氨基酸在单壁碳纳米管上的吸附研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文使用综合法处理CVD法制备的SWNTs,得到了纯度高、带有含氧基团的单壁碳纳米管。以此单壁碳纳米管为出发点,选用氨基酸在超声条件下进行吸附。选用多种分析手段对氨基酸与单壁碳纳米管的吸附体系进行了研究,并对二者的反应机理进行了探索。
     1.使用综合法对CVD法制备的SWNTs进行了纯化处理,得到OSWNT,通过TG、Raman和FT-IR等方法的检测,表明通过此方法得到的OSWNT中SWNTs的纯度达到95%以上,而且带有一定的含氧基团。
     2.实现了获得稳定SWNTs/Phe溶液的简单且绿色的过程,并系统地进行了OSWNT与氨基酸分子间吸附机理的研究。因Phe的自发吸附,使OSWNT的表面亲水性增强,与Phe形成可稳定存在150天以上的溶液。Phe和Lys对不同管径OSWNT具有吸附选择性,优先吸附于大管径OSWNT上。在π-π相互作用、氢键和部分酰氨共价键的共同作用下,Phe被吸附到OSWNT表面。在OSWNT无缺陷的侧壁,π-π相互作用是OSWNT与Phe分子的主要吸附方式;在OSWNT的氧化缺陷和末端,氢键和共价作用成为吸附的主要形式。在酰胺键的作用下,Lys被吸附到OSWNT末端,共价作用成为吸附的主要形式
     3.根据氨基酸吸附机理,通过氨基酸在OSWNT上的吸附,实现了SWNTs的分散,同时研究了不同氨基酸对OSWNT的分散作用,依据结构对分散作用力进行了研究。对于分散OSWNT的作用能力来说,酰氨共价作用力强于π-π相互作用力。
High purity single-walled carbon nanotubes (SWNTs) with oxygen-obtaining groups were prepared. The adsorption L- Phenylalanine on the SWNTs was examined. Various techniques were employed to characterize the material.An interaction mechanism between the Phe molecule and the OSWNT was proposed and discussed. This work includes:
     1. The SWNTs prepared by CVD method were purified. OSWNT was obtained with further treatment. TG, Raman and FT-IR were employed to measure the purity of SWNTs and the oxygen containing groups. The purity of OSWNT was above 95 percent and had a large mount of oxygen-obtaining groups.
     2. An approach was carried out to obtain the stable OSWNT/Phe solution. The OSWNT became soluble in water since the Phe was adsorbed. This OSWNT/Phe solution is even stable after 150 days. The Phe and Lys molecules were advantageously absorbed on that part of OSWNT with larger diameter. The Phe molecules were absorbed on the OSWNT by conjunct interaction of theπ-πboning and hydrogen bonding. Theπ-πbonding leads to interaction on the sidewall without defects. The hydrogen bond formed with oxygen containing groups is dominant on the defective sections and the end of OSWNT.
     3. Based on the interaction mechanism between the animo acid molecule and the OSWNT, the distributed SWNTs was obtained by the absorption of animo acid molecules.
引文
[1] Kroto H W, Heeth J R, Obrien S C, C60 buckminster fullence, Nature, 1985,(318): 162–163
    [2] Iijima S, Helical microtubules of graphitic carbon, Nature, 1991, 354: 56–58
    [3] Iijima S, Ichihashi T, Single-shell carbon nanotubes of 1-nm diameter, Nature, 1993, 363: 603–605
    [4] Ebbesen T W, Carbon nanotubes, Phys. Today, 1996, 49(6): 26–32
    [5] Kukovitsky E F, Lvov S G, Sainov N A, VLS-growth of carbon nanotubes from the vapor, Chem. Phys. Lett., 2000, 317(1-2): 65–70
    [6]朱春野,谢自立,郭坤敏等,碳纳米管纯化研究进展,碳素科技,2003, 13(3): 12–16
    [7] Seraphin S, Zhou D, Single-walled carbon nanotubes produed at high-yield by mixed catalysts, Appl. Phys. Lett., 1994, 64 (16): 2087–2089
    [8] Kataura H, Kimura A, Ohtsuka Y, et a1. Formation of thin single-wall carbon nanotubes by laser vaporization of Rh/Pd-graphite composite rod, Jpn. J Appl. Phys., 1998, 37(5B): L616–L618
    [9] Saito Y, Tani Y, Miyagawa N, et a1. High yield of single-wall carbon nanotubes by arc discharge using Rh-Pt mixed catalysts, Chem. Phys. Lett., 1998, 294: 593–598
    [10] Liu B, Wagberg T, Eva O,et a1. Synthesis and characterization of single-walled nanotubes produced with Ce/Ni as catalysts, Chem. Phys. Lett., 2000, 320: 365–372
    [11] Gao T, Nikolaev P, Thess A, et al, Catalytic growth of single-walled nanotubes by vaporization, Chem. Phys. Lett., 1995, 243: 49–54
    [12] Cheng H M, Li F, Su G, et al. Large-scale and low-cost synthesis of single-walled carbon nanotubes by the catalytic pyrolysis of hydrocarbons, Appl. Phys. Lett., 1998, 72: 3282–3284
    [13] Smalley R E, From dopyballs to nanowires, Mater. Sci. Eng. B, 1993, 19: 1–7
    [14] Journet C, Maser W K, Bernier P, et a1. Large-scale production of single-walled carbon nanotubes by the electric-arc technique, Nature, 1997, 388: 756–768
    [15]王淼,李振华,高纯单壁纳米碳管大量制备的新方法和工艺条件,物理学报,2001, 50 (4): 790–792
    [16] Thess A, Lee R, Nikolaev P, et al. Crystalline ropes of metallic carbon nanotubes, Science, 1996, 273: 483–487
    [17] Shelimov K B, Esenaliev R O, Rinzler A G, et al. Purfication of single-wallcarbon nanotubes by ultrasonically assisted filtration,Chem. Phys. Lett. 1998, 282: 429–434
    [18] Jeong T, Kim W Y, Hahn Y B, A new purification method of single-wall carbon nanotubes using H2S and O2 mixture gas,Chem. Phys. Lett. 2001, 344:18–22
    [19] Bougrine A, Naji A, Ghanbaja J, et al. Purification and structural characterization of single-walled carbon nanotubes,Synthetic Metals, 1999, 103: 2480–2481
    [20] Mizoguti E, Nihey F, Yudasaka M,et al. Purification of single-wall carbon nanotubed by using ultrafine gold particles,Chem. Phys. Lett. 2000,321: 297–301
    [21] Shi Z J, Lian Y F, Liao F H, et al. Single-wall carbon nanotube colloids in polar solvents,Solid State Communication,1999,112: 35–37
    [22] Umek P, Hassanien A, Tokumoto M,et al. Microcrystalline SWNT material ,Carbon, 2000,38: 1723–1727
    [23] Vaccarini L,Goze C, Aznar R, et al. Purification procedure of carbon nanotubes, Synthetic Metals, 1999, 103: 2492–2493
    [24] Chen J, Hamon A M, Hu H, et al. Solution Properties of Single-Walled Carbon Nanotubes . Science, 1998,282: 95–98
    [25] Shi ZJ, Lian YF, Zhou X H, et al. Single-wall carbon nanotube colloids in polar solvents,Chem. Communication, 2000,6: 461–462
    [26] Niu C, Sichel E K, Hoch R, et al. High power electrochemical capacitors based on carbon nanotube electrodes,Appl. Phys. Lett. 1997, 70(11): 1480–1482
    [27]罗红霞,施祖进,李南强等,羧基化单层碳纳米管修饰电极的电化学表征及其电催化作用,高等学校化学学报,2000,21(9): 1372–1374
    [28]李雪松,朱宏伟,慈立杰等,浮动式催化裂解法大批量制备单层碳纳米管,科学通报,2001,46(9):785–787
    [29] Park C, Anderson P E, Chambers A, et al. Further studies of the interaction of hydrogen with graphite nanofibes,Phys. Chem. B,1999,103: 10572–10581
    [30]刘杨,崔屾,薛晓蕾等,多壁碳纳米管的纯化研究,化学研究与应用,2001, 13(6): 649–652
    [31]李权龙,袁东星,林庆梅,多壁碳纳米管的纯化,化学学报, 2003, 61(6): 931–936
    [32]林敬东,杨乐夫,蔡云等,多壁碳纳米管的纯化,厦门大学学报(自然科学版),2001, 40(4): 888–892
    [33] Li F, Cheng H M, Xing Y T, et al. Purification of single-walled carbon nanotubes synthesized by the catalytic decomposition of hydrocarbons. Carbon, 2000, 38: 2041–-2045
    [34] Zhang Y, Shi Z, Gu Z, et al. Structure modification of single-wall carbon nanotubes,Carbon, 2000,38: 2055–2059
    [35] Endo M, Kroto H W, Formation of carbon nanofibers, J. Phy. Chem., 1992, 96: 6941–6944
    [36] Iijima S, Growth of carbon nanotubes, Mater. Sci. Eng. B, 1993, 19: 172–180
    [37] Satio Y, Yoshikawa T, Inagaki M, et al, Growth and structure of graphitic tubules and polyhedral particles in arc-discharge, Chem. Phys. Lett., 1993, 204(3-4): 277–282
    [38] Hatta N, Murata K, Very long graphitic nano-tubules synthesized by plasma-decomposition of benzene, Chem. Phys. Lett., 1994, 217(4): 398–402
    [39] Yoon Y J, Baik H K, Catalytic growth mechanism of carbon nanofibers through chemical vapor deposition, Diamond and Related Materials, 2001, 10: 1214–1217
    [40] Dresselhaus M S, Down the straight and narrow, Nature, 1992,358: 195-196
    [41] Colbert D T, Zhang J, MeClure S M, et al. Growth and sintering of fullerene nanotubes, Science, 1994, 266: 1218–1222
    [42]解思深,潘正伟.超长定向碳纳米管列阵的制备,物理,1999,28(1):1-3.
    [43] Dai H J, Hafher J H, Lieber C M, Nanotubes as nanoprobes in scanning probe microscopy, Nature, 1996,384: 147-150
    [44] Dai H J, Wong E W, Lieber C M, Probing Electrical Transport in Nanomaterials Conductivity of Individual Carbon Nanotubes, Science, 1996,272: 523-526
    [45] Ouyang M, Huang J. L, Lieber C. M, Fundamental electronic properties and applications of single-walled carbon nanotubes, Acc. Chem. Res., 2002, 35:1018-1025
    [46] Nunzi F, Mercuri F, Sgamellotti A, et al. The coordination chemistry of carbon nanotubes: a density functional study through a cluster model approach, J. Phys. Chem. B, 2002, 106: 10622-10633
    [47] Charlier J C, Defects in carbon nanotubes, Acc. Chem. Res., 2002, 35: 1063-1069
    [48] de Heer W A, Bacsa W S, Chetelain A, Aligned Carbon Nanotube Films: Production and Optical and Electronic Properties, Science, 1995,268: 845-846
    [49] Hamada N, Sawada S, Oshiyama A, New One-Dimensional Conductors: Graphitic Microtubules, Phys. Rev. Lett., 1992,68: 1579-1581
    [50] Saito R, Fujita M, Dresselhaus G, Electronic structure of chiral graphene tubules, Appl. Phys. Lett., 1992,60: 2204-2206
    [51] Charlier J C, Michenaud J P, Energetics of multilayered carbon tubules, Phys. Rev. Lett., 1993,70: 1858-1861
    [52] Dresselhaus M S, New tricks with nanotubes, Nature, 1998,391: 19-20
    [53]王文英,碳纳米管的制造技术及最新研究动态,新型化工材料,2000,1:12-14
    [54] de Heer W A, Chatelain A , Vgarte D, A Carbon Nanotube Field-EmissionElectron Source, Science, 1995,270: 1179-1182
    [55]李士贤,石墨,第一版,北京,化学工业出版社,1991
    [56] Moon J M, An K H, Lee Y H, et al, High-yield purification process of singlewalled carbon nanotubes, J. Phys. Chem. B, 2001, 105: 5677-5681
    [57] Born D, Andrews R, Jacques D, et al, Thermogravimetric analysis of the oxidation of multiwalled carbon nanotubes: Evidence for the role of defect sites in carbon nanotube chemistry, Nano Lett., 2002, 2, 615-619
    [58] Serp P, Corrias M, Kalck P, Carbon nanotubes and nanofibers in catalysis, Appl. Catal. A, 2003, 253: 337-358
    [59] Hilding J, Grulke E. A, Sinnott S. B, et al. Sorption of Butane on carbon multiwall nanotubes at room temperature, Langmuir, 2001, 17: 7540 -7544
    [60] Masenelli-Varlot K, McRae E, Dupont-Pavlosky N, Comparative adsorption of simple molecules on carbon nanotubes dependence of the adsorption properties on the nanotube morphology, Appl. Surf. Sci., 2002, 196: 209-215
    [60] Yang Q H, Hou P X, Bai S, et al. Adsorption and capillarity of nitrogen in aggregated multi-walled carbon nanotubes, Chem. Phys. Lett., 2001, 345: 18-24
    [62] Inoue S, Ichikuni N, Suzuki T, et al. Capillary condensation of N2 on multi-wall carbon nanotubes, J. Phys. Chem. B, 1998, 102: 4689-4692
    [63] Eswaramoorthy M, Sen R, Rao C N R, A study of micropores in single-walled carbon nanotubes by the adsorption of gases and vapors, Chem. Phys. Lett., 1999, 304: 207-210
    [64] Ruof R S, Lorents D C,Mechanical and thermal properties of carbon nanotubes,Carbon, 1995, 33: 925-930
    [65] Treacy M M J, Ebbesen T W, Gibson J M, Exceptionally high Young's modulus observed for individual carbon nanotubes , Nature 1996, 381: 678-680
    [66] Jacobsen R L, Tritt T M, Guth J R, Ehrlich A C, Gillespie D J. Mechanical properties of vapor grown carbon fiber, Carbon, 1995, 33: 1217-1221
    [67] Corrias M, Serp Ph, Kalck Ph, et al, High purity multiwalled carbon nanotubes under high pressure and high temperature, Carbon, 2003, 41: 2361-2367
    [68] Collins, P G, Zettl A, Bando H, Nanotube Nanodevice, Science, 1997,278:100-102
    [69] Bezryadin A, Verschueren A R, Tans S J, Multiprobe Transport Experiments on Individual Single-wall Carbon Nanotubes, Phys. Rev. Lett., 1998,80: 4036-4039
    [70] Tsang S C, Chen Y K, Harris P J F, A simple chemical method of opening and filling carbon nanotubes, Nature, 1994,372: 159-162
    [71] Langer L, Stookman L, Heremans J P, Electrical resistance of a carbon nanotube bundle, J. Mater. Res., 1994,9: 927-932
    [72] Robert F, Nanotubes Show Image-Display Talent, Science, 1995,270: 1119-1121
    [73]王世敏,许祖勋,傅晶.纳米材料的制备技术[M] .北京:化学工业出版社, 2002.
    [74] Bandow S, Asaka S, Saito Y, et al. Effect of the growth temperature on the diameter distribution and chirality of single-wall carbon nanotubes. Phys. Rev. Lett., 1998, 80, 3779–3882.
    [75] Rao A M, Richter E, Bandow S, et al. Diameter-selective Raman scattering from vibrational modes in carbon nanotubes. Science, 1997, 275, 187–191
    [76] Dresselhaus M S, Dresselhaus G, Eklund P C, Science of Fullerenes and Carbon Nanotubes, 1996, Academic Press, New York.
    [77] Holden J, Zhou P, Bi X X, Eklund P C, et al. Raman scattering from nanoscale carbons generated in a cobalt-catalyzed carbon plasma, Chem. Phys. Lett., 1994, 220, 186-190.
    [78] Alvarez L, Righi A, Rols S, et al. Diameter dependence of Raman intensities for single-wall carbon nanotubes. Phys Rev B, 2001, 63(15): 153401–153404
    [79] Alvarez L, Righi A, Guillard T, et al. Resonant Raman study of the structure and electronic properties of single-wall carbon nanotubes. Chem Phys Lett, 2000, 316(3–4): 186–190
    [80] Pradhan B K, Sandle N K. Effect of different oxidizing agent treatments on the surface properties of activated carbons. Carbon, 1999, 37(8): 1323–1332
    [81] Kataura H, Kumazawa Y, Maniwa Y, et al. Optical properties of single-wall carbon nanotubes. Synthetic Metals, 1999, 103(1–3): 2555–2558
    [82] Balavoine F, Schultz P, Richard C, et al. Helical crystallization of proteins on carbon nanotubes: A first step towards the development of new biosensors. Angew Chem Int Ed, 1999, 38(13-14): 1912–1915
    [83] Rege K, Raravikar N R, Kim D Y, et al. Enzyme-polymer-single walled carbon nanotube composites as biocatalytic films. Nano Lett, 2003, 3(6): 829–832
    [84] Zhang J, Zou H, Qing Q, et al. Effect of chemical oxidation on the structure of single-walled carbon nanotubes. J Phys Chem B, 2003, 107(16): 3712–3718
    [85] Kim U J, Liu X M, Furtado C A, et al. Infrared-active vibrational modes of single-walled carbon nanotubes. Phys Rev Lett, 2005, 95(15): 157402(1-4)
    [86] Huang W, Taylo S R, Fu K, et al. Attaching proteins to carbon nanotubes via diimide-activated amidation. Nano Lett, 2002, 2(4): 311–314
    [87] Kim U J, Furtado C A, Liu X, et al. Raman and IR spectroscopy of chemically processed single walled carbon nanotubes. J Am Chem Soc, 2005, 127(44): 15437–15445
    [88] Mahalakshmi R, Jesuraja S X, Jerome Das S. Growth and characterization ofL-Phenylalanine. Cryst Res Technol, 2006, 41(8): 780–783
    [89] Kuznetsova A, Mawhinney D B, Naumenko V, et al. Enhancement of adsorption inside of single-walled nanotubes: opening the entry ports. Chem Phys Lett, 2000, 321(3-4): 292–296
    [90] Hamon M A, Bhowmik H, Hu P, et al. End-group and defect analysis of soluble single-walled carbon nanotubes. Chem Phys Lett, 2001, 347(1-3): 8–12
    [91] In-Vien D, Colthup N B, Fateley W G, et al. The Handbook of Infrared and Raman Characteristic Frequencies of Organic Molecules. San Diego: Academic Press Inc CA, 1991
    [92] Sauvajol J L, Anglaret E, Rols S, et al. Phonons in single wall carbon nanotube bundles. Carbon, 2002, 40(10): 1697–1714
    [93] Debjit C, Izabela G , Fotios P, et al. A route for bulk separation of semicondcting from metallic single-wall carbon nanotubes. J. Am. Chem. Soc., 2003, 125, 3370–3375
    [94] Gotovac S, Honda H, Hattori Y, et al. Effect of nanoscale curvature of single walled carbon nanotubes on adsorption of polycyclic aromatic hydrocarbons. Nano Lett, 2007, 7(3): 583–587
    [95] Chen G, Furtado C A, Bandow S, et al. Anomalous contraction of the C-C bond length in semiconducting carbon nanotubes observed during Cs doping. Phys Rev B, 2005, 71(4): 045408–045413
    [96] Sumanasekera G U, Allen J L, Fang S L, et al. Electrochemical oxidation of single wall carbon nanotube bundles in sulfuric acid. J Phys Chem B, 1999, 103(21): 4292–4297
    [97] Kataura H, Kumazawa Y, Maniwa Y, et al. Optical properties of single-wall carbon nanotubes. Synthetic Metals, 1999, 103(1-3): 2555–2558
    [98] Hirsch A. Functionalization of single-walled carbon nanotubes. Angew Chem Int Ed, 2002, 41(11): 1853–1859
    [99] Banerjee S, Wong S S. Rational sidewall functionalization and purification of single-walled carbon nanotubes by solution-phase ozonolysis. J Phys Chem B, 2002, 106(47): 12144–12151
    [100] Riggs J E, Guo Z, Carroll L, et al. Strong luminescence of solubilized carbon nanotubes. J Am Chem Soc, 2000, 122(24): 5879–5880
    [101] Dieckkmann G R, Dalton A B, Johnson P A, et al. Controlled assembly of carbon nanotubes by designed amphiphilic peptide helices. J Am Chem Soc, 2003, 125(7): 1770–1777
    [102] Ortiz-Acevedo A, Xie H, Zorbas V, et al. Diameter-selective solubilization of single-walled carbon nanotubes by reversible cylic peptides. J Am Chem Soc, 2005, 127(26): 9512–9517
    [103] Chen R J, Zhang Y, Wang D, et al. Noncovalent sidewall functionalization of single-walled carbon nanotubes for protein immobilization. J Am Chem Soc, 2001, 123(16): 3838–3839
    [104] Williams K A, Veenhuizen P T M, Torre B G, et al. Nanotechnology: Carbon nanotubes with DNA recognition. Nature, 2002, 420: 761–761
    [105] Piao L, Liu Q, Li Y, et al. Adsorption of L-Phenylalanine on single-walled carbon nanotubes. J Phys Chem C, 2008, 112(8):2857-286

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700