605-607.
    [5] Treacy M J, Ebbesen T W, Gibson J M. Exceptionally high Young’s modulus observed for individual carbon nanotubes [J]. Nature, 1996, 381: 678-680.
    [6] Tans S J, Devoret M H, Dai H, et al. Individual single-wall carbon nanotubes as quantum wires [J]. Nature, 1997, 386: 474-477.
    [7] De Heer W A, Chatelain A, Ugarte D. A carbon nanotube field-emission electron source. [J]. Science, 1995, 270: 1179-1180.
    [8] Dresslhaus M S, Dresslhaus G, Saito R. Carbon fibers based on C60 and their symmetry [J]. Phys Rev B, 1992, 45: 6234-6235.
    [9] Dresslhaus M S, Dresslhaus G, Saito R. Physics of carbon nanotubes [J]. Carbon, 1995, 33: 883-890.
    [10] Mintmire J W, Dunlap B I, White C T. Are fullerene tubules metallic [J]. Phys Rev Lett, 1992, 68: 631-634.
    [11] White C T, Robertson D H, Mintmire J W. Helical and rotational symmetries of nanoscale graphitic tubules [J]. Phys Rev B.1993, 47: 5482-5488.
    [12] Robertson D H, Brenner D W, Mintmire J W. Energetics of nanoscale graphitic tubules [J]. Phys Rev B,1992, 45: 12592-12595.
    [13] Hamada N, Sawada S, Oshiyama A. New one-dimensional conductors: graphitic microtubules [J]. Phys Rev Lett, 1992, 68: 1579-1585.
    [14] Zhang X F, Zhang X B, Vantendeloo G. Carbon nano-tubes: their formation process and observation by electron microscopy [J]. Journal of Crystal Growth, 1993, 130: 368-382.
    [15] Saito R, Fujita M, Dresselhus G, et al. Electronic structure of chiral graphene tubules [J]. Applied Physics Letters, 1992, 60: 2204-2204.
    [16] Setton R. Carbon nanotubes: I. Geometrical considerations [J]. Carbon, 1995, 33: 135-140.
    [17] Dresselhaus M S, Dresselhaus G, Eklund P C. Science of Fullerenes and Carbon Nanotubes [M]. San Diego: California Academic Press, 1996, 757-758.
    [18]孙晓刚.碳纳米管/聚合物复合材料研究和应用进展[J].塑料, 2003, 32 (5 ): 1-5.
    [19]成会明.纳米碳管:制备、结构、物性及应用[M].北京:化学工业出版社, 2002, 3-9.
    [20] Zhou O, Fleming R M, Murphy D W, et al. Defects in Carbon Nanostructures [J]. Science, 1994, 263: 1744-1747.
    [21] Ajayan P M, Ebbesen T W, Ichihashi T, et al. Opening carbon nanotubes with oxygen and implications for filling [J]. Nature, 1993, 362: 522-525.
    [22] Tsang S C, Harris P J F, Green M L H. Thinning and opening of carbon nanotubes by oxidation using carbon dioxide [J]. Nature, 1993, 362: 520-526.
    [23] Ajayan P M, Ichihashi T, Iijima S. Distribution of pentagons and shapes in carbon nano-tubes and nano-particles [J]. Chemical Physics Letters, 1993, 202: 384-388.
    [24] Iijima S, Ichihashi T, Ando Y. Pentagons, heptagons and negative curvature in graphite microtubule growth [J]. Nature, 1992, 365: 776-782.
    [25] Harris W F, Scriven L E. Intrinsic disclinations as dislocation sources and sinks in surface crystals [J]. Journal of Applied Physics, 1971, 42: 3309-3312.
    [26] Kroto H, Heath J, O’Brien S. C60: Buckminsterfullerene [J]. Nature, 1985, 318: 162-163.
    [27] Curl R F, Smalley R E. Fullerenes [J]. Science American, 1991, 265(4): 32-41.
    [28] Dunlap B I. Connecting carbon tubules [J]. Phys Rev B, 1992, 46: 1933-1936.
    [29] Bertz M, Demczyk B G, Zhang L Q. Structural imaging of a thick-walled carbon microtubule [J]. Journal of Crystal Growth, 1994, 141: 304-311.
    [30] Ebbesen T W, Takada T. Topological and sp3 defect structures in nanotubes [J]. Carbon, 1995, 33: 973-978.
    [31] Liu M Q, Cowley J M. Growth behavior and growth defects of carbon nanotubes [J]. Materials Science & Engineering A, 1994, 185: 131-139.
    [32] Liu M Q, Cowley J M. Structures of carbon nanotubes studied by HRTEM and nanodiffraction [J]. Ultramicroscopy, 1994, 53: 333-342.
    [33] Amelinckx S, Bernaerts D, Zhang X B, et al. A structure model and growth mechanism for multishell carbon nanotubes [J]. Science, 1995, 267: 1334-1338.
    [34] Amelinckx S, Zhang X B, Bernaerts D, et al. A Formation Mechanism for Catalytically Grown Helix-Shaped Graphite Nanotubes [J]. Science, 1994, 265: 635-639.
    [35] Ajayan P M, Ebbesen T W. Nanometre-size tubes of carbon [J]. Reports on Progress in Physics,1997, 60: 1025-1062.
    [36]辛玲,张锐,石广新,等.碳纳米管性能及应用[J].中国陶瓷工艺, 2005, 12(3): 39-42.
    [37]辜萍,王宇,李广海.碳纳米管的力学性能及碳纳米管复合材料研究[J].力学进展, 2002, 32(4): 563-568.
    [38] Ebbsen T W, Lezec H J, Hiura H, et al. Electrical conductivity of individual carbon nanotubes [J]. Nature, 1996, 382: 54-56.
    [39] Satio R, Fujita M, Dresselhaus G, et al. Electrical structure and growth mechanism of carbon tubules [J]. Materials Science and Engineering, 1993, B19: 185-191.
    [40] Dai H, Wong E W, Lieber C M. Probing electrical transport in nanomaterials: conductivity of individual carbon nanotubes [J]. Science, 1996, 272 (4): 523-526.
    [41]韦进全,张先锋,王昆林.碳纳米管宏观体[M].北京:清华大学出版社, 2006, 9-11.
    [42] Berber S, Kwon Y K, Tomanek D. Unusually high thermal conductivity of carbon nanotubes [J]. Phy Rev Lett, 2000, 84(20): 4613-4616.
    [43] Yi W, Lu L, Zhang D L, et al. Linear specific heat of carbon nanotubes [J]. Phys Rev B.1999, 59(14): 9015-9018.
    [44]田心平,王澜.聚合物/碳纳米管复合材料的研究进展[J].塑料制造, 2007, 7: 9-12.
    [45]高廉,刘阳桥.碳纳米管的分散及表面改性[J].硅酸盐通报, 2005, 5: 116-121.
    [46] O'Connell M J, Boul P, Erison L M, et al. A wave packet-path integral method for curve-crossing problem: application to resonance Raman spectra and photo dissociation cross sections [J]. Chemical Physics Letters, 2001, 265: 71-76.
    [47] Zhao L P, Gao L. Stability of multi-walled carbon nanotubes dispersion with copolymer in ethanol [J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2003, 224: 127-134.
    [48] Gong X Y, Liu J, Baskaran S, et al. Surfactant-Assisted Processing of Carbon Nanotube/Polymer Composites [J]. Chemical Materials, 2000, 12: 1049-1052.
    [49] Vigolo B, Penicaud A, Coulon C, et al. Macroscopic Fibers and Ribbons of Oriented Carbon Nanotubes [J]. Science, 2000, 290: 1331-1334.
    [50] Konya V L, Niesz K, Kukovecz A, et al. Large scale production of short functionalized carbon nanotubes [J]. Chemical Physics Letters, 2002, 360: 429-435.
    [51]高新春.多壁碳纳米管环氧树脂复合材料的制备及其力学性能研究[D].北京:北京化工大学, 2006.
    [52]陈宪宏,林明,陈振华.多壁碳纳米管功能化及其增韧环氧树脂的研究[J].材料导报, 2007,5(21): 121-123.
    [53] Xu T, Yang J H, Liu J W, et al. Surface modification of multi-walled carbon nanotubes by O2 plasma [J]. Applied Surface Science, 2007, 253: 8945-8951.
    [54] Chirila V, Marginean G, Brandl W. Effect of the oxygen plasma treatment parameters on the carbon nanotubes surface properties [J], Surface & Coatings Technology, 2005, 200: 548-551.
    [55] Liu Y Q, Gao L A. Study on the electrical properties of carbon nanotubes-NiFe2O4 nanocomposites: effect of the surface carbon nanotubes [J]. Carbon, 2005, 43(1): 47-52.
    [56] Schadlar L S, Giannaris S C. Ajayan PM. Load transfer in carbon nanotube epoxy composites [J]. Applied Physics Letters, 1998, 73: 3842-3844.
    [57] Kim J A, Seong D G, Kang J J, et al. Effects of surface modification on rheological and mechanical properties of CNT/epoxy composites [J]. Carbon, 2006, 44: 1989-1905.
    [58] Cai H, Yan FY, Xue Q J. Investigation of tribological properties of polyimide/carbon nanotube nanocomposites [J]. Material Science Engineering A-Structure, 2004, 364: 94-100.
    [59] Gao L, Zhou X F, Ding Y L. Effective thermal and electrical conductivity of carbon nanotube composites [J]. Chemical Physics Letters, 2007, 434: 297-300.
    [60] Takashi K, Eric G, Jenny H, et al. Thermal Degradation and Flammability Properties of Poly(propylene)/Carbon Nanotube Composite [J]. Macromol Rapid Comm, 2002, 23: 761-765.
    [61] Haggenmueller R, Du F M, et al. Interfacial in situ polymerization of single wall carbon nanotube/nylon66 nanocomposites [J]. Polymer, 2006, 47: 2381-2388.
    [62] Mahfuz H, Adnan A, Rangari V K, et al. Enhancement of strength and stiffness of Nylon 6 filaments through carbon nanotubes reinforcement [J]. Applied Physics Letters, 2006, 88: 083119(1-3).
    [63] Chapelle M L, Stephan C, Nguyen T P, et al. Raman characterization of singlewalled carbon nanotubes and PMMA-nanotubes composites [J]. Synth Metal, 1999, 103: 2510-2512
    [64] Jin Z X, Pramoda K P, Xu G Q. Dynamic mechanical behavior of melt-processed multi-walled carbon nanotube/poly (methyl methacrylate) composites [J]. Chemical Physics Letters, 2001, 337: 43-47.
    [65] Haggenmueller R, Gommans H H, Rinzler A G, et al. Aligned single-wall carbon nanotubes in composites by melt processing methods [J]. Chemical Physics Letters, 2000, 330: 219-225.
    [66] Potschke P, Bhattacharyya A R, Janke A. Melt mixing of polycarbonate with multi-walled carbon nanotubes: microscopic studies on the state of dispersion [J]. Euro Polym J, 2004, 40: 137-148.
    [67] Pirlot C, Williams 1, Fonseca A, et al. Preparation and Characterization of CarbonNanotube/Polyacrylonitrile Composites [J]. Advance Engineering Materials, 2002, 3: 109-114.
    [68] Curran S, Davey A P, Cileman J, et al. Evolution and evaluation of the Polymer/nanotube composite [J]. Syn Mater, 1999, 103: 2559-2563.
    [69] Cooper C A, Young R J, Halsall M, et al. Investigation into the deformation of carbon nanotubes and their composites through the use of Raman spectroscopy [J]. Compos: Part A, 2001, 32: 401-411.
    [70]贾志杰,王正元,徐才录.碳纳米管的加入对PMMA强度和导电性能的影响[J].材料开发应用, 1998, 13: 22-25.
    [71] Maser W K, Benito A M, Callejas M A, et al. Synthesis and characterization of new polyaniline/nanotube composites [J]. Materials Science & Engineering C, 2003, 23: 87-91.
    [72] Velasco-Santos C, Martinez-Hernandez A L, Fisher F T, et al. Improvement of thermal and mechanical properties of carbon nanotube composites through chemical functionalization [J]. Chem. Mater, 2003, 15: 4470-4475.
    [73]陈平,刘胜平.环氧树脂[M].北京:化学工业出版社, 1999, 3-5.
    [74]孙曼灵.环氧树脂应用原理与技术[M].北京:机械工业出版社, 2002.
    [75] Ajayan P, Astephan O, Colliex C, et al. Aligned Carbon Nanotube Arrays Formed by Cutting a Polymer Resin-Nanotube Composite [J]. Science, 264: 1212-1214.
    [76] Salvetat J P, Briggs G A D, Bonard J M, et al. Elastic and shear moduli of single-walled carbon nanotube ropes [J]. Phys Rev Lett, 1999, 82(5): 944-947.
    [77] Ren Y, Li F, Cheng H M, et al. Fatigue behavior of unidirectional single-walled carbon nanotube reinforced epoxy composite under tensile load [J]. Advanced Composites Letters, 2003, 12(1): 19-24.
    [78] Ajayan P M, Schadler L S, Giannaris C, et al. Single-walled carbon nanotube-polymer composites Strength and weakness [J]. Advanced Materials, 2000, 12(10): 750-753.
    [79] Hsiao K T, Alms J, Advani S G. Use of epoxy/multiwalled carbon nanotubes as adhesives to join graphite fibre reinforced polymer composites [J]. Nanotechnology, 2003, 14(7): 791-793.
    [80] Penumadu D, Dutta A, Pharr G M, et al. Mechanical properties of blended single-wall carbon nanotube composites [J]. Journal of Materials Research, 2003, 18(8): 1849-1853.
    [81] Tiano T, Roylance M, Gassner J. Functionalization of single-wall nanotubes for improved structural composites [J]. International SAMPE Technical Conference, 2000, 32: 192-199.
    [82] Gojny F H, Nastalczyk J, Roslaniec Z., et al. Surface modified multi-walled carbon nanotubes in CNT/epoxy-composites [J]. Chemical Physics Letters, 2003, 368: 820-824.
    [83] Wagner H D, Lourie O, Feldman Y, et al. Stress-induced fragmentation of multiwall carbon nanotubes in a polymer matrix [J]. Applied Physics Letters, 1998, 42: 188-195.
    [84] Li Y, Zhang X B, Luo J H, et al. Purification of CVD synthesized single wall carbon nanotubes by different acid oxidation treatments [J]. Nanotechnology, 2004, 15: 1645-1649.
    [85]陈小华,陈传盛,孙磊,等.碳纳米管的表面修饰及其在水中的分散性能研究[J].湖南大学学报, 2004, 31(5): 18-21.
    [86] Chen Q D, Dai L M, Gao M, et al. Plasma Activation of Carbon Nanotubes for Chemical Modification [J]. J Phys Chem B, 2001, 105: 618-622.
    [87]赵化桥.等离子体化学与工艺[M].合肥:中国科学与技术大学出版社, 1993, 299-302.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700