金属修饰二氧化钛纳米管阵列电极的制备、表征及光电性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
论文采用阳极氧化法在钛片上制备了排列规则、垂直生长的二氧化钛纳米管阵列,最佳制备工艺为:氧化电压20V,反应时间30min,HF电解液浓度0.8wt%。扫描电镜(SEM)下观察到,TiO_2纳米管内径约85 nm,壁厚约10 nm,长约1.5μm。
     采用敏化和活化工艺,在超声场下制备出金属Pd修饰TiO_2纳米管阵列,采用SEM、透射电子显微镜(TEM)和多种电化学测试技术考察了超声时间和超声功率对纳米管阵列形貌、结构及其光电性能的影响。结果表明,超声时间和超声功率是制备金属Pd修饰二氧化钛纳米管阵列的关键因素;最佳制备工艺为:超声时间15min,超声功率60%。
     通过SEM及TEM可以观察到单根TiO_2纳米管及沉积在纳米管中的金属Pd,并通过TEM能谱加以确认纳米管中金属Pd。选取具有代表性的难降解染料罗丹明B为目标物质,以8W紫外灯为光源,考察了不同条件下所制备金属Pd修饰二氧化钛纳米管阵列电极对罗丹明B的光电催化性能。
     采用恒电位沉积方法制备了Cu2O修饰二氧化钛纳米管阵列,通过阴极极化曲线确定沉积电位为-0.3V。采用SEM、X射线粉末衍射(XRD)和多种电化学测试技术考察了电沉积时间和电解液组成对纳米管阵列形貌、结构和光电响应性能的影响。SEM表征检测表明:电沉积10s和20s的纳米管均没有被沉积的Cu2O封闭;XRD结果表明:电解液中Cu2+离子浓度为0.4mol/L,电沉积时间为20s所制备纳米管的Cu2O的特征衍射峰最为明显。
     光电性能测试结果表明,电解液中Cu2+离子浓度为0.4mol/L,电沉积时间为20s时所制备纳米管的光电响应最大,光照下电极电化学反应电阻值最小。由上述检测得到最佳制备工艺为:电沉积时间20s,电解液中Cu2+离子浓度为0.4mol/L。考察了不同条件下所制备Cu2O修饰二氧化钛纳米管阵列电极对罗丹明B的光电催化性能。
     光电催化实验表明,金属修饰TiO_2纳米管阵列电极对罗丹明B的降解效率比TiO_2纳米管有了明显的提高,对罗丹明B显示出了良好的降解效果。
TiO_2 nanotube arrays were successfully fabricated by andization method on a pure titanium sheet. The optimal reaction conditions were as follows: 20V for oxidation potential, 30minutes for reaction time and 0.8wt% for HF electrolytes concentration. The results of SEM measurements showed that the inner diameter was about 85nm, the wall thickness 10nm and length 1.5μm.
     Metal Pd modified TiO_2 nanotube arrays were fabricated by sensitization and activation technology in the ultrasound field. The influencing factors of ultrasonic time and ultrasonic power on the morphology, structure and photoelectrochemistry properties of nanotube arrays were investigated with SEM, transmission eletron microscopy (TEM) and various electrochemical measurements. The results show that ultrasonic time and ultrasonic power were key factors to form metal Pd modified TiO_2 nanotube arrays; and the optimal reaction conditions were as follows:15min for ultrasonic time , 60% for ultrasonic power. A single TiO_2 nanotube and metal Pd deposited on the nanotube were observed by SEM and TEM, and Pd could be confirmed through TEM spectroscopy. The degradation of rhodamine B was employed as the model reaction to evaluate the photoeletrocatalytic activity of metal Pd modified TiO_2 nanotube arrays under the 8W ultraviolet.
     Cu2O modified TiO_2 nanotube arrays were fabricated through potentiostatic method, and -0.3V for deposition potential could be confirmed through cathodic polarization curve. The influencing factors of electrodeposition time and electrolyte composition on the morphology, structure and photoelectrochemistry properties of nanotube arrays were investigated with SEM, X-ray diffraction (XRD) and various electrochemical measurements. The results of SEM characterization of the test show that nanotube arrays fabricating by 10s and 20s electrodeposition times were not closed by deposition of Cu2O; The results of XRD show that characteristic diffraction peaks of Cu2O in the nanotube preparing by 0.4mol/L for Cu2+ concentration in the electrolyte and 20s for electrodeposition time can be oberved obviously.
     The results of photoelectric response shows that nanotube arrays preparing by 0.4mol/L for Cu2+ concentration in the electrolyte and 20s for electrodeposition time were the largest photoelectric response and the smallest resistance value of electrochemical reaction of electrode in the light. So the optimal reaction conditions were as follows: 20s for electrodeposition time, 0.4mol/L for Cu2+ concentration in the electrolyte. Then the degradation of rhodamine B was employed as the model reaction to evaluate the photoeletrocatalytic activity of Cu2O modified TiO_2 nanotube arrays.
     The results of photoelectrocatalysis experiments indicate that the degradation of rhodamine B over metal modified TiO_2 nanotube arrays shows a evident rise compared with TiO_2 nanotube arrays, where exists a certain synergetic effect.
引文
[1]Zeng T,Qiu Y,Song X,Chen,L.Microstructure and phase evolution of TiO_2 precursors prepared by peptization—hydrolysis method using polycarboxylicacid as peptizing agent,Materials Chemistry and Physics,1998,56 (2):163~170
    [2]Liang Peishi,TA Qing,Lu Hanbing,et a1,Speciafion of Cr(Ⅲ) and Cr(Ⅵ) by nanometer titanium dioxide micro-column and inductively coupled plasma atomic emission spectrometry,pectrochimica Acta Part B:Atomic Spectroscopy,2003,58(9):1709~1714
    [3]陈小兵,成晓玲,余双平,等,纳米TiO_2薄膜制备技术研究进展,精细石油化工进展,2004,5(2):23~29
    [4]Zhao Xiutian,Sakka Kenii,Kihara Naoto,Structure and photo-induced features of TiO_2 thin films prepared by RF magnetron sputtering,Microelect ronics Journal,2005,36(3):549~551
    [5]鄢程,李竞先,纳米TiO_2颗粒的表面改性研究进展,陶瓷学报,2002,23(1):62~66
    [6]任成军,李大成,周大利,等,纳米TiO_2的光催化原理及其应用,四川有色金属,2004,(2):19~24
    [7]马玉涛,林原,肖绪瑞,等,TiO_2纳米管薄膜的制备及其光散射性能,科学通报,2005,50(17):1824~1828
    [8]Miyauehi M,Tokudome H,Toda Y,et a1,Electron field emission from TiO_2 nanotube arrays synthesized by hydrotherreal reaction,Appl Phys Lett,2006,89:143~144
    [9]Cheng L F,Zhang X T,Liu B,et a1,Template synthesis and characterization of W03/TiO_2 composite nanotubes,Nanoteeh,2005,16(8):1341~1345
    [10]Lee S,Jeon C,Park Y,Fabrication of TiO_2 tubules by template synthesis and hydrolysis with water vapor,Chem Mater,2004,16(22):4292~4295
    [11]Lee J H,Leu I C,Hsu M C,et a1,Fabrication of aligned TiO_2 one-dimensional nanostruetured arrays using a one-step templating solution approach,J Phys Chem B Lett,2005,109(27):13056~13059
    [12]Jung J H,Kobayashi H,Kjeld J C,et a1,Creation of novel helical ribbon and double-layered nanotube TiO_2 structures,Chem Mater,2002,14(4):1445~1447
    [13]Hoyer P,Formation of a titanium dioxide nanotube array,Langmuir,1996,12:1411~1413
    [14]Gong D W ,Grimes C A,Varghese O K,et a1,Titanium oxide nanotube arrays prepared by anodic oxidation,J Mater.Res.,2001,16(12):3331~3334
    [15]Paulose M,Shankar Varghese O K,Mor G K,Application of highly-ordered TiO_2 nanotube arrays in heterojunction dye-sensitized solar cells,J Phys D:Appl Phys.2006,39:2498~2503
    [16]Zhang M,Bando Y,Wada K,Synthesis and characterization of ropes made of BN multiwalled nanotubes,Sci.Lett.2001,20:167~170.
    [17]李晓红,张校刚,力虎林,TiO_2纳米管的模板法制备及表征,高等学校化学学报,2001,22:130~132
    [18]Patrick Hoyer,Preparation of regularly structured porous metal membranes with two different hole diameters at the two sides,Langmuir,1996,12:1411
    [19]Hoyer P,Semiconductor nanotube formation by a two-step template process,Adv Mater,1996,8(10):857
    [20]Brinda B Lakshmi,Peter K Dorhout,Charles R Martim,Synthesis and characterization of CdS particles within a nanoporous aluminum oxide template,Chem Mater,1997,9:857
    [21]Jong Hwa Jung,Hideki Kobayashi,Assembly of a tennis ball-like supramolecule coordinatively encapsulating disilver,Chem Mater,2002,14;1445
    [22]Jung J H,Kobayashi H,Creation of novel helical ribbon and double-layered nanotube TiO_2 structures using an organogel template,Chem Mater,2002,14(4):1445
    [23]Kobayashi S , Preparation of helical transition-metal oxide tubes using organogelators as structure-directing agents,J Am Chem Soc,2002,124(23):6550
    [24]Tomoko Kasuga , Formation of titanium oxide nanotubes using chemical treatments and their characteristic properties,Langmuir,1998,14:3160
    [25]宋旭春,岳林海,等,水热法合成掺杂铁离子的小管径TiO_2纳米管,无机化学学报,2003,19(8):899
    [26]Nakahira A,Kato W,Tamai M,et a1,Development of environmentally friendly photocatalyst with nano-size pore structure coated with thin Ti-oxide,J Mater Sci,2004,39:4239
    [27]Dmitry V Bavykin,Valentin N Parmon,J Mater Chem,Highly selective Pd/titanate nanotube catalysts for the double-bond migration reaction,2004,14:3370
    [28]梁建,马淑芳,二氧化钛纳米管的合成及其表征,稀有金属材料与工程,2005,34(2):287
    [29]王芹,陶杰,氧化钛纳米管的合成机理与表征,材料开发与应用,2004,19(5):9
    [30]Godbole V P,Young Soon Kim,Synthesis of titanate nanotubes and its processing by different methods,Electrochimica Acta,2006,120:111~113
    [31]Wu X,Jiang Q.Z.,Ma Z.F.,Synthesis of Titania nanotubes by microwave iradiation,Solid State Commun,2005,136:513~5l7
    [32]Cai Q,Paulose M,Varghese O.K,The effect of electrolyte composition on the fabrication of self—organized titanium oxide rmnotube arrays by anodic oxidation,J.Mater.Res,2005,20:230~235
    [33]G.K.Mor,O.K.Varghese,M.Paulose,et a1,Gas sensing characteristics of multi-wall carbon nanotubes,Res.2003,18:2588
    [34]Oomman K Varghese , Maggie Paulose , Hydrogen sensing using titania nanotubes,Sensors and Actuators,2003,93:338
    [35]Zhao Jianling,Wang Xiaohui,Fabrication of titanium oxide nanotube arrays by anodic oxidation,Solid State Communications,2005,134:705
    [36]Jan M,Hiroaki T,Patrik S,High-aspect-ratio TiO_2 nanotubes by anodization of titanium,Angew Chem Int Ed,2005,44:2100
    [37]李静,孙岚,铁掺杂TiO_2纳米管阵列制备及其光电化学性质,物理化学学报,2004,20(9):106
    [38]Gopal K M,Fabrication of hydrogen sensors with transparent titanium oxide nanotube-array thin films as sensing elements,Thin Solid Films,2006,21(496):42
    [39]Ma D.L,Schadler L.S,Siegel R.W,Hong J.,Preparation and structure investigation of nanoparticle-assembled titanium dioxide microtubes,Appl Phys Letter,2003,83:1839~1841
    [40]杨海军,钛基二氧化钛纳米管的制备及其光电催化性能研究:[硕士学位论文],天津;天津大学,2008
    [41]Augustynski,Characteriyation of electrodeposited Ti02 films,J Electrochim Acta,1993,38:43~47
    [42]Scalafani A , HERMANN J M , Comparison of the photoelectronic and photocatalytic actiuities of various anatase and rutile forms of titania in pure liguid organic phases and in agueous solutions,J Phys Chem,1996,100:13655~13661
    [43]Amy L Linsebigler,Photocatalysis on TiO_2 surfaces:principles、Mechanisms、and selected results,Chem Rve,1995,95:735~758
    [44]黄艳娥,琚行松.纳米二氧化钛光催化降解水中有机污染物的研究,现代化工,2001,21(4):45~48
    [45]王红娟,李忠,半导体多相光催化氧化技术,现代化工,2002,22(2):56~60
    [46]吴兴惠,赵景畅,柳清菊,光催化剂可见光化研究进展,云南大学学报,2003,25(3):232~239
    [47]张晓勇,许德平,王永刚,TiO_2光催化材料的超亲水性原理及应用,山西化工,2004,24(3):8~11
    [48]Amy L Linsebigler,Photocatalysis on TiO_2 surfaces:principles,Mechanisms,and selected results,Chem Rve,1995,95:735~758
    [49]崔洪斌,大豆生物活性物质的开发与应用,北京:中国轻工业出版社,2001
    [50]李显特,功能性大豆食品,北京:中国轻工业出版社,2002,20~25
    [51]黄雪梅,王苑娜,成晓玲,等,二氧化钛可见光光催化技术研究进展,材料导报,2008,22(11):47~51
    [52]费贤翔,林睿,王文华,等,TiO_2可见光催化研究进展,化工时刊,2007,21(2):60~62
    [53]谷亨达,石照信,张静,等,镧和铁掺杂纳米TiO_2的制备及其光催化性能,应用化工,2007,36(2):136~139
    [54]Sakata Y,Yamamoto T,Cunji H,et a1,Application of microstructural path analysis to abnormal grain growth of BaTiO3 with an excess TiO_2,Chem Left,1998,27(2):131~132
    [55]管东升,掺锆TiO_2纳米管阵列的制备与表征:[硕士学位论文],哈尔滨;哈尔滨工业大学,2006
    [56]Yang Ying,Li Xinjun,Chen Juntao,et a1,Effect of doping mode on the photocatalytic activities of Mo/TiO_2,J Photochem Photobiol A:Chem,2004,163:517
    [57]Radecka M,Zakrzewska K,Wierzbicka M,et a1,Noble metal/titanium dioxide nanocermets for photoelectrochemical applications,Solid State Ionics,2003,157:379
    [58]张峰,李庆霖,样建军,等,TiO_2光催化剂的可见光敏化研究,催化学报,1999,20(3):32
    [59]Xu Anwu,Gao Yuan,Liu Hanqin,Preparation of inorganic salts (CaCO3, BaCO3, CaSO4) nanowires in the Triton X-100/cyclohexane/water reverse micelles,J Catalysis,2002,207(2):151
    [60]雷波,徐悦华,郭来秋,等,Ce-TiO_2/硅藻土的制备、表征及其光催化活性,中国有色金属学报,2007,17(5):795
    [61]马新起,郭新勇,金振声,等,载铂TiO_2纳米管的制备与表征,无机材料学报,2003,18(5):1131~1134
    [62]Sting Sub H M,Choi j R,Hah H J,et a1,Photosensitization of ion-exchangeable titanate nanotubes by CdS nanoparticles,J Photoehem and Photobio1 A:Chem,2004.163(12):37
    [63]包华辉,徐铸德,殷好勇,等,TiO_2纳米管负载Ag、Au、Pt纳米粒子的微波合成与表征,无机化学学报,2005,21(3):374
    [64]Mor G K,Shankar K,Paulose M,Varghese O K,Use of highly-ordered TiO_2 nanotube arrays in dye-sensitized solar cells.Nano Letters,2005,6(2):215~218
    [65]N.V. Gaponenko,O.V.Sergeev,E.A.Stepanova,et al,Optical and structural,characterization of Erbium-doped TiO_2 xerogel films Processed on Porous anodic alumina. Journal of the Electrochemical Society,2001,148(2):13~16
    [66]Umebayashi T,Yamaki T,Tanaka S,et a1,Fabrication and characterization of anatase TiO_2 thin film on glass substrate grown by pulsed laser deposition,Chemistry Letters,2003,32:330~331
    [67]Umebayashi T,Yamaki T,Itoh H,et a1,Fluorine-doping in titanium dioxide by ion implantation technique,App1.Phys.Lett.,2002,81:454~456
    [68]Umebayahi T,Yamaki T,Yamamoto S,et a1,UV-ray photoelectron and abinitio band calculation studies on electronic structures of Cr-ion or Nb-ion implanted titanium dioxide,App1.Plays,2003,93:5156-5160
    [69]E. Sackmann,Supported membranes:scientific and practical applications,Science,1996,271:4348
    [70]Ohno T,Akiyodai M, Umebayashi T,et a1,App1.Cata1.A,2004,265:l15~121
    [71]Bickley R. I,Gonzalez Carreno T,Lees J. S,A structural investigation of TiO_2 photocatalysts . J. Solid State Chem,1991,92:178~190
    [72]张青龙,沈毅,Ag+、Fe3+共掺杂纳米TiO_2薄膜光催化性研究,武汉理工大学学报,2007,29(I):323
    [73]Shi Jianwen,Zheng Jiangtang,Influence of Fe3+and Ho3+ co-doping on the photocatalytic activity of TiO_2,Mater Chem Phys,2007,(106):247
    [74]Luo Hongmei,Takata Tsuyoshi,Lee Yungi,et a1,Photocatalytic activity enhancing for titanium dioxide by co-doping with bromine and chlorine,Chem Mater,2004,16(5):846
    [75]Huang L H,Sun C,Liu Y L,et a1,Pt/N codoped Ti02nanotubes and its photocatalytic activity under visible light,Appl Surf Sci,2007,(253):7029
    [76]Ken Obata,Hiroshi Irie,Kazuhito Hashimoto,et a1,Enhanced photocatalytic activities of Ta,N co-doped TiO_2 thin films under visible light,Chem Phys,2007,(339):124
    [77]华南平,吴遵义,杜玉扣,等,Pt、N共掺杂TiO_2在可见光下对三氯乙酸的催化降解作用,物理化学学报,2005,21(10):1081
    [78]Bessekhouad Y,Robert D,W eber J V,et a1,Effect of alkaline-doped TiO_2 on photocatalytic efficiency,J Photochem Photobiol A:Chem,2004,163:569
    [79]苏碧桃,董娜,慕红梅,等,Fe3+-CdS/TiO_2复合半导体的光催化性能,化学试剂,2007,29(9):537
    [80]刘向春,谢述锋,陈晓龙,等,ZnO-TiO_2系微波介质陶瓷的相结构及研究进展,子元件与材料,2005,24(6):47
    [81]Chen Lo Shih,Lin Cheng Fang,Chung Hsin,et a1,Capability of coupled CdSe/TiO_2 for photocatalytic degradation of 4-chlorophenol,Hazard Mater B,2004,114:183
    [82]Pilkenton Sarah,Raftery Danie1,Solid-state NMR studies of the adsorption and photooxidation of ethanol on mixed TiO_2-SnO2 photocatalysts,Solid State Nucl Magn Reson,2003,24:36
    [83]罗金岳,杨云,范一民,等,复合型固体超强酸SO4^2-/ZrO2-TiO_2催化a-蒎烯异构反应研究,林产化学与工业,2004,24(2):15
    [84]Kamat.P.V. , Photoelectrochemistry in particulate system photosensitized reduction in a colloidal TiO_2 system using anthracene-9 corboxylic acid as the sensitizer,J Phys Chem,1989,93:859
    [85]张琦,李新军,李芳柏,等,WOχ/TiO_2光催化剂的可见光催化活性机理探讨,物理化学学报,2004,20(5):507~511
    [86]Bessekhouad Y,Robert D,Weber J V,Effect of alkaline-doped TiO_2 on photocatalytic efficiency,J Photochem Photobiol A:Chem,2004,l63(3):569
    [87]Mabakazu A,Kawamura T,Kodama S,et a1,Interaction of structure with kinetics in Si(001) homoepitaxy,J Phys Chem,1988,92(2):438
    [88]Chatterjee D,Mahata A,Regulation of Cholinephosphotransferase by Thyroid Hormone,APPl Catalysis B:Env,2001,33:119
    [89]T.K.Kima,M.N.Leea,S.H.Leeb,et a1,Development of surface coating technology of TiO_2 powder and improvement of photo-catalytic activity by surface modification,Thin Solid Films,2005,475:171~177
    [90]邵颖,薛宽宏,何春建,等,TiO_2纳米管对十二烷基苯磺酸钠的光催化降解,化学世界,2003,44:174~178
    [91]Maeak J M,Tsuehiya H,Ghieov A.,et a1,Dye—sensitizedanodie TiO_2 nanotubes,Electrochem Commun,2005,7(11):1133~1137
    [92]Quanx,Yang S,Zhao H.,et a1,Preparationoftitania nanotubes and their environmental applications as electrode,Environ.Sci.Techno1.,2005,39:3770~3775
    [93]Xie Y B,Photoelectrochemical application of nanotubular titania photoanode,Eleetrochemiea Aeta,2006,51:3399~3402
    [94]江海军,张瑾,奚丽荷,等,TiO_2半导体光催化剂在污水处理中的研究进展,材料导报,2007,21(13):54~63
    [95]Quan X,Yang S,Zhao H,Preparation of Titania Nanotubes and Their Environmental Applications as Electrode,Environ.Sci.Techno1,2005,(20):15~18
    [96] A Sclafani,L Palmisano,M Schiavello Influence of the Preparation Methods of TiO_2 on the Photocatalytic Degradation of Phenol in Aqueous Dispersion. Phys. Chem,1990, 94, 829~832
    [97]Varghes O.K , Gong D , Paulose M , Hydrogen sensing using titaniananotubes.Sensor,Actuat.B—Chem,2003,93:338~344
    [98] Grimes C A,Ong K G,Varghese O K.,et a1,A sentinel sensor network for hudrogen sensing,Sensors,2003,3:69~73
    [99]Oomman K,Hydrogen sensing using titania nanotubes,Sensors and Actuators B,2003,93:338~342
    [100]Gopal K M,Karthik S,Maggie P.,et a1,Enhanced photocleavage of water using titania nanotube arrays,NanoLett,2005,5(1):191~193
    [101]Paulose M,Shankar K,Grimes C A.,et a1,Application of highly ordered TiO_2 nanotube—arrays in heterjunction dye-sensitized solar cells,J.Phys.D:App1.Phys.,2006,39:2498~2503
    [102]Uchida S,Chiba R,Tomiha M, et a1,Application of titania nanotubes to a dye—sensitized solar cel1,Electrochemistry,2002,70:418~420
    [103]Dana Dvoranova , Investigations of metal-doped titanium dioxide photo-catalysts.Applied Catalysis B:Environmental,2002,37:91~105
    [104]Maeak J M,Tsuchiya H,Sehmuki P.,et a1,Dye—sensitized anodie TiO_2 nanotubes,Electrochemistry Communieation,2005,7:1133~1137
    [105]Masakazu Anpo,Masato Takeuchi,The design and development of highly reactive titanium oxide photo-catalysts operating under visible light irradiation,Journal of Catalysis 2003,216:505~516
    [106]Oh S H,Finones R R,Jin S,et al,Growth of nano-scale hydroxyapatite using chemically treated titanium oxide nanotubes,Biomaterials,2005,26:4938~4943
    [107]Zhao J,Wang X,Chen R,et a1,Hydrogenation properties of Mg/Mg2Ni0.8Cr0.2 composites containing TiO_2 nanoparticles,Mater.Lett.,2005,59:2329~2332
    [108]Prida V M,Velez M H, Cervera M,et a1,Magnetic behaviour of arrays of Ni nanowires by electrodeposition into self-aligned titania nanotubes,Magnetism and MagneticMater,2005,294:69~72
    [109]Huang J.G,Kunitake T,Onoue S.Y,A facile route to a highly stab- ilized hierarchical hybrid of titania nanotube and gold nanoparticle,Chem.Conunun,2004,8:1008~l009
    [110]Akira Fujishima , Kenichi Honda,electrochemical photolysis of water at a semiconductor electrode,Nature,1972,238(5358):37~38
    [111]Chatterjee D, Mahata A,Photo assisted detoxification of organic pollutants oil the surface modified TiO_2 semiconductor particulate system ,Catal.Commun.,2001,2(1):1~5
    [112]孙岚,宫娇娇,庄惠芳,等,TiO_2纳米管阵列光催化降解苯酚,精细化工,2007,24(4):317~320
    [113]Yu J.G.,Yu,H.G.,Cheng B.,Effects of calcination temperature on the microstructures and photocatalytic activity of titanate nanotubes ,Mo1.Cata1.A:Chem.,2006,249:135
    [114]Tauster S.J.,Fung S.C.,Garten R.L,Strong metal-support interactions: Occurrence among the binary oxides of groups IIA–VB,J Am Chem.Soc.,1978,100:170
    [115]Iliev V.,Tomova D.,Bilyarska L.,Photooxidation of xylenol orange in the presence of palladium-modified TiO_2 catalysts,CataL Commun.,2004,5:759
    [116]Seery M.K.,George R,Floris P.,Silver doped titanium dioxide nanomaterials for enhanced visible light photocatalysis,Photoch.Photobio.A:Chem.,2007,189:258
    [117]Spurr R. A, Myers H. Quantitative analysis of anatase-rutile mixtures with an X-ray diffractometer,Anal. Chem,1957,29: 760~762
    [118]高明,王西奎,国伟林,等,纳米颗粒钯超声化学制备及影响因素,济南大学学报(自然科学版),2008,22(2):162~165
    [119]朱燕萍,徐连来,李长福,纳米颗粒团聚问题的研究进展,天津医科大学学报,2005,11(2):338-341
    [120]陈杨,陈志刚,李霞章,等,超声场对醇/水反应体系制备纳米CeO2粉体影响研究,化学工程,2007,35(4):57~60

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700