CdTe、CdHgTe纳米粒子的制备、修饰及在蛋白质检测中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
半导体纳米粒子因具有独特而又优异的光学特性,近年来在其合成及应用领域均引起了广泛的关注,本论文在水相条件下,研究了具有近红外发射波长的CdHgTe纳米晶在蛋白质检测中的应用;在经典合成的基础上,为拓宽纳米粒子在生物体系中的应用,研究了不同接枝试剂对TGA-CdTe纳米粒子荧光特性的影响;利用TGA、L-cys及二者比例不同的混合稳定剂制备了不同形貌的纳米晶;结合分子印迹技术的高选择性与半导体纳米粒子荧光检测技术的高灵敏性,建立了选择性测定蛋白质的方法。本论文的主要内容如下:
     (1)综述了半导体纳米粒子的相关基本知识、主要合成方法、表征手段及其在生命科学领域中的广泛应用。
     (2)在水相中制备了具有近红外发射波长的CdHgTe纳米粒子,对纳米粒子的合成条件进行了系统的研究,以TEM和XRD表征了CdTe和CdHgTe的形貌特征及晶体结构,研究了含不同比例的Hg(Ⅱ)的CdHgTe的荧光光谱及紫外光谱性质。实验结果表明,CdHgTe结合了CdTe纳米粒子稳定性好、荧光强度高以及HgTe发射光谱可调性好的优点,通过调节温育时间、温育温度、成分比例等手段,可以合成具有不同近红外发射波长的纳米粒子,这种方法简便易行,也更为稳定。同时基于在蛋白质存在下CdHgTe纳米粒子的荧光强度明显降低这一现象,建立了一种以CdHgTe为近红外荧光探针测定蛋白质的方法。在最佳条件下,溶菌酶(Lyz)和血红蛋白(BHb)的工作曲线的线性范围分别为0.04-5.6×10~(-6)g·mL~(-1)和0.06-6.1×10~(-6)g·mL~(-1),检测限分别为13 ng·mL~(-1)和27 ng·mL~(-1),并对合成样品进行了测定,结果令人满意。
     (3)对含有不同端基及链长的接枝试剂对TGA-CdTe纳米粒子荧光性质的影响进行了研究,以荧光偏振法探讨了不同接枝试剂与TGA-CdTe纳米粒子间的作用机理。实验结果表明,短链的接枝试剂对TGA-CdTe荧光强度的增强效果好于长链的,接枝对于TGA-CdTe的荧光发射波长没有影响。同时发现,在较宽的pH范围内,接枝后以羧基为端基的TGA-CdTe的稳定性好于以氨基为端基的TGA-CdTe。
     (4)利用TGA、L-cys及二者比例不同的混合稳定剂制备了球形、棒形纳米晶,以TEM表征了不同稳定剂条件下制备的纳米晶的形貌特征,研究了不同形貌的纳米晶的荧光特性。实验结果表明,仅通过改变稳定剂的比例即可制备波长可调的不同形貌的纳米晶。随着混合稳定剂中L-cys比例的增加,CdTe纳米晶的长与直径的比值增大,发射波长明显红移。当混合稳定剂中L-cys的量为25%时,所得纳米晶荧光强度最强。
     (5)结合分子印迹技术的高选择性与纳米荧光探针荧光检测技术的高灵敏性,建立了选择性测定Lyz的方法。为便于调整与处理洗脱条件、易于与检测条件结合、降低预处理的干扰,实验采用了具有环境响应和智能识别性能的N-异丙基丙烯酰胺(NIPA)作为主要功能单体,以MIP-PNIPA智能水凝胶对Lyz进行印迹。研究了印迹过程中影响印迹效果及洗脱效果的温度、盐浓度、pH值的影响。实验结果表明:MIP-PNIPA在室温、pH 8.10的Tris-HCl缓冲、NaCl浓度为20 mM条件下对Lyz有较好的吸附效果;在室温、pH 6.10的柠檬酸-柠檬酸钠缓冲条件下有较好的洗脱效果,且对荧光检测影响较小。对混合样品进行处理后,以CdTe为荧光探针,pH 8.10条件下测定了洗脱后的Lyz的浓度,回收率为90.2~102%。本章所建立的研究方法为蛋白质的测定提供了一个可供参考的新思路。
In recent years,semiconductor quantum dots(QDs) have attracted great interests in synthesis and application due to their extensive physical and chemical effects.In this thesis,a novel method for the determination of proteins with CdHgTe QDs as a near-infrared fluorescence probe was developed;Based on the synthesis,the influence of the graft reagents which have an amino or a carboxyl terminus with different chain lengthes on the fluorescence properties of water-soluble thioglycolic acid stabilized CdTe nanocrystals(TGA-CdTe) were investigated;Sphere and rod CdTe NCs were prepared in aqueous solution using thioglycolic acid(TGA), L-cysteine(L-cys) and both of them as stabilizers;Furthermore,combining MIP and the QDs could improve the selective detection of the protein.Major works of this thesis can be outlined as follows:
     (1) The fundamental theory of QDs,general strategies of QDs preparation, character method and their extensive application on bioscience are reviewed.
     (2) CdHgTe nanoparticles(NPs) with the emission in the near-infrared region were prepared in aqueous solution,and were characterized by transmission electron microscopy,X-ray diffraction spectrometry,spectrofluorometry and ultraviolet-visible spectrophotometry.The synthesized CdHgTe NPs show much promise because their NIR wavelength can be tuned by the composition and the incubation temperature.CdHgTe NPs combined the virtue of the stable and high fluorescence intensity of CdTe NPs and the NIR wavelength tuning of HgTe NPs.On one hand,the tuning of the emission wavelength of CdHgTe NPs is easier than that of single material NPs(CdTe or HgTe) by controlling the synthetic conditions.On the other hand,CdHgTe NPs are stable than HgTe NPs. Based on the fluorescence quenching of CdHgTe NPs in the presence of proteins, a novel method for the determination of proteins with CdHgTe NPs as a near-infrared fluorescence probe was developed.Under the optimal conditions, the calibration graphs were linear in the range of 0.04×10~(-6)-5.6×10~(-6) g·mL~(-1) for lysozyme(Lyz) and 0.06×10~(-6)-6.1×10~(-6) g·mL~(-1) for bovine hemoglobin(BHb), respectively.The limits of detection were 13 ng·mL~(-1) for Lyz and 27 ng·mL~(-1) for BHb,respectively.Four synthetic samples were determined and the results were satisfied.
     (3) The influences of the graft reagents which have an amino or a carboxyl terminus with different chain lengthes on the fluorescence properties of water-soluble thioglycolic acid stabilized CdTe nanocrystals(TGA-CdTe) were systematically investigated.Strong enhancement effects of the grafting on the fluorescence intensity of TGA-CdTe were observed.The experiment results demonstrated the short chain length grafting can increase the fluorescence intensity of the CdTe nanocrystals(NCs) better than that of long chain length grafting,and the grafting did not influence the emission wavelength of the CdTe NCs.The fluorescence intensity of the carboxyl grafted TGA-CdTe was more stable than that of the amino grafted TGA-CdTe at wide pH ranges(pH 5.1-10.0).
     (4) Sphere and rod CdTe NCs were prepared in aqueous solution using thioglycolic acid(TGA),L-cysteine(L-cys) and mixture of them as stabilizers.By only changing the molar ratio of the two stabilizers,highly luminescent CdTe NCs can be selectively prepared.With the increasing amount of the molar fraction of L-cys in the mixed stabilizers of TGA and L-cys,the aspect ratio of the NCs was increased and the emission wavelength was shifted to long wavelength range. When the molar fraction of the L-cys in the mixed stabilizers was 25%,the fluorescence intensity of the NCs was the highest.
     (5) By combining the virtue of the sensitivity of CdTe and the selectivity of the MIP,a selective and sensitive fluorescence method for the determination of Lyz was developed.Since NIPA polymer undergoes a reversible swelling-shrinking cycle in response to the external environment,the rebinding ability and elute are controllable by changing the solution environment,which was convenient for the next determination step.Different influencing factors were studied,including the pH value,concentration of NaCl and temperature.The experiment results demonstrated that the optimized adsorption conditions were as follows:room temperature,Tris-HCl buffer solution with pH 8.10,20 mM NaCl.The optimal elution condition was citric acid-triple sodium citric acid buffer with pH 6.10. The Lyz in three synthetic samples were determined with CdTe as the fluorescence probe after the synthetic samples were pretreated by MIP-PNIPA, and the recoveries were 90.2~102%.This method provided a new way to study the determination of proteins.
引文
[1] Nirmal M, Murrya C B, Bawendi M G Fluorescence-line narrowing in CdSe quantum dots:surface localization of the photogenerated exciton. Phys Rev B: Condens Matter, 1994, 50:2293-2300
    [2] Hill N A, Wllaley K B. Size dependence of excitons in silicon nanocrystals. Phys Rev Lett,1995,75: 1130-1133
    [3] Hill N A, Wllaley KB. A theoretical study of the influence of the surface on the electronic structure of CdSe nanoclusters. J Chem Phys, 1994, 100: 2831-2837
    [4] Wang L W, Zunger A. Dielectric constants of silicon quantum dots. Phys Rev Lett,1994, 73:1039-1042
    
    [5] Martin E, Deleure C, Allan G, et al. Theory of excitonic exchange splitting and optical Stokes shift in silicon nanocrystallites: Application to porous silicon. Phys Rev B: Condens Matter,1994,50: 18258-18267
    [6] Erfos A L. Luminescence polarization of CdSe microcrystals with hexagonal lattice structure.Physica B, 1993, 185: 575-579
    [7] Erfos A L, Rodina A V. Band-edge absorption and luminescence of nonspherical nanometer-size crystals. Phys Rev B, 1993,47: 10005-10007
    
    [8] Ekimov A I, Hache F, Schanneklein M C, et al. Absorption and intensity-dependent photoluminescence measurements on CdSe quantum dots: assignment of the first electronic transitions. JOSAB, 1993, 10: 100-107
    [9] Norris D J, Sacra A, Murray C B, et al. Measurement of the size dependent hole spectrum in CdSe quantum dots. Phys Rev Lett, 1994, 72: 2612-2615
    
    [10] Bawendi M G, Carroll P J, Wilson W L, et al. Luminescence Properties of CdSe Quantum Crystallites: Resonance Between Interior and Surface Localized States. J Chem Phys, 1992,76: 946-954
    
    [11] Murray C B, Norris D J, Bawendi M G, Synthesis and characterization of nearly monodisperse CdE (E=sulfur, selenium, tellurium) semiconductor nanocrystallites. J Am Chem Soc, 1993, 115(19): 8706-8715
    
    [12] Talapin D V, Rogach A L, Mekis I, et al. Synthesis and surface modification of amino-stabilized CdSe, CdTe and InP nanocrystal. Colloids and Surface A, 2002, 202(2-3):145-154
    [13] Hao E, Sun H, Zhou Z, et al. Synthesis and optical properties of CdSe and CdSe/CdS nanoparticles. Chem Mater, 1999, 11(11): 3096-3102
    
    [14] Chin PTK, Donega C M, Bavel S S, et al. Highly luminescent CdTe/CdSe colloidal heteronanocrystals with temperature-dependent emission color. J Am Chem Soc, 2007, 129:14880-14886
    
    [15] Cao Y, Banin U, Growth and properties of semiconductor core/shell nanocrystals with InAs cores. J Am Chem Soc, 2000, 122(40): 9692-9702
    [16] Shevchenko E V, Talapin D V, Rogach A L, et al. Colloidal synthesis and self-assembly of CoPt3 nanocrystals. J Am Chem Soc, 2002, 124(40): 11480-11485
    [17] Manna L, Scher E C, Alivisatos A P, Synthesis of soluble and processable rod-, arrow-,teardrop-, and tetrapod-shaped CdSe nanocrystals. J Am Chem Soc, 2000, 122(51):12700-12706
    [18] Yu W W, Wang Y A, Peng X G, Formation and stability of size-, shape-, and structure-controlled CdTe nanocrystals: ligand effects on monomers and nanocrystals. Chem Mate, 2003, 15(22): 4300-4308
    [19] Qu L, Peng X G, Control of photoluminescence properties of CdSe nanocrystals in growth. J Am Chem Soc, 2002, 124(4): 2049-2055
    [20] Manna L, Scher E C, Li L, et al. Epitaxial growth and photochemical annealing of graded CdS/ZnS shells on colloidal CdSe nanorods. J Am Chem Soc, 2002, 124(24): 7136-7145
    [21] Halpert J E, Porter V J., Zimmer J P. et al. Synthesis of CdSe/CdTe nanobarbells. J Am Chem Soc, 2006, 128 (39): 12590-12591
    [22] Peng X G Green chemical approaches toward high-quality semiconductor nanocrystals.Chem Eur J, 2002, 8: 334-339
    [23] Qu L, Peng Z A, Peng X G. Alternative routes toward high quality CdSe nanocrystals. Nano Letters, 2001, 1(6): 333-337
    [24] Battaglia D, Li J J, Wang Y J. et al. A class of colloidal two-dimensional systems: CdSe quantum shells. Angew Chem Int Ed, 2003, 42: 5035-5039
    [25] Battaglia D, Peng X G, Formation of high quality InP and InAs nanocrystals in a noncoordinating solvent. Nano Lett, 2002, 2 (9): 1027-1030
    [26] Peng Z A, Peng X G. Nearly monodisperse and shape-controlled CdSe nanocrystals via alternative routes: nucleation and growth. J Am Chem Soc, 2002, 124 (13): 3343-3353
    [27] Harrison M T, Kershaw S V, Burt M G, et al. Wet chemical synthesis and spectroscopic study of CdHgTe nanocrystals with strong near-infrared luminescence. Materials Science and Engineering B, 2000, 69-70: 355-360
    [28] Bailey R E, Nie S, Alloyed semiconductor quantum dots: tuning the optical properties without changing the particle size. J Am Chem Soc, 2003, 125(23): 7100-7106
    [29] Rajh T, Micic O I, Nozik A J. Synthesis and characterization of surface-modified colloidal cadmium telluride quantum dots. J Phys Chem, 1993, 97 (46): 11999-12003
    [30] Gaponik N, Talapin D V, Rogach A L. et al. Thiol-capping of CdTe nanocrystals: an alternative to organometallic synthetic routes. J Phys Chem B, 2002, 106 (29): 7177-7185
    [31] Guo J, Yang W, Wang C. Systematic study of the photoluminescence dependence of thiol-capped CdTe nanocrystals on the reaction conditions. J Phys Chem B, 2005, 109 (37):17467-17473
    [32] Shavel A, Gaponik N, Eychmiiller A. Factors governing the quality of aqueous CdTe nanocrystals: calculations and experiment. J Phys Chem B, 2006, 110 (39): 19280-19284
    [33] Rogach A L, Franzl T, Klar T A, et al. Aqueous Synthesis of Thiol-Capped CdTe Nanocrystals: State-of-the-Art. J Phys Chem C, 2007, 111: 14628-14637
    
    [34] Zhao K, Li J, Wang H. et al. Stoichiometric ratio dependent photoluminescence quantum yields of the thiol capping CdTe nanocrystals. J Phys Chem C, 2007,111 (15): 5618-5621
    
    [35] Liu Y, Chen W, Joly A G Comparison of water-soluble CdTe nanoparticles synthesized in air and in nitrogen. J Phys Chem B, 2006, 110 (34): 16992-17000
    [36] Zheng Y, Yang Z, Ying J Y. Aqueous synthesis of glutathione-capped ZnSe and Znl-xCdxSe alloyed quantum dots. Adv Mater, 2007, 19: 1475-1479
    [37] Mei F, He X W, Li W Y, et al. Preparation and characterization of CdHgTe nanoparticles and their application on the determination of proteins. J Fluoresc, 2008, 18: 883-890
    [38] Harrison M T, Kershaw S V, Rogach A L, et al. Wet Chemical Synthesis of Highly Luminescent HgTe/CdS Core/Shell Nanocrystals. Adv Mater, 2000, 12 (2): 123-125
    [39] Zhang H, Wang L, Xiong H, et al. Hydrothermal synthesis for high-quality CdTe nanocrystals. Adv Mater, 2003, 15 (20): 1712-1715
    [40] He Y, Sai L M, Lu H T, et al. Microwave-assisted synthesis of water-dispersed CdTe nanocrystals with high luminescent efficiency and narrow size distribution. Chem Mater,2007, 19 (3): 359-365
    [41] Li L, Qian H, Ren J C. Rapid synthesis of highly luminescent CdTe nanocrystals in aqueous phase by microwave irradiation with controllable temperature. J Chem Commun, 2005, 28(4): 528-530
    [42] Lin Y W, Hsieh M M, Liu C P, et al. Photoassisted synthesis of CdSe and core-shell CdSe/CdS quantum dots. Langmuir, 2005,21: 728-734
    [43] Gao M Y, Kirstein S, Mohwald H, et al. Strongly photoluminescent CdTe nanocrystals by proper surface modification. J Phys Chem B, 1998, 102 (43): 8360-8363
    [44] Bao H, Gong Y, Li Z, Gao M. Enhancement effect of illumination on the photoluminescence of water-soluble CdTe nanocrystals: toward highly fluorescent CdTe/CdS core-shell. Chem Mater, 2004, 16 (20): 3853-3859
    [45] Tang Z Y, Kotov N A, Giersig M. Spontaneous organization of single CdTe nanoparticles into luminescent nanowires. Science, 2002, 297: 237-340
    [46] Tang Z Y, Zhang Z L, Wang Y, et al. Self-Assembly of CdTe nanocrystals into free-floating sheets. Science, 2006, 314: 274-278
    [48] Tang B, Yang F, Lin Y, et al. Synthesis and characterization of wavelength tunable,water-soluble, and near-infrared-emitting CdHgTe nanorods. Chem Mater, 2007, 19:1212-1214
    [47] Zhang H, Wang D, Mohwald H, Ligand-selective aqueous synthesis of one dimensional CdTe nanostructures. Angew Chem Int Ed, 2006,45: 748-751
    [49] Niu H J, Gao M Y. Diameter-tunable CdTe nanotubes templated by 1D nanowires of cadmium thiolate polymer. Angew Chem Int Ed, 2006,45 (5): 6462-6466
    [50] Zhang L, Gaponik N, Miiller J, et al. Branched wires of CdTe nanocrystals using amphiphilic molecules as templates.Small,2005,1(5):524-527
    [51]Bao H,Wang E,Dong S.One-pot synthesis of CdTe nanocrystals and shape control of luminescent CdTe-Cystine nanocomposites.Small,2006,2(4):476-480
    [52]Crosby G A,Demas J N.Measurement of photoluminescence quantum yields.Review.J Phys Chem,1971,75(8):991-1024
    [53]李玲,向航,功能材料与纳米技术,第1版,化学工业出版社,2002
    [54]黄惠忠等编,纳米材料分析,化学工业出版社,2003
    [55]Burda C,Chen X,Narayanan R,et al.The chemistry and properties of nanocrystals of different shapes.Chem Rev,2005,105:1025-1102
    [56]Bruchez M,Moronne M,Gin P,et al.Semicondnctor nanocrystals as fluorescent biological labels.Science,1998,281:2013-2016
    [57]Yu W W,Qu L,Guo W.et al.Experimental determination of the extinction coefficient of CdTe,CdSe,and CdS nanocrystals.Chem Mater,2003 15(14):2854-2860
    [58]吴征铠,唐敖庆,分子光谱学专论,山东科学技术出版社,1999
    [59]Romeo A,Khrypunov G,KurdesauaF,et al.High-efficiency flexible CdTe solar cells on polymer substrates,Solar Energy Materials & Solar Cells,2006,90:3407-3415
    [60]Jesse M,Klostranec,Warren C W Chan,Quantum dots in biological and biomedical research:recent progress and present challenges,Advanced Materials,2006,18:1953-1964
    [61]Juha S,Mikko R,Markku L,et al.Characterization of etching procedure in preparation of CdTe solar cells,Solar Energy Materials and Solar Cells,1996,44:177-190
    [62]Lia J,Wang L,Zhao K,et al.Preparation of CdTe nanoerystals and CdTe/SiO_2nanocomposites in glycol.Colloids and Surfaces A:Physieoehem Eng Aspects,2005,257-258:329-332
    [63]Han K,Xiang Z,Zhao Z H,et al.Preparation of monodisperse CdTe nanoerystals-SiO_2mierospheres without ligands exchange,Colloids and Surfaces A:Physieoehem Eng Aspects,2006,280:169-176
    [64]Li H B,Qu F G.Synthesis of CdTe quantum dots in sol-gel-derived composite silica Spheres coated with Calix[4]arene as luminescent probes for pesticides.Chem Mater,2007,19(17):4148-4154
    [65]Zhang H,Liu Y,Zhang J H,et al.Fine-tuning the surface functionality of aqueous luminescent nanocrystals through surfactant bilayer modification.Langmuir 2008,24:12730-12733
    [66]Nazzal A Y,Wang X,Qu L,et al.Environmental effects on photoluminescence of highly luminescent CdSe and CdSe/ZnS core/shell nanocrystals in polymer thin films.J Phys Chem B,2004,108:5507-5515
    [67]Jiang W,Singhal A.Zheng J.et al.Optimizing the synthesis of red-to near-ir-emitting CdS-Capped CdTexSel-x alloyed quantum dots for biomedical imaging.Chem Mater,2006,18:4845
    [68]Han M,Gao X,Su J Z,et al.Quantum-dot-tagged microbeads for multiplexed optical coding of biomolecules. Nat Biotechnol, 2001, 19: 631-635
    [69] Chen Y, Ji T, Rosenzweig Z, Synthesis of glyconanospheres containing luminescent CdSe-ZnS quantum dots. Nano Lett, 2003, 3: 581-584
    [70] Dubertret B, Skourides P, Norris D J, et al. In vivo imaging of quantum dots encapsulated in phospholipid micelles. Science, 2002, 298: 1759-1762
    [71] Nirmal M, Dabbousi B O, Bawendi M G, et al. Fluorescence intermittency in single cadmium selenide nanocrystals. Nature, 1996, 383: 802-804
    [72] Michalet X, Kapanidis A N, Laurence T. et al. The power and prospects of fluorescence microscopies and spectroscopies. Annu Rev Biophys Biomol Struct, 2003, 32: 161-182
    [73] Hurtley S M, Helmuth L. The future looks bright .Special issue on Biological Imaging,Science, 2003, 300: 75
    [74] Bruchez M J, Moronne M, Gin P, et al. Semiconductor nanocrystals as flourescent biological labels. Science, 1998,281: 2013-2016
    [75] Kloepfer J A, Mielke R E, Wong M S, et al. Quantum dots as strain-and metabolism-specific microbiological labels. Appl Environ Microb, 2003, 69: 4205-4213
    [76] Chan W C W, Nie S M, Quantum dot bioconjugates for ultrasensitive nonisotopic detection.Science, 1998,281: 2016-2018
    [77] Jaiswal J K, Mattoussi H, Mauro J M, et al. Long-term multiple color imaging of live cells using quantum dot bioconjugates. Nat Biotechnol, 2003,21: 47-51
    [78] Parak W J, Gerion D, Zanchet D, et al. Conjugation of DNA to silanized colloidal semiconductor nanocrystalline quantum dots. Chem Mater, 2002, 14: 2113-2119
    [79] Gerion D, Parak W J, Williams S C. et al. Sorting fluorescent nanocrystals with DNA. J Am Chem Soc, 2002,124: 7070-7074
    [80] Mitchell G P, AMirkin C, Letsinger R L, Programmed assembly of DNA functionalized quantum dots. J Am Chem Soc, 1999, 121: 8122-8123
    [81] Pathak S, Choi S, Arnheim N, et al. Hydroxylated quantum dots as luminescent probes for in situ hybridization. J Am Chem Soc, 2001, 123: 4103-4107
    [82] Dai Z, Zhang J M, Dong Q X, Adaption of Au nanoparticles and CdTe quantum dots in DNA detection. Chin J Chem Eng, 2007, 15(6): 791-794
    [83] Kaul Z, Yaguchi T, Kaul S C, et al. Mortalin imaging in normal and cancer cells with quantum dot immuno-conjugates. Cell research, 2003,13: 503-507
    [84] Gao X, Cui Y, Levenson R M,et al. In vivo cancer targeting and imaging with semiconductor quantum dots. Nat Biotechnol, 2004,22: 969-976
    [85] Wu X, Liu H, Liu J, et asl, Immunofiuorescent labeling of cancer marker Her2 and other cellular targets with semiconductor quantum dots. Nat Biotechnol, 2003, 21: 41-46
    [86] Kerman K, Endo T, Tsukamoto M, et al. Quantum dot-based immunosensor for the detection of prostate-specific antigen using fluorescence microscopy. Talanta, 2007, 71: 1494-1499
    [87] Pauling L. A theory of the structure and process of formation of antibodies. J Am Chem Soc,1940 , 62 (3): 2643-2657
    [88]Wulff G,Sarhan A.Use of polymers with enzyme-analogous structures for the resolution of racemates.Angew Chem Int Ed,1972,11:341-344
    [89]Mosbach K,Ramstrom O.The emerging technique of molecular imprinting and its future impact on biotechnology.Biotechnology,1996,14:163-170
    [90]任杰,余若黔.分子印迹技术研究新进展,生物技术通报,2003,(4):19-21
    [91]Liao Y,Wang W.Wang B.Enantioselective polymeric transporters of D-tryptophan prepared using molecular imprinting techniques.Bioorg Chem,1998,26:309-322
    [92]Lee S H,Juan H.Chiral and electrokinetic separation of amino acids using polypyrrole-coated adsorbents.J Chromatogr A,2000,868(2):189-196
    [93]Say R,Birlik E,Ersoz A.et al.Preconcentration of copper on ion-selective imprinted polymer microbeads.Anal Chim Acta,2003,480:251-258
    [94]Haginaka J,Takehira H,Hosoya K.et al.Uniform-sized molecularly imprinted polymer for (S)-naproxen selectively modified with hydrophilic external layer.J.Chromatogr A,1999,849:331-339
    [95]Moal P N,MayesA G.Comparative study of imprinted polymer particles prepared by different polymerisation methods.Anal Chim Acta,2004,504(1):15-21
    [96]Armstrong D W,Ward T J.Beesley T E,et al.Separation of drug stereoisomers by the formation of -cyclodextrin inclusion complexes.Science,1986,232:1132-1135
    [97]Ramstrom O,Ansell R J.Molecular imprinting technology:challenges and prospects for the future.Chirality,1998,10(3):195-209
    [98]Burow M,Minoura N.Molecular imprinting:synthesis of polymer particles with antibody-like binding characteristics for glucose oxidase.Biochem Biophys Res Commun,1996,227(2):419-422
    [99]Hirayama K,Hirayama M,Burow.Synthesis of polymer-coated silica particles with specific recognition sites for glucose oxidase by the molecular imprinting technique.Chem Lett,1998,(8):731-732
    [100]Alexandre R,Norihiko M,Towards molecularly imprinted polymers selective to peptides and proteins.The epitope approach.Biochimica et Biophysica Acta,2001,1544:255-266
    [101]Kempe M,Mosbach K.Separation of amino acids,peptides and proteins on molecularly imprinted stationary phase.Journal of Chromatography A,1995,691:317-323
    [102]Liao J L,Wang Y,Hjerten S.A novel support with artificially created recognition for the selective removal of proteins and for affinity.Chromatographia,1996,42:259-262
    [103]Hjerten S,Liao J L,Nakazato K,et al.Gels mimicking antibodies in their selective recognition of proteins.Chromatographia,1997,44:227-234
    [104]Kempe M,Glad M,Mosbach K.An approach towards surface imprinting using the enzyme ribonuclease.A J Mol Recogn,1995,8(1/2):35-39
    [105]雷建都,谭天伟.壳聚糖血红蛋白分子印迹介质的制备及优化.化学通报,2002,(4):265-268
    [106]Guo T Y,Xia Y Q,Hao G J,et al.Adsorptive seperation of hemoglobin by molecularly imprinted polymers.Biomaterials,2004,25:5905-5912
    [107]Ou S H,Wu M C,Chou T C,et al.Polyacrylamide gels with electrostatic functional groups for the molecular imprinting of lysozyme.Anal Chim Acta,2004,504:163-166
    [108]Huang J,Zhang J,Zheng S,et al.Template imprinting amphoteric polymer for the recognition of proteins.J Appl Polym Sci,2005,95:358-361
    [109]Lu S L,Cheng G S,Pang X S.Protein-imprinted soft-wet gel composite microspheres with magnetic susceptibility Ⅱ Characteristics.J Appl Polym Sci,2006,99:2401-2407
    [110]Pang X S,Cheng G X,Li R S,et al.Bovine serum albumin-imprinted polyacrylamide gel beads prepared via inverse-phase seed suspension polymerization.Anal Chim Acta,2005,550:13-17
    [111]Pang X S,Cheng G X,Zhang Y H,et al.Soft-wet polyacrylamide gel beads with the imprinting of bovine serum albumin.React Func Polym,2006,66:1182-1188
    [112]Pang X,Cheng G X,Lu S L,et al.Synthesis of polyacrylamide gel beads with electrostatic functional groups for the molecular imprinting of bovine serum albumin.Anal Bioanal Chem,2006,384:225-230
    [113]Conrad P G,Shea K J.Use of metal co-ordination for controlling imprinted polymers.In Molecularly Imprinted Materials:Science and Technology(1 st edn)(Yan,M.and Ramstr(o|¨)m,O.,eds).Marcel Dekker,New York,2005,123-180
    [114]Zhang F J,Cheng G X,Ying X G.Emulsion and macromolecules templated alginate based polymer microspheres.React Func Polym,2006,66:712-719
    [115]Xia Y Q,Guo T Y,Song M D,et al.Hemoglobin recognition by imprinting in semi-interpenetrating polymer network hydrogel based on polyacrylamide and chitosan.Biomacromolecules,2005,6:2601-2606
    [116]Hawkins D M,Trache A,Ellis E A,et al.Quantification and confocal imaging of protein specific molecularly imprinted polymers.Biomacromolecules,2006,7:2560-2564
    [117]Odabsi M,Sayb R,Denizlia A.Molecular imprinted particles for lysozyme purification.Mater Sci Engin C,2007,27:90-99
    [118]Venton D L,Gudipati E.Entrapment of enzymes using organo-functionalized polysiloxane copolymers.Biochim Biophys Acta,1995,1250:117-125
    [119]Venton D L,Gudipati E.Influence of protein on polysiloxane polymer formation-Evidence for induction of complementary protein-polymer interactions.Biochim Biophys Acta,1995,1250:126-136
    [120]Tao Z,Tehana E C,Bukowski R M,et al.Templated xerogels as platforms for biomolecule-less biomolecule sensors.Anal Chim Acta,2006,564:59-65
    [121]Nicholas W T,Christopher W.J,Keith R.B,et al.From 3D to 2D:A review of the molecular imprinting of proteins.Biotechnol Progr,2006,6:1474-1489
    [122]Guo T Y,Xia Y Q.Adsorptive separation of hemoglobin by molecularly imprinted chitosan bead.J Biomaterials,2004,25:5905-5912
    [123]Kempe M,Glad M,Mosbach K.An approach towards surface imprinting using the enzyme ribonuclease. A J Mol Recogn, 1995, 8 (1/ 2): 35-39
    [124] Shiomi T, Mat sui M, Mizukami F, et al. A method for the molecular imprinting of hemoglobin on silica surfaces usingsilanes. J Biomaterials, 2005, 26: 5564-5571
    [125] Zhang Z H, Long Y M, Nie L H, et al. Molecularly imprinted thin film self-assembled on piezoelectric quartz crystal surface by the sol-gel process for protein recognition. Biosens Bioelectron,2006,21: 1244-1251
    [126] Turner N W, Wright B E, Hlady V, et al. Formation of protein molecular imprints within Langmuir monolayers: A quartz crystal microbalance study. J Colloid Interface Sc, 2007,308: 71-80
    [127] Rick J, Chou T C. Imprinting unique motifs formed from protein-protein associations. Anal Chim Acta, 2005, 542: 26-31
    [128] Rick J, Chou T C. Using protein templates to direct the formation of thin-film polymer surfaces. Biosens Bioelectron, 2006, 22: 544-549
    [129] Rachkov A, Hu M J, Bulgarevich E, et al. Molecularly imprinted polymers prepared in aqueous solution selective for [Sar~1,Ala~8]angiotensin n. Anal. Chim. Acta, 2004, 504:191-197
    [130] Rachkov A, Minoura N. Recognition of oxytocin and oxytocin-related peptides in aqueous media using a molecularly imprinted polymer synthesized by the epitope approach. J Chromatogr A, 2000, 889: 111-118
    [131] Rachkov A, Minoura N. Towards molecularly imprinted polymers selective to peptides and proteins. The epitope approach. Biochim Biophys Acta, 2001, 1544: 255-266
    [1] Capitan-Vallvey L F, Duque O, Miron-Garcia G, et al. Determination of protein content using a solid phase spectrophotometric procedure. Anal Chim Acta, 2001,433: 155-463
    [2] Zhu K, Li K A, Tong S Y. A study on the reaction mechanisms of protein with BPR-Zn(II) as spectrum probe and its analytical application. Anal Lett, 1996, 29: 575~596
    [3] Li D H, Yang H H, Zhen H, et al. Fluorimetric determination of albumin and globulin in human serum using tetra-substituted sulphonated aluminum phthalocyanine. Anal Chim Acta, 1999,401: 185-189
    
    [4] Nakamura J, Igarashi S. Highly sensitive spectrophotometric and spectrofluorometric determinations of albumin with 5,10,15,20-tetrakis(4-sulfophenyl)porphine. Anal Lett, 1996,29: 98s1-989
    
    [5] Zhu C Q, Wu Y Q, Zheng H, et al. Near-infrared fluorometric determination of protein by shifting the ion-association equilibrium between cationic heptamethylene cyanine and poly-glutamate. Anal Lett, 2004, 37: 1115-1127
    [6] Hoffman M A M, Van Miltenburg J C, VanderEerden J P, et al. Isothermal and scanning calorimetry measurements on -lactoglobulin. J Phys Chem B, 1997, 101: 6988-6994
    [7] Lee I H, Pinto D, Arriaga E A, et al. Picomolar analysis of proteins using electrophoretically mediated microanalysis and capillary electrophoresis with laser-induced fluorescence detection. Anal Chem, 1998, 70: 4546-4548
    [8] Alivisatos A P. Semiconductor clusters, nanocrystals, and quantum dots. Science, 1996, 271:933-937
    
    [9] Chen H Q, Wang L, Liu Y, et al. Preparation of a novel composite particles and its application in the fluorescent detection of proteins. Anal Bioanal Chem, 2006, 385:1457-1461
    
    [10] Li Y B, Ma Q, Wang X Y, et al. Fluorescence resonance energy transfer between two quantum dots with immunocomplexes of antigen and antibody as a bridge. Luminescence,2007, 22: 60-66
    [11] He X X, Wang K M, Tan W H, et al. Bioconjugated nanoparticles for DNA protection from cleavage. J Am Chem Soc, 2003, 125: 7168-7169
    [12] Meziani M J, Sun Y P. Protein-conjugated nanoparticles from rapid expansion of supercritical fluid solution into aqueous solution. J Am Chem Soc, 2003, 125:8015-8018
    [13] Chen H Q, Wang L, Wang L Y, et al. Preparation of novel composite nanoclusters and their application in the ultrasensitive detection of proteins. Anal Chim Acta, 2004, 521: 9-15
    [14] Yu Y, Zhou Z T. Fluorescence determination of lysozyme with cadmium di-selenide/cadmium sulfide quantum dots synthesized in the aqueous solution. Chinese J Anal Chem,2005, 33: 650-652
    
    [15] Li J, He X W, Wu Y L, et al. Determination of lysozyme at the nanogram level by a resonance light-scattering technique with functionalized CdTe nanoparticles. Anal Sci, 2007, 23:331-336
    [16]Wang L Y,Kan X W,Zhang M C,et al.Fluorescence for the determination of protein with functionalized nano-ZnS.Analyst,2002,127:1531-1534
    [17]Legendre Jr B L,Moberg D L,Williams D C,et al.Ultrasensitive near-infrared laser-induced fluorescence detection in capillary electrophoresis using a diode laser and avalanche photodiode.J Chromatogr A,1997,779:185-194
    [18]Sun C X,Yang J H,Li L,et al.Advances in the study of luminescence probes for proteins.J Chromatogr B,2004,803:173-190
    [19]Kershaw S V,Harrison M,Rogach AL,et al.Development of IR-emitting colloidal Ⅱ-Ⅵquantum-dot materials.IEEE J Sel Top Quant Electron,2000,6:534-543
    [20]Rogach A L,Harrison M T,Kershaw S V,et al.Colloidally prepared CdHgTe and HgTe quantum dots with strong near-infrared luminescence.Phys Stat Sol B,2001,224:153-158
    [21]Gaponik N,Talapin D V,Rogach A L,et al.Thiol-capping of CdTe nanocrystals:an alternative to organometallic synthetic routes.J Phys Chem B,2002,106:7177-7185
    [22]Kershaw S V,Burt M G,Harrison M T,et al.Colloidal CdTe/HgTe quantum dots with high photoluminescence quantum efficiency at room temperature.Appl Phys Lett,1999,75:1694-1696
    [23]Harrison M T,Kershaw S V,Burt M G,et al.Wet chemical synthesis and spectroscopic study of CdHgTe nanocrystals with strong near-infrared luminescence.Mater Sci Eng B,2000,69:355-360
    [24]Eychmuller A,Hasselbarth A,Weller H.Quantum-sized HgS in contact with quantum-sized CdS colloids.J Lumin,1992,53:113-115
    [25]Kim D W,Cho K,Kim H,et al.Optoelectronic characteristics of CdTe/HgTe/CdTe quantum-dot quantum-well nanoparticles.Solid State Commun,2006,140:215-218
    [1] Weng J F, Ren J C. Luminescent Quantum Dots: A very attractive and promising tool in biomedicine. Curr Med Chem, 2006, 13: 897-909
    
    [2] Jiang C, Xu S K, Yang D Z, et al. Synthesis of glutathione-capped CdS quantum dots and preliminary studies on protein detection and cell fluorescence image. Luminescence, 2007,22: 430-437
    
    [3] Zhong H Z, Zhou Y, Yang Y, et al. Synthesis of type II CdTe-CdSe nanocrystal heterostructured multiple-branched rods and their photovoltaic applications. J Phys Chem C,2007, 111:6538-6543
    [4] Bruchez M, Moronne M, Gin P, et al. Semiconductor nanocrystals as fluorescent bio-logical labels. Science, 1998,281: 2013-2016
    [5] Lin C A J, Liedl T, Sperling R A, et al. Bioanalytics and biolabeling with semiconductor nanoparticles (quantum dots). J Mater Chem, 2007, 17: 1343-1346
    
    [6] Wu H M, Liang J G, Han H Y. A novel method for the determination of Pb~(2+) based on the quenching of the fluorescence of CdTe quantum dots. Microchim. Acta, 2008, 161: 81-86
    [7] Kuo Y C, Wang Q, Ruengruglikit C, et al. Antibody-conjugated CdTe quantum dots for escherichia coli detection. JPhys. Chem C, 2008, 112: 4818-4824
    [8] Lenggoro I W, Xia B, Okuyama K, et al. Sizing of colloidal nanoparticles by electrospray and differential mobility analyzer methods. Langmuir, 2002, 18: 4584-4591
    [9] Tomasulo M, Yildiz I, Kaanumalle S L, et al. pH-Sensitive ligand for luminescent quantum dots. Langmuir, 2006, 22: 10284-10290
    
    [10] Guo W, Li J J, Wang Y A, et al. Conjugation chemistry and bioapplications of semiconductor box nanocrystals prepared via dendrimer bridging. Chem Mater, 2003, 15:3125-3133
    [11] Qu L H, Peng Z A, Peng X G. Alternative routes toward high guality CdSe nanocrystals.Nano Lett 2001, 1:333-337
    [12] Qu L H, Peng X G. Control of Photoluminescence properties of CdSe nanocrystals in growth.J Am Chem Soc, 2002, 124: 2049-2055
    [13] Rogach A L, Franzl T, Klar T A, et al. Aqueous synthesis of thiol-Capped CdTe nanocrystals:state-of-the-art. J Phys Chem C, 2007, 111: 14628-14637
    
    [14] Fernandez-Arguelles M T, Jin W, Costa-Fernandez J M, et al. Surface-modified CdSe quantum dots for the sensitive and selective determination of Cu(II) in aqueous solutions by luminescent measurements. Anal Chim Acta, 2005, 549: 20-25
    [15] Guo G N, Liu W, Liang J G, et al. Probing the cytotoxicity of CdSe quantum dots with surface modification. Mater Lett, 2007, 61, 1641-1644
    [16] Jana N R, Earhart C, Ying J Y. Synthesis of water-soluble and functionalized nanoparticles by silica coating. Chem Mater, 2007, 19: 5074-5082
    [17] Guo Y L, Yang W L, Yu F H, et al. Photo-assisted synthesis of highly fluorescent ZnSe(S) quantum dots in aqueous solution. J Mate, Chem, 2007,17: 2661-2666
    [18] Chen L, Zhu J, Li Q, et al. Controllable synthesis of functionalized CdS nanocrystals and CdS/PMMA nanocomposite hybrids. Euro Poly J, 2007,43: 4593-4601
    [19] Zhuang H, Liu J B, Zhang C L, et al. Synthesis and Surface Modification of CdTe Nanocrystals. Chem Res Chinese U, 2007,23:5-7
    [20] Wang J H, Wang H Q, Li Y Q, et al. Modification of CdTe quantum dots as temperature-insensitive bioprobes. Talanta, 2008, 74: 724-729
    [21] Xia Y S, Zhu C Q. Aqueous synthesis of type-II core/shell CdTe/CdSe quantum dots for near-infrared fluorescent sensing of copper(II). Analyst, 2008, 133: 928-932
    [22] Wang Y, Hou Y B, Tang A W, et al. Synthesis and Optical Properties of Water-Soluble CdTe Nanocrystals. Acta Phys Chim Sin, 2008,24: 296-300
    [23] Kim D W, Cho K, Kim H, et al. Optoelectronic characteristics of CdTe/HgTe/CdTe quantum-dot quantum-well nanoparticles. Solid State Commun, 2006, 140: 215-218
    [1]Henglein A.Small-particle research:physicochemical properties of extremely small colloidal metal and semiconductor particles.Chem.Rev,1989,89:1861-1873
    [2]Schmid G.Large clusters and colloids.Metals in the embryonic state.Chem Rev,1992,92(8):1709-1727
    [3]Alivisatos A P.Semiconductor clusters,nanocrystals,and quantum dots.Science,1996,271:933-937
    [4]Chaudhary S,Ozkan M,Chan W C W.Trilayer hybrid polymer-quantum dot light-emitting diodes.Appl Phys Lett,2004,84:2925-2927
    [5]Kazes M,Lewis D Y,Ebenstein Y,et al.Lasing from semiconductor quantum rods in a cylindrical microcavity.Adv Mater,2002,14:317-321
    [6]Gao X H,Cui Y Y,Levenson R M,et al.In vivo cancer targeting and imaging with semiconductor quantum dots.Nature Biotechnology,2004,22:969-976
    [7]Wu X Y,Liu H,Liu J,et al.Immunofluorescent labeling of cancer marker Her 2 and other cellular targets with semiconductor quantum dots.Nature Biotechnology,2003,21:41-46.
    [8]Edgar R,McKinstry M,Hwang J,et al.High-sensitivity bacterial detection using biotin-tagged phage and quantum-dot nanocomplexes.PNAS,2006,103(13):4841-4845
    [9]Chan W C W,Maxwell D J,Gao X,et al.Luminescent quantum dots for multiplexed biological detection and imaging curr opin.Biotechnol,2002,13:40-46
    [10]Gaponik N,Talapin D V,Rogach A L,et al.Thiol-capping of CdTe nanocrystals:an alternative to organometallic synthetic routes.J Phys Chem B,2002,106(29):7177-7185
    [11]秦元斌,杨曦,于俊生.巯基乙胺稳定的水溶性CdTe纳米粒子的合成与表征.无机化学学报,2006,22(5):851-855
    [12]Nakashima T,Sakakibara T,Kawai T.Highly luminescent CdTe nanocrystal-polymer composites based on ionic liquid.Chem Lett,2005,34(10):1410-1411
    [13]Li M Y,Ge Y X,Chen Q F,et al.Hydrothermal synthesis of highly luminescent CdTe quantum dots by adjusting precursors' concentration and their conjunction with BSA as biological fluorescent probes.Talanta,2007,72:89-94
    [14]Guo J,Yang W L,Wang C C.Systematic study of the photoluminescence dependence of thiol-capped CdTe nanocrystals on the reaction conditions.J Phys Chem B,2005,109:17467-17473
    [15]Bao H B,Gong Y J,Li Z,et al.Enhancement effect of illumination on the photoluminescence of water-soluble CdTe nanocrystals:toward highly fluorescent CdTe/CdS core-shell structure.Chem Mater,2004,16:3853-3859
    [16]Wang C L,Zhang H,Zhang J H,et al.Application of ultrasonic irradiation in aqueous synthesis of highly fluorescent CdTe/CdS core-shell nanocrystals.J Phys Chem C,2007,111:2465-2469
    [17]Li L,Qian H F,Ren J C.Rapid synthesis of highly luminescent CdTe nanocrystals in the aqueous phase by microwave irradiation with controllable temperature. Chem Commun,2005, 528-530
    [18] He Y, Sai L M, Lu H T et al. Microwave-assisted synthesis of water-dispersed CdTe nanocrystals with high luminescent efficiency and narrow size distribution. Chem Mater,2007, 19: 359-365
    [19] Liu Y F, Chen W, Joly A G, et al. Comparison of water-soluble CdTe nanoparticles synthesized in air and in nitrogen. J Phys Chem B, 2006,110: 16992-17000
    [20] Shavel A, Gaponik N, Eychmuller A. Factors governing the quality of aqueous CdTe nanocrystals: calculations and experiment. J Phys Chem B, 2006, 110: 19280-19284
    [21] Tang Z, Kotov N A, Giersig M. Spontaneous organization of single CdTe nanoparticles into luminescent nanowires. Science, 2002, 297: 237-240
    [22] Li J, Hong X, Li D, et al. Mixed ligand system of cysteine and thioglycolic acid assisting in the synthesis of highly luminescent water-soluble CdTe nanorods. Chem Commun, 2004,1740-1741
    [23] Deng D W, Qin Y B, Yang X, et al. The selective synthesis of water-soluble highly luminescent CdTe nanoparticles and nanorods: The influence of the precursor Cd/Te molar ratio. J Crys Grow, 2006, 296: 141-149
    [24] Yu H, Li J B, Loomis R A, et al. Two-versus three-dimensional quantum confinement in indium phosphide wires and dots. Nature Materials, 2003,2: 517-520
    [25] Zhang H, Wang D Y, Mohwald H. Ligand-selective aqueous synthesis of one-dimensional CdTe nanostructures. Angew Chem Int Ed, 2006,45: 748-751
    [1]Bruchez M,Moronne M,Gin P,et al.Semicondnctor nanocrystals as fluorescent biological labels.Science,1998,281:2013-2016
    [2]Chan W C W,Nie S M,Quantum dot bioconjugates for ultrasensitive nonisotopic detection.Science,1998,281:2016-2018
    [3]Han M,Gao X,Su J Z,et al.Quantum-dot-tagged microbeads for multiplexed optical coding of biomolecules.Nat Biotechnol,2001,19:631-635
    [4]林章碧,苏星光,金钦汉等 高等学校化学学报,2003,24(2):216-220
    [5]张春阳,马辉,丁尧等.高等学校化学学报,2001,22(1):34-37
    [6]Dickert F L,Hayden O.Bioimprinting of Polymers and Sol-Gel Phases:Selective Detection of Yeasts with Imprinted Polymers.Anal Chem,2002,74(6):1302-1306
    [7]Shi H Q,Tsai W B,Garrison M D,et al.Template-imprinted nanostructured surfaces for protein recognition.Nature,1999,398:593-597
    [8]Schweitz L,Molecularly imprinted polymer coatings for open-tubular capillary electrochromatography prepared by surface initiation.Anal Chem,2002,74:1192-1119
    [9]李礼,胡树国,何锡文等.应用分子印迹-固相萃取法提取中药活性成分非瑟酮.高等学校化学学报,2006,27(4):608-611
    [10]Wulff G,Enzyme-like catalysis by molecularly imprinted polymers.Chem Rev,2002,102:1-28
    [11]Haupt K,Mosbach K.Molecularly imprinted polymers and their use in biomimetic sensors.Chem Rev,2000,100:2495-2504
    [12]Cormack P A G,Mosbach K.Molecular imprinting:recent development and the road ahead React Funct Polym,1999,41(1-3):115-124
    [13]Wulff G.Molecular imprinting in cross-linked materials with theaid of molecular templates-a way towards artificial antibodies.Angew Chem Int Ed Engl,1995,34:1812-1832
    [14]卢春阳,何海成,马向霞等.除草剂青莠定分子印迹聚合物的合成及结合性能研究.化学学报,2004,62(8):799-803
    [15]Hu S G,Li L,He X W.Solid-phase extraction of esculetin from the ash bark of Chinese traditional medicine by using molecularly imprinted polymers.J Chromatogr A[J],2005,1062:31-37
    [16]Hu S G,Wang S W,He X W.An amobarbital molecularly imprinted microsphere for selective solid-phase extraction of phenobarbital from human urine and medicines and their determination by high-performance liquid chromatography.Analyst[London][J],2003,128:1485-1489
    [17]李永,杨黄浩,庄峙厦等.表面分子印迹聚合物纳米线用于蛋白质的特异性识别.高等学校化学学报[J],2005,26(9):1634-1636
    [18]Pang X S,Cheng G X,Lu S L,et al.Synthesis of polyacrylamide gel beads with electrostatic functional groups for the molecular imprinting of bovine serum albumin.Anal Bioanal Chem,2006,384:225-230
    [19]张淑琼,杨黄浩,庄峙厦等.分子印迹SiO_2纳米管膜的制备及其生化分离应用.高等学校化学学报,2004,25(6):1028-1030
    [20]Guo T Y,Xia Y Q,Hao G J,et al.Chemically modified chitosan beads as matrices for adsorptive separation of proteins by molecularly imprinted polymer.Carbohydrate Polymers,2005,62:214-221
    [21]Li Y,Yang H H,You Q H,et al.Protein recognition via surface molecularly imprinted polymer nanowires.Anal Chem,2006,78:317-320
    [22]Huang T,Zhang J,Zhang J Q,et al.Template imprinting amphoteric polymer for the recognition of proteins.J Appl Polym Sci,2005,95(2):358-361
    [23]Pang X S,Cheng G X,Li R S,et al.Bovine serum albumin-imprinted polyacrylamide gel beads prepared via inverse-phase seed suspension polymerization.Anal Claim Acta,2005,550:13-17
    [24]Liao J L,Wang Y,Hjerten S.Novel support with artificially created recognition for the selective removal of proteins and for affinity chromatography.Chromatographia,1996,42:259-262
    [25]Hjerten S,Liao J L,Nakazato K,et al.Gels mimicking antibodies in their selective recognition of proteins.Chromatographia,1997,44:227-234
    [26]Tong D,Hetenyi C,Bikadi Z,et al.Some studies of the chromatographic properties of gels (artificial antibodies/receptors) for selective adsorption of proteins.Chromatographia,2001,54:7-14
    [27]Chen Z Y,Hua Z D,Xu L,et al.Protein-responsive imprinted polymers with specific shrinking and rebinding.J Mol Recognit,2008;21:71-77
    [28]Demirel G,Ozcetin G,Turan E,et al.pH/temperature-sensitive imprinted ionic poly (N-tert-butylacrylamide-co-acrylamide/maleic acid) hydrogels for bovine serum albumin.Macromol.Biosc,2005,5(10):1032-1037
    [29]Hua Z D,Chen Z Y,Li Y Z,et al.Thermosensitive and salt-sensitive molecularly imprinted hydrogel for bovine serum albumin.Langmuir,2008,24(11):5773-5780
    [30]Hawkins D M,Stevenson D,Reddy S M.Investigation of protein imprinting in hydrogelObased molecularly imprinted polymers(HydroMIPs).J Analytica Chimica Acta,2005,542:61-65

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700