DNA模板法组装氧化锌纳米链结构
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着人们对环境质量要求的提高,发展高灵敏的、对环境污染物有特异性响应的检测技术对国民健康和经济发展具有重要意义。将纳米材料引入化学传感器是分析化学的一个研究热点,其中氧化锌纳米材料因其独特的力学、电子特性及化学稳定性,得到了广泛关注。纳米结构的制备方法有多种,用生物模板组装纳米结构具有高效、廉价的特点,因而受到了极大的关注。
     DNA可以吸附金属离子,而且形状可以根据需要进行设计,是一种最常用的生物模板。在本文中,使用生物大分子DNA做模板,硝酸锌做反应原料,分别采用一乙醇胺(MEA)和六次甲基四胺(HMT)做还原剂,在水浴加热的条件下制备了氧化锌纳米链状结构。
     在以MEA作为还原剂的实验中,将鱼精DNA与硝酸锌溶液混合后进行凝胶电泳实验,结果出现了迁移速度比原料DNA慢的新电泳带,说明DNA吸附了锌离子,负电荷减少。随后在水浴加热条件下加入MEA水溶液,在高倍透射电子显微镜下观察产物形貌,发现纳米颗粒在DNA模板上形成链状结构,说明纳米颗粒在生长过程中DNA起到了模板的作用;X射线粉末衍射分析证明了产物为氧化锌纳米晶;紫外-可见吸收光谱分析证明了锌离子与DNA上碱基氮原子的结合。研究中还做了不添加DNA的对比试验,得到了分散的氧化锌纳米颗粒,说明没有DNA的模板作用,氧化锌颗粒不会形成链状结构。
     采用相似的实验方法,以HMT作为还原剂制备纳米链状结构,透射电子显微镜下观察到产物为30 nm左右的球形颗粒组成的纳米链。X射线粉末衍射分析证明了产物仍是纳米氧化锌,所以推断形成的纳米颗粒为外面包覆了一层有机配合物的氧化锌纳米晶。紫外-可见吸收光谱、红外吸收光谱、X射线光电子能谱分别证明锌离子能够与DNA上的碱基氮原子及磷酸基团相结合,生成DNA模板上的纳米颗粒,从而形成纳米链状结构。通过改变反应物浓度、反应温度、保温时间、搅拌时间等反应条件可以改变纳米链状结构的长度、团聚度等。最后,在不添加DNA的对比实验中得到了分散的球状纳米颗粒,这更加证明了DNA的模板效应。
With the improved requirements for the quality of the environment, it is of great significance to develop highly sensitive and specific detection technology for environment pollutants. The introduction of nano-materials into chemical sensors is a research hot spot in analytical chemistry. Among these nano-materials zinc oxide have been paid extensive attention because of their unique mechanical, electronic properties and chemical stability. There are a variety of means to prepare nano-structured, and bio-template has been given a great deal of concern for its high-performance and low-cost.
     DNA is one of the most commonly used bio-template because it can absorb ions or nano-particles and its shape can be designed according to the needs. In this paper, zinc oxide nano-chains were prepared by the use of DNA template under the conditions of heating in water bath, in which zinc nitrate was acted as the reaction raw materials, while one-ethanolamine and hexamethylenetetramine acted as reducing agents.
     In the experiment of one-ethanolamine as reducing agent, fish sperm DNA and zinc nitrate aqueous solution were mixed for gel electrophoresis experiments. The result confirmed that zinc ions bound to DNA and decreased the negative charge of DNA because of the appearance of new DNA bands slower than raw materials DNA. Then the mixture was heated in a water-bath, and one-ethanolamine solution was added to react with zinc nitrate. High resolution transmission electron microscope (HRTEM) images showed that nanoparticles had formed along DNA template as a chain. It proved that DNA played a role of template in the growth of nanoparticles. X-ray powder diffraction analysis proved that the product was nanocrystalline zinc oxide. UV-Vis absorption spectra proved that zinc ions bound to DNA in the position of nitrogen atoms of base pairs. In control experiment with absence of DNA, dispersed zinc oxide nanoparticles were observed. This confirmed the template effect of DNA.
     Nano-chain structure were prepared using methods similar to the above, with hexamethylenetetramine as reducing agent. Transmission electron microscopy images showed nano-chains composed of spherical particles with the size of about 30 nm. X-ray powder diffraction analysis proved that the product was nanocrystalline zinc oxide, which inferred that the formed particles were zinc oxide nanocrystals coated with a layer of organic complexes outside. UV-Vis absorption spectrum, infrared absorption spectroscopy and X-ray photoelectron spectroscopy proved zinc ions bound to DNA in the positions of nitrogen atoms of base pairs and phosphate, then nanoparticles formed along DNA template as a chain. The length and reunion degrees of nano-chain could be controled by changing reaction conditions, such as reactant concentration, reaction temperature, holding time, stirring time,and so on. Finally, the comparison experiment without DNA as template got dispersed spherical nanoparticles, which proved the template effect of DNA in further.
引文
[1]张德阳.纳米生物材料学[M].北京:化学工业出版社, 2005.
    [2]郭景坤.对21世纪材料研究的一些看法[J].物理, 1999, 28(4): 198-200.
    [3]卢柯.纳米晶体材料的研究进展[J].中国科学基金, 1994, (4): 245-251.
    [4]杜仕国,施东梅,邓辉.纳米材料的特异效应及其应用[J].自然杂志, 2000, 22(2):101-106.
    [5] Choi Y K, Zhu J, Grunes J, et al. Fabrication of sub-10-nm silicon nanowire arrays by size reduction lithography[J]. Journal of Physical Chemistry B, 2003,107(15): 3340-3343.
    [6] Tang B, Zhuo L, Ge J, et al. Hydrothermal synthesis of ultralong and single-crystalline Cd(OH)2 nanowires using alkali salts as mineralizers[J]. Inorganic Chemistry, 2005, 44(8): 2568-2569.
    [7] Robichaud C O, Tanzil D, Weilenmann U, et al. Relative risk analysis of several manufactured nanomaterials: an insurance industry context[J]. Environmental Science & Technology, 2005, 39(22): 8985-8994.
    [8] Huang H, Anker J N, Wang K M, et al. Magnetically assisted and accelerated self-assembly of strawberry-like nano/microparticles[J]. Journal of Physical Chemistry B, 2006, 110(40): 19929-19934.
    [9]王文中.纳米材料制备技术的化学工程研究[J].机械工程材料, 1995, 6: 42-43.
    [10]苏育志,龚克成.纳米结构材料的模板合成方法[J].材料科学与工程, 1999, 17(4): 17-21.
    [11]Wang J, Pamidi P V. Sol-gel-derived gold composite electrodes[J]. Analytical Chemistry, 1997, 69(21): 4490-4494.
    [12]Zhang S S, Jiao K, Chen H Y, et al. Detection of ferritin in human serum with a MAP-H2O2-HRP voltammetric enzyme-linked immunoassay system[J]. Talanta, 1999, 50(1): 95-101.
    [13]Du D, Yan F, Ju H X, et al. Immunological assay for carbohydrate antigen 19-9 using an eletrochemical immunosensor and antigen immobilization in titania sol-gel matrix[J]. Journal of Immunological Methods, 2003, 283(1): 67-75.
    [14]Ye Y K, Zhao J H, Ju H X, et al. Electrochemical behavior and detection of hepatitis B virus DNA PCR production at gold electrode[J]. Biosensors & Bioelectronics, 2003, 18(11): 1501-1508.
    [15]Yan G F, Ju H X, Liang Z C, et al. Technical and clinical comparison of two fully automated methods for the immunoassay of CA 125 in serum[J]. Journal of Immunological Methods, 1999, 225(2): 1-8.
    [16]Chen H Y, Ju H X, Xun Y G. Methylene blue/perfluorosulfonated ionomer modified microcylinder carbon fiber electrode and its application for the determination of hemoglobin[J]. Analytical Chemistry, 1994, 66(24): 4538-4542.
    [17]Cioffi M, Vietri M T, Gazzerro P, et al. Serum anti-p53 antibodies in lung cancer: comparison with established tumor markers[J]. Lung Cancer, 2001, 33(3): 163-169.
    [18]Betty C A, Lal R, Yakhmi J V, et al. Time response and stability of porous silicon capacitive immunosensors[J]. Biosensors and Bioelectronics, 2007, 22(6): 1027-1033.
    [19]Meskini O, Abdelghani A, Tlili A, et al. Porous silicon as functionalized material for immunosensor application[J]. Talanta, 2007, 71(3): 1430-1433.
    [20]Zhang Y F, Tang Y H, Wang N, et al. Silicon nanowires prepared by laser ablation at high temperature[J]. Applied Physics Letters, 1998, 72(15): 1835-1837.
    [21]Cvelbar U, Ostrikov K, Drenik A, et al. Nanowire sensor response to reactive gas environment[J]. Applied Physics Letters, 2008, 92(13): 158-161.
    [22]Mazzei F, Botre F, Montilla S, et al. Alkaline phosphatase inhibition based electrochemical sensors for the detection of pesticides[J]. Journal of Electroanalytical Chemistry, 2004, 574(1): 95-100.
    [23]杜朝锋,黄英,秦秀兰.模板技术在纳米材料制备中的应用与发展[J].材料导报, 2006, 20: 38-42.
    [24]刘宝琦,车振明.基于DNA的纳米结构自组装[J].西华大学学报(自然科版), 2006, 25(4): 60-62.
    [25]洪元佳,洪广言,牛春吉.纳米技术在生物领域中的应用[J].化学通报, 2002, 65: 1-9.
    [26]Sweeney R Y, Mao C B, Gao X X. Bacterial biosynthesis of cadmium sulfide nanocrystals[J]. Chemistry & Biology, 2004, 11(11): 1553-1559.
    [27]Cha J N, Stucky G D, Morse D E, et al. Biomimetic synthesis of ordered silica structures mediated by block copolypeptides[J]. Nature, 2000, 403(6767): 289-230.
    [28]Mao C B, Flynn C E, Hayhurst A. Viral assembly of oriented quantum dot nanowires[J]. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100(12): 6946-6951.
    [29]Gugliotti L A, Feldheim D L, Eaton B E. RNA-midiated metal-metal bond formation in the synthesis of hexagonal palladium nanoparticles[J]. Science, 2004, 304: 850-859.
    [30]Gu Q, Cheng C D, Gonela R, et a1. DNA nanowire fabrication[J]. Nanotechnology, 2006, 17(1): 14-25.
    [31]Takahara P M, Rosenzweig A C, Lippard S J. Crystal structure of double- stranded DNA containing the major adduct of the anticancer drug cisplatin[J]. Nature, 1995, 377(6550): 649-652.
    [32]Huang H F, Zhu L M, Hopkins P B. Solution structure of a cisplatin-induced DNA interstrand cross-link[J]. Science, 1995, 270(5243): 1842-1845.
    [33]Onoa G B, Cervantes G, Moreno V, et al. Study of the interaction of DNA with cisplatin and other Pd(II) and Pt(II) complexes by atomic force microscopy[J]. Nucleic Acids Research, 1998, 26(6): 1473-1480.
    [34]Eley D D, Leslie R B. Conduction in nucleic acid components[J]. Nature, 1983, 197: 898-900.
    [35]Bockrath M, Markovic N, Shepard A, et al. Scanned conductance microscopy of carbon nanotubes andλ-DNA[J]. Nano Letters, 2002, 2: 187-190.
    [36]Braun E Y, Sivan U. A circumstellar dust disk around a star with a known planetary companion[J]. Nature, 1998, 395(6704): 775-777.
    [37]Braun E, Eichen Y, Sivan U. DNA-templated assembly and electrode attachment of aconducting silver wire[J]. Nature, 1998, 19(391): 775-778.
    [38]Seidel R, Ciacchi L C, Weigel M, et al. Synthesis of platinum cluster chains on DNA templates: conditions for a template-controlled cluster growth[J]. Journal of Physical Chemistry B, 2004, 108: 10801-10811.
    [39]朱春玲,刘允萍,黄文浩,等. DNA模板纳米粒子自组装及其在纳米电子器件中的可能应用[J].前沿进展, 2003, 32(8): 515-519.
    [40]Coffer J L, Bigham S R. Dictation of the shape of mesoscale semiconductor nanoparticle assemblies by plasmid DNA[J]. Applied Physics Letters, 1996, 69(25): 3851-3853.
    [41]Dittmer W U, Simmel F C. Chains of semiconductor nanoparticles templated on DNA[J]. Applied Physics Letters, 2004, 85(4): 633-635.
    [42]Stsiapura V, Sukhanova1 A, Baranov A. DNA-assisted formation of quasi-nanowires from fluorescent CdSe/ZnS nanocrystals[J]. Nanotechnology, 2006, 17: 581-587.
    [43]Kim J H, Wei X S, Larson R G. Methods of stretching DNA molecules using flow fields[J]. Langmuir, 2007, 23(2): 755-759.
    [44]姜秀平,高艳阳,贾素云.纳米ZnO的制备方法简述[J].科技信息, 2006, 7: 257-258.
    [45]田静博,刘琳,钱建华,等.纳米氧化锌的制备技术与应用研究进展[J].气体净化, 2007, 7(6): 9-12.
    [46]王久亮.纳米级氧化锌制备技术研究进展[J].硅酸盐通报, 2004, 23(5): 59-63.
    [47]孙继红,范文浩,吴东.溶胶凝胶化学及其应用[J].材料导报, 2000, 14(4): 25-28.
    [48]段永华,竺培显.纳米氧化锌粉体制备技术及应用的研究[J].中国粉体技术, 2006, 12(4): 45-46.
    [49]杨玉华,王九思,许力.纳米材料制备方法简述[J].甘肃水利水电技术, 2004, 40(1): 59-60.
    [50]王文亮,李东升,侯向阳.超声辐射沉淀法纳米ZnO的制备与表征[J].化学研究与应用, 2001, 13(2): 157-l59.
    [51]马正先,韩跃新,邓江宁,等.直接水解一步法制备纳米氧化锌[J].矿冶, 2002, 11(3): 66-69.
    [52]张敬畅,高炜,曹维良,等.超临界流体干燥法制备纳米ZnO的研究[J].材料研究学报, 2002, 10(3): 251-255.
    [53]邵忠宝,李国荣.高分子网络凝胶法制备纳米ZnO粉料[J].材料科学与工艺, 2001, 15(6): 681-685.
    [54]Fu Y S, Du X W, Sun J, et al. Single-crystal ZnO cup based on hydrothermal decomposition route[J]. The Journal of Physical Chemistry C, 2007, 111: 3863-3868.
    [55]Seidel R, Ciacchi L C, Weigel M, et al. Synthesis of platinum cluster chains on DNA templates: conditions for a template-controlled cluster growth[J]. Journal of Physical Chemistry B, 2004, 108(30): 10801-10811.
    [56]Berti L, Burley G A. Nucleic acid and nucleotide-mediated synthesis of inorganic nanoparticles[J]. Nature Nanotechnology, 2008, 3: 81-86.
    [57]Izatt R M, Christensen J J, Rytting J H. Sites and thermodynamic quantities associated with proton and metal ion interaction with ribonucleic acid, deoxyribonucleic acid, and their constituent bases, nucleosides and nucleotides[J]. Chemical Reviews, 1971, 71(5): 439-481.
    [58]Martin R B. Nucleoside sites for transition metal ion binding[J]. Accounts of Chemical Research, 1985, 18: 32-38.
    [59]彭银,鲍玲. ZnO纳米环的可控合成[J].高等学校化学学报, 2008, 29(1): 28-32.
    [60]Fuente M, Hernanz A, Navarro R. IR and raman study on the interactions of the 5′-GMP and 5′-CMP phosphate groups with Mg(Ⅱ), Ca(Ⅱ), Sr(Ⅱ), Ba(Ⅱ), Cr(Ⅲ), Co(Ⅱ), Cu(Ⅱ), Zn(Ⅱ), Cd(Ⅱ), Al(Ⅲ) and Ga(Ⅲ)[J]. J Biol Inorg Chem, 2004, 9: 973-986.
    [61]Green M, Taylor R, Wakefield G. The synthesis of luminescent adenosine triphosphate passivated cadmium sulfide nanoparticles[J]. Journal of Materials Chemistry, 2003, 13(8): 1859-1861.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700