碳纳米管薄膜的浸渍-吸附方法制备
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
碳纳米管作为一种准一维纳米材料,因具有优异的光学、电学、力学性能引起了广泛关注,碳纳米管薄膜的制备是其中一个研究热点。薄膜的制备方法很多,但都具有一定的局限性。本课题采用了一种新颖的方法制备出了纳米量级厚度的单壁碳纳米管薄膜,有望在ITO替代材料、传感器、电磁屏蔽等领域获得应用。
     由于范德华力的作用,常规制备方法得到的单壁碳纳米管均是成束存在的,我们利用单链DNA为分散助剂,在超声辅助下制备出能够稳定存在的单壁碳纳米管-DNA溶液。TEM、AFM表征结果证实,该溶液中,被DNA缠绕的单壁碳纳米管分散性良好,主要以单根离散和小束形式存在。
     在制备出均匀稳定的碳纳米管-DNA溶液的基础上,以阳极氧化铝膜为基体,采用浸渍-吸附法,在多孔阳极氧化铝膜与碳纳米管-DNA溶液的固液界面,通过自组装获得了碳纳米管薄膜。并通过光学显微镜、SEM、EDS、IR、拉曼光谱、四探针测试仪等检测手段对所制备的薄膜进行了形貌、结构和导电性能表征,该薄膜厚度均匀仅为纳米级、具有一定的透光性、导电性能良好,方块电阻最低可达780Ω/sq。
     以制备的单壁碳纳米管-DNA溶液为导电溶液,通过电泳方法,在玻碳电极表面形成了碳纳米管膜,并在铁氰化钾溶液中对该薄膜修饰的玻碳电极的循环伏安性能进行了测试。实验证实,与裸玻碳电极相比,经过碳纳米管膜修饰的玻碳电极测试Fe(CN)_6~(4-)/Fe(CN)_6~(3-)氧化还原对的可逆性更好、电流响应更大,表现出良好的灵敏度和稳定性。且随着电泳电压的增大和时间的延长,经碳纳米管膜修饰的玻碳电极在铁氰化钾溶液中的响应信号增大。
Carbon nanotube, as one kind of one-dimensional structure materials, has attracted much attention due to its unique optical, electronic, and mechanical properties. And the fabrication of carbon nanotube membrane is one of research highlights. Many approaches have been developed to prepare carbon nanotube membranes, and most of them are of different shortcomings. In this paper, a novel method was proposed to prepare ultra-thin carbon nanotube membrane with just a few nanometers. It has potential applications in the substitute of ITO, sensors, electromagnetic shielding material, and so on.
     Single-walled carbon nanotubes prepared by normal methods always aggregate into bundles because of van der Waals attraction. We obtained stable carbon nanotube solution using DNA as dispersant with the help of sonication. TEM and AFM images show that the single-walled carbon nanotube is well-dispersed and isolated into individual.
     Based on the fabrication of well-dispersed and stable carbon nanotube-DNA hydrosol, anodic aluminum oxide was immersed into the hydrosol to prepare carbon nanotube membrane. The membrane could be acquired at the interface of solid and liquid by self-assembling and this method is defined as immersion-adsorption fabrication. The membrane was analysised in details by optical microscope, SEM, EDS, IR, Raman, four-point probes. The results show that the membrane with good homogeneity is very thin, just a few nanometers. The membrane is transparent and possesses excellent electrical conductivity with the lowest square resistance of 780Ω/sq.
     Carbon nanotube membrane was also obtained on the surface of glassy carbon electrode(GCE) by electrophoretic deposition in carbon nanotube-DNA aqueous solution. Compared with GCE, the modified electrode shows stronger current signals responding and better reversibility towards Fe(CN)_6~(4-)/Fe(CN)_6~(3-) in the cyclic voltammetry analysis. Moreover, such electrochemical signals are stable and sensitive. With the increase of voltage and extension of time, the current signals towards Fe(CN)_6~(4-)/Fe(CN)_6~(3-) are stronger.
引文
[1] Iijima S.Helical microtubules of graphitic carbon [J].Nature,1991,354:56-58.
    [2]成会明.纳米碳管制备、结构、物性及应用[M].北京:化学工业出版社,2002,176-202.
    [3] Dai H J,Wong E W,Lieber C M.Probing electrical transport in nanomaterials:Conductivity of individual carbon nanotubes [J].Science,1996,272:523-526.
    [4] Girifalco L A, Hodak M,Lee R S.Carbon nanotubes,buckyballs,ropes,and a universial graphitic potential [J].Physcical Review B,2000,62(19):13104-13110.
    [5] Strano M S, Moore V C,Miller M K,et al.The role of surfactant adsorption during ultrasonication in the dispersion of single-walled carbon nanotubes [J].Journal of Nanoscience Nanotechnology,2003,3:81-86.
    [6] O’Connell M J,Bachilo S M,Huffman C B,et al.Band gap fluorescence from individual single-walled carbon nanotubes [J].Science,2002,297:593-597.
    [7] Yurekli K,Mitchell C A,Krishnamoorti R.Small-angle neutron scattering from surfactant-assisted aqueous dispersions of carbon nanotubes [J].Journal of American Chemical Society,2004,126(32):9902-9903.
    [8] Velasco-Santos C,Martinez-Hernandez A L,Fisher F,et al.Dynamical mechanical and thermal analysis of carbon nanotube-methyl-ethyl methacrylate nanocomposites [J].Journal of Physcis D:Applied Physcis,2003,36(12):1423-1428.
    [9] Kang Y,Taton T A.Micelle-encapsulated carbon nanotubes:A route to nanotube composites [J].Journal of American Chemical Society,2003,125(19):5650-5651.
    [10] Zheng M,Jagota A,Ellen D.et al.DNA-assisted dispersion and separation of carbon nanotubes [J].Nature Materials,2003,2:338-342.
    [11] Campbell J F,Tessmer I,Thorp H H,et al.Atomic force microscopy studies of DNA-wrapped carbon nanotube structure and binding to quantum dots [J].Journal of American Chemical Society,2008,130:10648-10655.
    [12] Yang Q H,Gale N,Oton C J,et al.A raman probe for selective wrapping of single-walled carbon nanotubes by DNA [J].Nanotechnology,2007,18:405706.
    [13] Yang Q H,Gale N,Oton C J,et al.Deutrtated water as super solent for short carbon nanotubes wrapped by DNA [J].Carbon,2007,45,2692-2716.
    [14]杨鎏佺,向东亚,杨全红,等.单壁碳纳米管-DNA复合物的微观结构和电化学性质[J].新型炭材料,2008,23(1):7-11.
    [15] Ajayan P M,Stephan O,Colliex C,et al.Aligned carbon nanotube arrays formed by cutting a polymer resin-nanotube composite [J].Science,1994,265:1212-1214.
    [16] Deheer W A,Bacsa W S,Chatelain A,et al.Aligned carbon nanotube films:Production and optical and electronic properties [J].Science,1995,268:845-847.
    [17] Ren Z F,Huang Z P,Xu J W,et al.Synthesis of large arrays of well-aligned carbon nanotubes on glass [J].Science,1998,282:1105-1107.
    [18] Lima M D,De Andrade M J,SkákalováV,et al.In-situ synthesis of transparent and conductive carbon nanotube networks [J].Physica Status Solidi,2007,1(4):165-167.
    [19] Castro M R S,Schmidt H K.Preparation and characterization of low and high-adherent transparent multi-walled carbon nanotube thin films [J].Materials Chemistry and Physics,2008,111:317-321.
    [20] Di Y S,Cui Y K,Wang Q L,et al.Field emission from carbon nanotube and tetrapod-like ZnO compound cathode fabricated by spin-coating method [J].Applied Surface Science,2009,255:4636-4639.
    [21] Lin K,Kumar R S,Cheng L S,et al.Performance improvement of carbon-nanotube-incorporated transparent conducting anode film for organic device application [J].IEEE Transactions on Elelctron Devices,2009,56(1):31-37.
    [22] Boccaccini A R,Cho J,Roether J A,et al.Electrophoretic deposition of carbon nanotubes [J].Carbon,2006,44:3149-3160.
    [23] Choi W B,Jin Y W,Kim H Y,et al.Electrophoresis deposition of carbon nanotubes for triode-type field emission display [J].Applied Physics Letters,2001,78(11):1547-1549.
    [24]Jin Y W,Jung J E,Park Y J,et al.Triode-type field emission array using carbon nanotubes and a conducting polymer composite prepared by electrochemical polymerization [J].Journal of Applied Physics,2002,92(2):1065-1068.
    [25] Wu Z C,Chen Z H,Du X,et al.Transparent,conductive carbon nanotube films [J].Science,2004,305:1273-1277.
    [26] Shin J H,Shin D W,Patole S P,et al.Smooth,transparent,conducting and flexible SWCNT films by filtration–wet transfer process [J].Journal of Physics D:Applied Physcis,2009,42:045305.
    [27] Jo S H,Tu Y,Huang Z P,et al.Effect of length and spacing of vertically aligned carbon nanotubes on field emission properties [J].Applied Physics Letters,2003,82:3520-3522.
    [28] Nilsson L,Groening O,Emmenegger C,et al.Scanning field emission from patterned carbon nanotube films [J].Applied Physics Letters,2000,76(15):2071-2073.
    [29] Joo J,Lee C Y. High frequency electromagnetic interference shielding response of mixtures and multilayer films based on conducting polymers [J].Journal of Applied Physcis,2000,88(1):513-518.
    [30] Kim H M,Kim K,Lee C Y,et al. Electrical conductivity and electromagnetic interference shielding of multiwalled carbon nanotube composites containing Fe catalyst [J].Applied Physics Letters,2004,84(4):589-591.
    [31] Wang Y Y,Jing X L.Intrinsically conducting polymers for electromagnetic interference shielding [J]. Polymers for Advanced Technologies,2005,16(4):344-351.
    [32] Li N,Huang Y,Du F,et al.Electromagnetic interference (EMI) shielding of single-walled carbon nanotube epoxy composites [J].Nano Letters,2006,6(6):1141-1145.
    [33] Ma C C M,Huang Y L, Kuan H C,et al.Preparation and electromagnetic interference shielding characteristics of novel carbon-nanotube/siloxane/ poly-(urea urethane) nanocomposites [J]. Journal of Polymer Scicence Part B:Polymer Physcis,2005,43(4):345-358.
    [34]狄泽超,卢伟哲,王昆林,等.碳纳米管/聚乙烯复合材料薄膜紫外线透过性能的研究[J].高等学校化学学报,2004,25(2):394-396.
    [35] Pasquier A D, Unalan H E,Kanwal A,et al.Conducting and transparent single-wall carbon nanotube electrodes for polymer-fullerene solar cells [J].Applied Physics Letters,2005,87(20):203511.
    [36] Van de Lagemaat J,Barnes T M,Rumbles G,et al.Organic solar cells with carbon nanotubes replacing In2O3:Sn as the transparent electrode [J].Applied Physics Letters,2006,88(23):233503.
    [37]陈炜,孙晓丹,李恒德,等.染料敏化太阳能电池的研究进展[J].世界科技研究与发展,2004,26(5):27-35.
    [38] Suzuki K,Yamaguchi M,Kumagai M,et al.Application of carbon nanotubes to counter electrodes of dye-sensitized solar cells [J].Chemistry Letters,2003,32(1):28-29.
    [39] Hu L,Hecht D S,Gruner G, Percolation in transparent and conducting carbon nanotube networks [J].Nano Letters,2004,4(12):2513-2517.
    [40] Masuda H, Fukuda K.Ordered metal nanohole array made by a two-step replication of honeycomb structures of anodic alumina [J].Science,1995,268:1466-1468.
    [41] Keller F,Hunter M S.Structural features of oxide coatings on aluminum [J].Journal of Electrochemical Society,1953,100(9):411-419.
    [42] O’Sullivan J P,Wood G C.The morphology and mechanism of formation of porous anodic films on aluminium.Procedure Research Society,London,Series A,1970,317:511-543.
    [43] Murphy J F,Michelson C E.A theory for the formation of anodic coatings on aluminum.A D A.Conference on adodizing of aluminum,Notingham,1961.
    [44]Wada K,Shimohira T.Microstructure of porous anodic films on aluminum [J].Journal of Materials Science,1986,21:3810-3816.
    [45]朱祖芳等.铝合金阳极氧化及表面处理技术[M].北京:化学工业出版社,2004,163-212.
    [46] Strazzi E,Yincenzi F,Bellei S.Multicolour electrolytic Colours [J].Aluminium Finishing,1997,17(1):20.
    [47]毕琳.建筑铝型材电解着色均匀化和多色化处理工艺技术[J].腐蚀与防护,2000,21(1):19-22.
    [48] Pener R M,Martin C R.Preparation and electrochemical characterization of ultramicroelectrode ensembles [J].Analytical Chemistry,1987,59(21):2625-2630.
    [49] Pan S L,Zeng D D,Li H L,et al.Preparation of ordered array of nanoscopic gold rods by template method and its optical properties [J].Applied Physcis A:Materials Science and Processing,2000,70(6):637-640.
    [50] Chi G J,Yao S W,Fan J,et al.Antibacterial activity of anodized aluminum with deposited silver [J].Surface and Coatings Technology,2002,157(2-3):162-165.
    [51] Suh J S,Lee J S.Surface enhanced raman scattering for CdS nanowires deposited in anodic aluminum oxide nanotemplate [J].Chemical Physcis Letters,1977,281(4-6):384-388.
    [52] Xu D S,Shi X S,Guo G L,et al.Electrochemical preparation of CdSe nanowire arrays [J].Journal of Physical Chemistry B,2000,104(21):5061-5063.
    [53] Dyke L S V,Martin C R.Electrochemical investigations of electronically conductive polymers.4.controlling the supermolecular structure allows charge transport rates to be enhanced [J].Langmuir,1990,6(6):1118-1123.
    [54] Sui Y C, Cui B Z,Guardian R,et al.Growth of carbon nanotubes and nanofibres in porous anodic alumina film [J].Carbon,2002,40(7):1011-1016.
    [55] Novoselov K S,Geim A K,Morozov S V,et al.Electric field effect in atomically thin carbon films[J].Science,2004,306:666-669.
    [56] Fasolino A,Los J H,Katsnelson M I.Intrinsic ripples in graphene [J].Nature Materials,2007,6:858-861.
    [57] Stankovich S,Dikin D A,Dommett G H B,et al.Graphene-based composite materials [J].Nature,2006,442:282-286.
    [58] Stankovich S,Dikin D A,Piner R D,et al.Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide [J].Carbon,2007,45:1558-1565.
    [59] Balandin A A,Ghosh S,Bao W Z,et al.Superior thermal conductivity of single-layer graphene [J].Nano Letters,2008,8(3):902-907.
    [60] Pop E,Mann D,Wang Q,et al.Thermal conductance of an individual single-wall carbon nanotube above room temperature [J].Nano Letters,2006,6(1):96-100.
    [61] Kane C L.Erasing electron mass [J].Nature,2005,438:168-170.
    [62] Pisana S,Lazzeri M,Casiraghi C,e ta1.Breakdown of the adiabatic born-oppenheimer approximation in grapheme [J].Nature Materials,2007,6:198-201.
    [63]高玉波,彭智,宋国君,等.恒电流密度法制备大孔径高度有序阳极氧化铝模板[J],材料导报,2007,21(7):136-138.
    [64] Dresselhaus M S,Dresselhaus G,Jorio A,et al.Raman spectroscopy on isolated single wall carbon nanotubes [J].Carbon,2002,40:2043-2061.
    [65] Rao A M,Richter E,Bandow S,et al.Diameter-selective raman scattering from vibrational modes in carbon nanotubes [J].Science,1997,275,187-191.
    [66]梁燕萍,卢敏.铝多孔氧化膜的结构及红外吸收特性[J].西安电子科技大学学报(自然科学版),2000,27(6):709-711.
    [67] Chen J,Hamon M A,Hu H,et al.Solution properties of single-walled carbon nanotubes [J].Science,1998,282:95-98.
    [68] Kaempgen M,Duesberg G S,Roth S.Transparent carbon nanotube coatings [J].Applied Surface Science,2005,252(2):425-429.
    [69] Watsona K A,Ghoseb S,Delozie D M,et al.Transparent,flexible,conductive carbon nanotube coatings for electrostatic charge mitigation [J].Polymer,2005,46(7):2076-2085.
    [70] Valentini L,Cardinali M,Bagnis D,et al.Solution casting of transparent and conductive carbon nanotubes/poly(3,4-ethylenedioxythiophene)-poly (styren- esulfonate) films under a magnetic field [J].Carbon,2008,46:1506-1517.
    [71] Ferrer-Anglada N , Kaempgen M , Skakalova V , et al .Synthesis and characterization of carbon nanotube-conducting polymer thin films [J].Diamond and Related Materials,2004,13(2):256-260.
    [72] Kurnosov D A,Buturin A S,Bugaev A S,et al.Influence of the interelectrode distance in electrophoretic cold cathode fabrication on the emission uniformity [J].Appllied Surface Science,2003,215(1-4):232-236.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700