聚苯乙烯基凝胶光子晶体的制备
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
光子晶体(photonic Crystal)是一种介电常数可以周期性调制的结构,是在二十世纪八十年代末发展起来的一种全新的功能材料。介电常数不同的介质材料在空间中作周期性排列,可以改变在其间传播的光的性质。近年来,利用胶体晶体自组装性质与水凝胶的传统应用相结合制成的凝胶光子晶体在药物释放、光学开关、金属探针、生物传感器等新应用方面的研究蓬勃发展,在新材料开发及临床应用等方面取得巨大进展。
     本论文主要通过选择制备方法和控制工艺条件,制备了两种光子晶体的组成单元-单分散聚苯乙烯微球和聚苯乙烯/2-丙烯酰胺基-2-甲基丙磺酸复合微球。主要研究内容包括以下两个部分:
     第一部分,系统完整地考察和总结了聚苯乙烯的合成方法、合成路线、合成配方和反应条件,确立了适用于本实验室的单分散聚苯乙烯微球的制备方法,得到了高圆度、窄粒径分布的单分散聚苯乙烯微球,能够满足形成可见光波段胶体晶体的要求。然后,对于制备的单分聚苯乙烯微球,采用垂直沉积法自组装成面心立方晶体周期性结构。利用光纤光谱仪研究了面心立方胶体晶体的不完全光子带隙效应,利用场发射扫描电镜观察了胶体晶体的结构特点和缺陷情况。通过反射光谱图和扫描电镜照片判断、确定和优化了乳液聚合法主要制备工艺参数。最后,采用毛细力渗透法对聚苯乙烯微球组装的模板表面填充了含有2-丙烯酰胺基-2-甲基丙磺酸功能单体的前驱液,待前体溶液交联聚合后,用溶剂溶解法除去模板后制得带有磺酸基功能基团的反蛋白石结构凝胶光子晶体。该反蛋白石结构凝胶光子晶体表现出鲜艳的结构颜色,保持了长程有序的周期性结构,并对Ca~(2+)具有较强的吸附性,且Ca~(2+)的吸附量随着2-丙烯酰胺基-2-甲基丙磺酸功能单体含量的增大而增大。
     第二部分,利用2-丙烯酰胺基-2-甲基丙磺酸对聚苯乙烯胶体晶体进行改性。采用湿化学方法,建立了在聚苯乙烯微球表面包覆功能单体的方法,优化了单分散聚苯乙烯/2-丙烯酰胺基-2-甲基丙磺酸微球的制备方法。扫描电镜表征结果表明,单分散聚苯乙烯/2-丙烯酰胺基-2-甲基丙磺酸微球的粒径分布较均匀,能够实现初步胶体晶体自组装。
Photonic crystal (PC) is a spatial periodic dielectric structure, which is a new kind of functional materials arised from the late 1980s. With different dielectric coefficient materials periodically arrayed in the space, photonic crystals (PCs) prevent the transmitting of some electromagnetic spectrum. In recent years, colloidal crystal self-assembly properties were coupled with traditional application of gel which was used in the drug release, optical switch, the metal probe, biosensor and other new applied research. In the development of new materials and its clinical application gained tremendous progress.
     In this paper, monodisperse spheres of polystyrene(PS), Poly styrene/2-acrylamido--2 - methylpropane sulfonic acid( PSt/AMPS) which are the PCs units have been fabricated by controlling the synthesis condition. The main research include the following two parts: In the first part, monodisperse PS were fabricated systemically by different synthesis condition. In the experiments, PS spheres which were verified to suit for the requirements of fabricating opal PCs and satisfy the formation of colloidal crystal visible bands. Then, opal PCs with fcc structure were assembled with the monodisperse PS microspheres by vertical deposition method. According to the periodic structures, opal PCs were fabricated.
     Then the stop band gap of the fcc structure is confirmed by Fiber Optic Spectrometer. The characteristics and defects of colloidal crystal were analyzed with Field Emission Scanning Electron Microscope(FESEM). Judging by Fiber Optic Spectrometer and FESEM images, the mainly factors for the synthesis of PS particles were optimized. Lastly, the precursors, the AMPS was infiltrated into the templates by induced capillary attraction method. By immersing the polymers in the solvent to remove the template, the well ordered three dimensional inverse opal photonic crystals are fabricated and show the vivid structural color. Finally, used the inverse opal photonic crystals containing AMPS to adsorp Ca~(2+), and the adsorption amounts of Ca~(2+) is increased with the AMPS content.
     In the second part, a feasible way was found out for PSt/AMPS sphere’s synthesis. The FESEM observation showed a fare good inverse opal structure using wet chemistry method. And periodic structures were self-organized with these units by vertical deposition method. The IR confirmed the PSt/AMPS spheres were fabricated. Monodisperse PSt/AMPS nanoparticles were successful synthesized with a narrow size distributed relatively.
引文
[1]Lee K, Asher S A, Photonic crystal chemical sensors pH and ionic strength, Am Chem Soc, 2000, 122: 9534~9537
    [2]Alfons Van, Blaaderen A V, Opals in a new light, Science, 1998, 282: 887~888
    [3]Yan H W, Blanford C F, Holland B T, et.al., A chemical synthesis of periodic macroporous NiO and metallic Ni, Adv Mater, 1999,11: 1003~1006
    [4]Holland B T, Blanford C F, Do T, et.al., Synthesis of highly ordered, three-dimensional, macroporous structures of amorphous or crystalline inorganic oxides, phosphates, and hybrid composites, Chem Mater, 1999, 11: 795~805
    [5]Braun P V, Wiltzius P, Microporous materials-electrochemically grown photonic crystals, Nature, 1999, 402: 603~604
    [6]Seshadri R, Meldrum F C, Templating approaches to materials with ordered macro -porous structures, Adv Mater, 2000, 12: 1149~1151
    [7]Park S H, Xia Y, Fabrication of three-dimensional macroporous membranes with assemblies of microspheres as templates, Chem Mater, 1998, 10: 1745~1747
    [8]Seiber H, Kaindl A, Schwarze D, et.al., Light-weight cellular ceramics from biologically derived performs, Ber DKG, 2000, 77: 21~24
    [9]Velev O D, Lenhoff A M, Colloidal crystals as templates for porous materials, Curr Opin Colloid Interface Sci, 2000, 5: 56~63
    [10]Hul Teen J C, Martin C R, A general template-basedmet hod for the preparation of nanomaterials, Mater Chem, 1997, 7: 1075~1087
    [11]Voglie, Mukerji J, Hoffman C, et.al., Conversion of oak to cellular silicon carbide ceramic by gas-phase reaction with silicon monoxide, Am Ceram Soc, 2001, 84: 1236~1240
    [12]Sieber H, Hoffmann C, Kaindl A, et.al., Biomor-phic cellular ceramics, Adv Eng Mater, 2000, 2: 105~109
    [13]齐凯,杨振忠,刘正平等,聚苯乙烯模板制备SiO2三维有序孔材料,科学通报,2000,45:992~994
    [14]于景媛,李强,马晓红等,三维有序大孔材料的制备及应用,材料导报,2006,20:21~24
    [15]Jiang P, Cizeron J, Bertone J F, et.a1., Preparation of macroporous metal films from colloidal crystals, Am Chem Soc, 1999, 121: 7957~7958
    [16]Velev O D, Tessier P M, Lenhof A M, et.a1., A class of porous metallic nanostructures,Nature, 1999, 40l: 548~548
    [17]Cong H L, Cao W X, Macroporous Au materials prepared from colloidal crystals as templates, Colloid and Interface Sci, 2004, 278: 423~427
    [18]Xu H H K, Quinn J B, Takagi S, et.al., Synergistic reinforcement of in situ hardening calcium phosphate composite scaffold for bone tissue engineering. Biomaterials, 2004, 25: 1029~1037
    [19]Velev O D, Jede T A, Lobo R F, et.al. Microst ructured porous silica via colloidal crystallization, Nature, 1997, 389: 447~448
    [20]李艳华,曾冬铭,黄可龙,有序大孔材料的制备及其应用,化学进展,2008,20:245~252
    [21]王浩,赵大方,李效东等,有序大孔材料的研究进展,硅酸盐学报,2006,34:107~112
    [22]Zakhidov A A, Baughman R H, Iqbal Z, Carbon structures with three-dimensional periodicity at optical wavelengths, Science, 1998, 28: 897~901.
    [23]Park S H, Xia Y N, Macroporous membranes with highly ordered and three -dimensionally interconnected spherical pores, Adv Mater, 1998, 10: 1045~1048
    [24]Jiang P, wang K S, Mittleman D M, Template-directed preparation of macroporos polymers with oriented and crystalline of voids, Am Chem Soc, 1999, 121: 11630~11637
    [25]Lee Y J, Pruzinsky S A, Braun P V, Glucose-sensitive inverse opal hydrogels: analysis of optical diffraction response, Langmuir, 2004, 20: 3096~3106
    [26]Lee Y J, Braun P V, Tunable inverse opal hydrogel pH sensors, Adv Mater, 2003, 15: 563~566
    [27]Barry R A, Wiltzius P, Humidity-sensing inverse opal hydrogels, Langmuir, 2006, 22: 1369~1374
    [28]李娜,王超,朱苏敏,聚乙二醇作造孔剂制备大孔溶胶凝胶生物活性玻璃,无机化学学报,2005,21:95~100
    [29]Jones J R, Hench L L, Biomedical materials for the new millennium: a perspective on the future, Mater Sci Tech, 2001, 17: 891~900
    [30]郑磊,王前,裴国献等,新型骨基质材料的研制及其细胞相容性评价,中华医学杂志,2001,81:1128~1129
    [31]Sepulveda P, Jones J R, Hench L L, Bioactive sol-gel foams for tissue repair biomed, Mater Res, 2002, 59: 340~348
    [32]Velev O D, Jede T A, Lobo R F, Microstructured porous silica obtained via colloidalcrystal templates, Am Chem Mater, 1998, 10: 3597~3602
    [33]Yan H W, Blanford C F, Holland B T, et.al., General synthesis of periodic macroporous solids by templated salt precipitation and chemical conversion, Chem Mater, 2000, 12: 1134~1141
    [34]Holland B T, Abrams L, Stein A A, Dual templating of macroporous silicates with zeolitic micmporous frameworks, Am Chem Soc, 1999, 121: 4308~4309
    [35]Subramania G, Constant K, Biswas R, et.al., Optical photonic crystals fabricated from colloidal systems, Appl Phys Lett, 1999, 74: 3933~3935
    [36]Subramania G, Manoharan V N, Thorne J D, Ordered macroporous materials by colloidal assembly: a possible route to photonic bandgap materials, Adv Mater, 1999, 11: 1261~1265
    [37]杨凌露,康娟,曹维孝等,牛血清蛋白质三维有序大孔材料,化学学报,2007,65:615~618
    [38]杨凌露,胶体晶体、胶体颗粒为模板的三维有序大孔材料、中空微球和基于自组装膜的微图案,[博士学位论文],北京,北京大学,2006
    [39]Schlamp M C, Peng X G, Ailvisatos A P, Improved efficiencies in light emitting diodes made with CdSe (CdS) core-shell type nanocrystals and a semiconducting polymer, Appl Phys, 1997, 82, 5837~5842
    [40]Yablonovitch E, Photonic band-gap structures, Opt Soc Am, B, 1993, 10, 283~295
    [41]Vlasov Y A, Luterova K, Pelant I, Enhancement of optical gain of semiconductors embedded in three-dimensional photonic crystals, Appl Phys Lett,1997, 71: 1616~1618
    [42]Stein A, Schroden C, Current opinion in solid state and materials, Science, 2001, 5: 553~564
    [43]Wang D Y, Caruso F, Rogach A L, Composite photonic crystals from semiconductor nanocrystal/polylectrolyte-coated colloidal spheres, Chem Mater, 2003, 15, 2724~2729
    [44]Wang Wei, Asher S A, Photochemical incorporation of silver quantum dots in monody -sperse silica colloids for photonic crystal applications, Am Chem Soc, 2001, 123: 12528~12535
    [45]Kubo S, Gu Z Z, Takahashi K, et.al., Control of the optical band structure of liquid crystal infiltrated inverse opal by a photoinduced nematic-isotropic phase transition, Am Chem Soc, 2002, 124: 10950~10951
    [46]Kubo S, Gu Z Z, Takahash K, et.al., Control of the optical properties of liquid
    [63]Lin S Y, Chow E, Hietala V, Experimental demonstration of guiding and bending of electromagnetic waves in a photic crystal, Science, 1998, 282, 274~276
    [64]Knight J C, Broeng J, Birks T A, Photonic band gap guidance in optical fibers, Science 1998, 282:1476~1478
    [65]Kosaka H, Superprism phenomena in photonic crystals, Phys Rev B, 1998, 58: 10096~10112
    [66]资剑,控制光子流动的晶体:光子晶体,世界科学,2002,6:25~26
    [67]程开富,光子晶体及其在光通信领域中的应用,光子技术,2005,1:17~21
    [68]Feng X, Fryxell G E , Wang L Q, et.al., Functionalized monolayers on ordered mesoporous supports, Science, 1997, 276: 923~926
    [69]Alexander V, Asher S A, Modeling of stimulated hydrogel volume changes, Am. Chem. Soc, 2005, 127: 10753~10759
    [70]Asher S A, Anjal C, Alexander V, Photonic crystal aqueous metal cation sensing, Anal Chem, 2003, 75, 1676~1683
    [71]Justin T, David N, Asher S A, Progress in developing polymerized crystalline colloidal array sensors for point-of-care detection of myocardial ischemia, Analyst, 2008, 133: 385~390
    [72]Vladimir L, Anjal C, Asher S A, High ionic strength glucose-sensing photonic, Anal Chem, 2003, 75: 2316~2323
    [73]Kamenjicki M, Asher S A,.Epoxide functionalized polymerized crystalline colloidal arrays sensor, Actuat B, 2005, 106: 373~377
    [74]Qian W P, Gu Z Z, Fujishima A, Three-dimensionally ordered macro-porous polymer materials: an approach for biosensor applications, Langmuir, 2002, l8: 4526~4529
    [75]刘宇,向安,高建平,光子晶体用PS/Ti(OBu) 4复合乳胶粒的制备,天津大学学报,2003,36:724~726
    [76]仪桂云,董鹏,王晓冬等,三维有序大孔聚苯乙烯的制备及表征,物理学报,2004,53:3311~3315
    [77]顾忠泽,中国化学会第八届应用化学年会,大会报告,2003
    [78]谈勇,杨可靖,钱卫平等,聚苯乙烯光子晶体的制备及其在传感中的应用,化学学报,2004,62:2089~2092
    [79]Weissman J M, Sunkara H B, Asher S A, Thermally switchable periodicities and diffraction from mesoscopically ordered materials, Science, 1996, 274: 959~963
    [80]Jiang P, Smith D W, Ballato J M, et.al., Multicolor pattern generation in photonic bandgap composites, Adv. Mater, 2005, 17: 179~185
    [81]Rogach A, Susha A, Caruso F, et.al., Nano-and microengineering: 3-D colloidal photonic crystals prepared from sub-μm-sized polystyrene latex spheres pre-coated with luminescent polyelectrolyte/nanocrystal shells., Adv. Mater, 2000, 12: 333~337
    [82]Lerchi M, Reitter E, Simon W, et.al., Optodes based on neutral dithiocarbamate ionophores with high selectivity and sensitivity for silver and mercury cations, Anal. Chem, 1994, 66: 1713~1718
    [83]Sands T J, Cardwell T J, Cattrall R W, et.al., Highly Versatile Stable Optical Sensor based on 4-decyloxy-2-(2-pyridylazo)-1-naphthol in nafion for the determination of copper, Sens. Actuators, 2002, 85: 33~38
    [84]王玉才,二氧化硅胶体颗粒的种子法制备及形成机理的研究,[硕士学位论文],武汉,华东师范大学,2008
    [85]祝名伟,光子晶体用SiO /Ag/SiO核壳结构亚微米微球制备与性能研究及其自组装,[硕士学位论文],浙江,2 2浙江大学,2005
    [86]Nagayama K, Kitano H, Self-assembly of nano-sized arrays on highly oriented thin films of poly(tetrafluoroethylene), Polymer Communication, 2006, 47: 951~957
    [87]Sean Wong, Vladimir Kitaev, Colloidal crystal films: advances in university and perfection, ACS, 2003, 125: 15589~15593
    [88]Holland B T, Christopher F, Synthesis of macroporous minerals with highly ordered three-dimensional arrays of spheroidal voids, Science, l998, 281: 538~541
    [89]Masuda Y, Seo W S, Koumoto K, Two-dimensional arrangement of fine silica spheres on self-assembled monolayers, Thin Solid Films, 382, 1: 183~186
    [90]Ruhl T, Spahn P, Hellmann G P, Artificial opals prepared by melt compression, Polymer, 2003, 44: 7625~7631
    [91]Xia Y N, Gates B, Li Z Y, Self-assembly approaches to three-dimensional photonic crystals, Adv.Mater, 2001, 13: 409~413
    [92]裴玉新,徐又一,丙烯腈-马来酸酐共聚物合成的研究(二),纺织学报,2000,21:24~26
    [93]Tseng C M., Lu Y Y, Uniform Polymer particle by dispersion polymerization in alcohol, Poban.Sci.Part A: oly-m.Chem. Edu, 1986, 24: 2995~3007
    [94]Whitesides G M, Mathias J P, and Seto C T, Molecular self-assembly and nanochemistry: a chemical strategy fro the synthesis of nanostructures, Science, 1991, 254: 1312~1314
    [95]Whitesides G M, Self-assembling materials,Scientific, 1995, 273: 146~149
    [96]王建颖,反蛋白石结构凝胶光子晶体的制备及其响应性研究,[硕士学位论文],天津,天津大学,2007
    [97]李明海,马懿,徐岭等,二氧化硅人工蛋白石晶体(opal)的制备及其结构性质的研究,物理学报,2003,52:1302~1306
    [98]崔小明,AMPS聚合物的应用进展,四川化工与腐蚀控制,2000,1:38~41
    [99]张科,AMPS多元聚合物水处理剂的研究进展,山东化工,2005,34:21~25
    [100]洪璋传,AMPS的特性及应用,合成纤维工业,2001,24:38~40
    [101]王中华,几种新单体处理剂及其共聚物在钻井液中的应用,钻采工艺,1995,18:83~85
    [102]范青玉,杨小华,AM/AMPS/DEDAAC共聚物的合成及性能,精细石油化工,2003,4:41~44
    [103]高俊刚,李源勋,高分子材料,北京:化学工业出版社,2002:12~13
    [104]Asher S A,·Serban F, Peteu Chad E, Polymerized crystalline colloidal array chemical-sensing materials for detection of lead in body fluids, Anal Bioanal Chem, 2002, 373: 632~638

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700