低维II-VI族半导体纳米结构的控制生长
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
低维半导体纳米材料的控制生长是当前纳米科学与技术研究领域的前沿和热点。本文选择典型的II-VI族半导体作为研究对象,采用电化学沉积、湿化学等方法制备了一系列低维纳米结构,对所获得纳米材料的尺寸、化学成分、晶体结构以及晶体取向成功地进行了控制。
     采用多孔氧化铝作为模板,通过直流电沉积方法,在120 oC的低温条件下制备了高度有序的六方ZnS纳米线阵列。在电流密度I = 0.1 mAcm~(-2)时制备了沿[110]方向生长的六方ZnS单晶纳米线阵列;当电流密度增加时,制备的六方ZnS纳米线为多晶结构。多孔氧化铝纳米孔洞的限域作用有利于六方ZnS单晶纳米线的形成。以多孔氧化铝作为模板,通过直流电沉积方法,在110 oC条件下制得了高度有序的六方CdS纳米线阵列。结果表明,电流密度对于电沉积纳米线阵列的取向生长有重要影响:在电流密度I = 1.28 mAcm~(-2)时制备了六方CdS多晶纳米线阵列,当电流密度降低到I = 0.05 mAcm~(-2)时,获得了沿[103]方向生长的六方CdS单晶纳米线阵列。在经典的电结晶理论基础上,建立了准二维电结晶临界晶核尺寸模型,即电结晶临界晶核尺寸不仅取决于电沉积参数ηc,同时也与晶体的表面能Ehkl、沉积晶体与基体的错配关系ρ有关。利用该模型可以理解电沉积单晶纳米线的形成以及纳米线阵列的取向形成机制。
     通过改变阳极氧化条件,制备了直径分别为25 nm、40 nm和120 nm的多孔氧化铝模板,通过直流电沉积方法,在180 oC条件下制得了六方CdSe纳米线阵列。结果表明,纳米线直径对于电沉积纳米线阵列的取向生长有重要影响:当I = 1.28 mAcm~(-2)时,随着尺寸D的增加,CdSe纳米线的择优取向从[001]转变为[101]和[103]方向,且临界尺寸D0满足40 nm < D0 < 120 nm。当I = 0.06 mAcm~(-2)时,随着尺寸D的增加,CdSe纳米线的择优取向从[101]转变为[103]方向,且临界尺寸D0满足25 nm < D0 < 40 nm。尺寸对CdSe纳米线生长取向的影响可以从降低体系表面能的角度进行理解。通过选择电沉积CdSe纳米线阵列的生长方向,可以有效控制其光学性能。
     采用液相方法直接制备了高产率、壳层分布均匀的CdS/MWCNTs壳芯异质结构,制备过程简单易行,无需对CNTs进行前处理或添加有机桥分子。CdS壳层的厚度可以通过改变反应温度或反应时间进行控制。CdS壳层是由CdS纳米粒子的聚集而形成的。
     采用ZnO纳米针作为自牺牲模板,在90 oC条件下与TAA水热反应5 h后制备了ZnS/ZnO壳芯异质结构的纳米针;提高反应温度,在120 oC条件下反应5 h后制备了ZnS空心纳米针。ZnS/ZnO壳芯异质结构是通过原位化学反应的方式获得的,而ZnS空心纳米针则是由纳米尺度的Kirkendall效应而形成的。以所获得的空心纳米针作为初始材料可以制备新奇的纳米结构,这些结构将在纳米光电子器件中得到重要应用。
The controllable growth of low dimensional semiconductor nanomaterials is the frontiers and the focus in the field of nanoscience and nanotechnology. In the present work, the typical II-VI semiconductor nanostructures have been synthesized by using electrodeposition and wet chemical methods. The size, composition, crystal structure, and growth orientation have been successfully controlled.
     Highly ordered wurtzite ZnS nanowire arrays have been prepared at a low temperature of T = 120 oC by employing electrochemical deposition techniques using the porous alumina membrane with 40 nm diameter pores as template. ZnS single-crystal nanowire arrays with [110] growth direction have been obtained at an extremely low current density of 0.1 mAcm~(-2). At higher current densities, the deposited ZnS nanowires possess a polycrystalline structure. The nanoscale confinement is found to be favorable for the growth of wurtzite ZnS single crystals.
     Hexagonal CdS nanowire arrays have been prepared at a low temperature of T = 110 oC by employing electrochemical deposition techniques using the porous alumina membrane as template. It has been found that the deposition current density has important effect on the growth orientation of the deposited nanowire arrays. At higher current densities of 1.28 mAcm~(-2), the deposited CdS nanowires possess a polycrystalline structure. An extremely low current density of 0.05 mAcm~(-2) is favorable for the growth of single-crystal CdS nanowires along the normal direction of the intrinsic low-surface-energy (103) face. According to the classical theory of nucleation and growth for electrocrystallization, a quasi-two-dimension critical dimension model has been proposed, which shows that the critical dimension is dependent on the electrodeposition parameters, the surface energy of the formed crystal face, and the lattice misfit between the nanowires and substrate. The formation of electrodeposited single-crystal nanowires and the formation mechanism of various growth orientations can be well understood by employing the suggested model.
     Porous alumina templates with average diameter of ~25 nm, 40 nm, and 120 nm were obtained under selected anodizing conditions. Highly ordered hexagonal CdSe nanowire arrays have been successfully yielded by employing the electrodeposition technique using the porous alumina as templates. We demonstrate by experimental and theoretical efforts that the growth orientation of the CdSe nanowires can be effectively manipulated by varying the nanopore diameter of the templates. The preferential orientation of CdSe nanowires changes from [001] direction to the [101] and [103] directions at a critical diameter D0 in the range of 40-120 nm at the current density I = 1.28 mAcm~(-2). At an extremely low current density I = 0.06 mAcm~(-2), the preferential orientation of CdSe nanowires switches from [101] direction to [103] direction as D≥40 nm. The diameter-dependent orientation can be understood based on the total energy minimum principle. The electrodeposited CdSe nanowires present tunable optical properties by varying their structural characteristic and growth orientation.
     Multiwalled carbon nanotube (MWCNT)/CdS core/shell heterostructures have been synthesized via a simple solution-phase method. The thickness of CdS shells can be facilely tuned by either the reaction temperature or time. The CdS nanoparticles are first formed directly on the activated sites of the MWCNT surface, and then a uniform CdS sheath is yielded via orientated aggregation processes.
     Using the ZnO nanoneedles as self-sacrificed templates, ZnO/ZnS core/shell and ZnS hollow nanoneedles have been synthesized via a surfactant-free method. At a low temperature hydrothermal condition (90 oC), ZnO/ZnS core/shell nanoneedles were formed through in-situ chemical reaction between the ZnO template and sulfide source. The ZnS hollow nanoneedles are yielded via nanoscale Kirkendall effect at an elevated temperature (120 oC). If the obtained hollow nanoneedles are employed as the starting materials, fantastic nanoarchitectures could be realized by employing the Rayleigh instability. These novel nanostructures may find important application in nanodevices.
引文
1 S. Iijima. Helical Microtubules of Graphitic Carbon. Nature, 1991, 354: 56-58
    2 Z. L. Wang, J. H. Song. Piezoelectric Nanogenerators Based on Zinc Oxide Nanowire Arrays. Science, 2006, 14: 242-246
    3 President’s Council of Advisors on Science and Technology. The National Nanotechnology Initiative: Second Assessment and Recommendations of the National Nanotechnology Advisory Panel. April, 2008
    4 E. I. Givargizov. Highly Anisotropic Crystals. Reidel, Dordrecht, The Netherlands, 1987
    5 Y. Xia, P. Yang, Y. Sun, Y. Wu, B. Mayers, B. Gates, Y. Yin, F. Kim, H. Yan. One-Dimensional Nanostructures: Synthesis, Characterization, and Applications. Adv. Mater., 2003, 15: 353-389
    6 J. J. Stejny, R. W. Trinder, J. Dlugosz. Preparation and Structure of Poly (Sulphur Nitride) Whiskers. J. Mater. Sci., 1981, 16: 3161-3170
    7 J. J. Stejny, J. Dlugosz, A. Keller. Electron Microscope Diffraction Characterization of the Fibrous Structure of Poly(Sulphur Nitride) Crystals. J. Mater. Sci., 1979, 14: 1291-1300
    8 B. T. Mayers, Y. Xia. One-Dimensional Nanostructures of Trigonal Tellurium with Various Morphologies Can be Synthesized Using a Solution-Phase Approach. J. Mater. Chem., 2002, 12: 1875-1881
    9 B. Gates, B. Mayers, B. Cattle, Y. Xia. Synthesis and Characterization of Uniform Nanowires of Trigonal Selenium. Adv. Func. Mater., 2002, 12: 219-227
    10 B. Gates, Y. Yin, Y. Xia. A Solution-Phase Approach to the Synthesis of Uniform Nanowires of Crystalline Selenium with Lateral Dimensions in the Range of 10-30 nm. J. Am. Chem. Soc., 2000, 122: 12582-12583
    11 J. H. Golden, F. J. DiSalvo, J. M. J. Fréchet, J. Silcox, M. Thomas, J. Elman. Subnanometer-Diameter Wires Isolated in a Polymer Matrix by Fast Polymerization. Science, 1996, 273: 782-784
    12 J. H. Song, B. Messer, Y. Y. Wu, H. Kind, P. D. Yang. MMo3Se3 (M = Li+, Na+, Rb+, Cs+, NMe4+) Nanowire Formation via Cation Exchange in Organic Solution. J. Am. Chem. Soc.,2001, 123: 9714-9715
    13 W. Noll. Syntheses in the System MgSiO2-H2O. Z. Anorg. Chem., 1950, 261: 1-253
    14 L. Stryer. Biochemistry. 3rd ed. New York: W. H. Freeman and Company, 1988
    15 R. S. Wagner, W. C. Ellis. Vapor-Liquid-Solid Mechanism of Single Crystal Growth. Appl. Phys. Lett., 1964, 4: 89-90
    16 T. J. Trentler, K. M. Hickman, S. C. Goel, A. M. Viano, P. C. Gibbons, W. E. Buhro. Solution-Liquid-Solid Growth of Crystalline III-V Semiconductors: An Analogy to Vapor-Liquid-Solid Growth. Science, 1995, 270: 1791-1794
    17 F. D. Wang, A. G. Dong, J. W. Sun, Rui. Tang, H. Yu, W. E. Buhro. Solution-Liquid-Solid Growth of Semiconductor Nanowires. Inorg. Chem., 2006, 45: 7511-7521
    18 L. Isaacs, D. N. Chin, N. Bowden, Y. Xia, G. M. Whitesides. Superlecular Technology. John Wiley & Sons, New York, 1999
    19 B. A. Korgel, D. Fitzmaurice. Self-Assembly of Silver Nanocrystals into Two-Dimensional Nanowire Arrays. Adv. Mater., 1999, 10: 661-665
    20 D. Wyrwa, N. Beryer, G. Schmid. One-Dimensional Arrangements of Metal Nanoclusters. Nano Lett., 2002, 2: 419-421
    21 S. T. Liu, R. Maoz, G. Schmid, J. Sagiv. Template Guided Self-Assembly of [Au55] Clusters on Nanolithographically Defined Monolayer Patterns. Nano Lett., 2002, 2: 1055-1060
    22 T. Reuter, O. Vidoni, V. Torma, G. Schmid, L. Nan, M. Gleiche, L. Chi, H. Fuchs. Two-Dimensional Networks via Quasi One-Dimensional Arrangements of Gold Clusters. Nano Lett., 2002, 2: 709-711
    23 S. Nakao, K. Torigoe, K. Kon-No. Self-Assembled One-Dimensional Arrays of Gold-Dendron Nanocomposites. J. Phys. Chem. B, 2002, 106: 12097-12100
    24 Y. Yin, B. Gates, Y. Xia. A Soft Lithographic Approach to the Fabrication of Nanostructures of Single Crystalline Silicon with Well-Defined Dimensions and Shapes. Adv. Mater., 2000, 12: 1426-1430
    25 Z. Y. Li, Y. Yin, Y. Xia. Optimization of Elastomeric Phase Masks for Near-Field Photolithography. Appl. Phys. Lett., 2001, 78: 2431-2433
    26 X. Duan, C. M. Lieber. General Synthesis of Compound Semiconductor Nanowires. Adv. Mater., 2000, 12: 298-302
    27 Y. Y. Wu, P. D. Yang. Direct Observation of Vapor-Liquid-Solid Nanowire Growth. J. Am. Chem. Soc., 2001, 123: 3165-3166
    28 C. J. Otten, O. R. Lourie, M. F. Yu, J. M. Cowley, M. J. Dyer, R. S. Ruoff, W. E. Buhro. Crystalline Boron Nanowires. J. Am. Chem. Soc., 2002, 124: 4564-4565
    29 M. Yazawa, M. Koguchi, A. Muto, M. Ozawa, K. Hiruma. Effect of One Monolayer of Suface Gold Atoms on the Epitaxial-Growth of InAs Nanowhiskers. Appl. Phys. Lett., 1992, 61: 2051-2053
    30 D. P. Yu, Z. G. Bai, Y. Ding, Q. L. Hang, H. Z. Zhang, J. J. Wang, Y. H. Zou, W. Qian, H. T. Zhou, G. C. Xiong, S. Q. Feng. Nanoscale Silicon Wires Synthesized Using Simple Physical Evaporation. App. Phys. Lett., 1998, 72: 34588-34603
    31 P. D. Yang, C. M. Lieber. Nonorod-Superconducter Composites: A Pathway to Materials with High Critical Current Densities. Science, 1996, 273: 1836-1840
    32 Z. W. Pan, Z. R. Dai, Z. L. Wang. Nanobelts of Semiconducting Oxides. Science, 2001, 291: 1947-1949
    33 M. Adachi, D. J. Lockwood. Self-Organized Nanoscale Materials. New York: Springer, 2006, 101-158
    34 X. Wang, Y. D. Li. Selected-Control Hydrothermal Synthesis of alpha- and beta-MnO2 Single Crystal Nanowires. J. Am. Chem. Soc., 2002, 124: 2880-2881
    35 Y. D. Li, M. Sui, Y. Ding, G. Zhang, J. Zhuang, C. Wang. Preparation of Mg(OH)2 Nanorods. Adv. Mater., 2000, 12: 818-821
    36 X. J. Wang, J. Lu, Y. Xie, G. A. Du, Q. X. Guo, S. Y. Zhang. A Novel Route to Multiwalled Carbon Nanotubes and Carbon Nanorods at Low Temperature. J. Phys. Chem. B, 2002, 106: 933-937
    37 X. J. Wang, J. Lu, P. P. Gou, Y. Xie. A "Chemical-Scissors-Assemble" Route to Titanium Carbide Nanorods. Chem. Lett., 2002, 8: 820-821
    38 Y. D. Li, Z. Y. Wang, X. F. Duan, G. H. Zhang, C. Wang. Solvothermal Reduction Synthesis of InSb Nanocrystals. Adv. Mater., 2001, 13: 145-148
    39 J. Q. Hu, B. Deng, Q. Y. Lu, K. B. Tang, R. R. Jiang, Y. T. Qian. Growth of Tubular-Crystalsβ-Ag2Se through a Hydrothermal Reaction Route. Chem. Commun., 2000, 715-717
    40 M. S. Mo, J. H. Zeng, X. M. Liu, W. C. Yu, S. Y. Zhang, Y. T. Qian. Controlled HydrothermalSynthesis of Thin Single-Crystal Tellurium Nanobelts and Nanotubes. Adv. Mater., 2002, 14: 1658-1662
    41 Y. Xie, P. Yan, J. Lu, W. Z. Wang, Y. T. Qian. A Safe Low Temperature Route to InAs Nanofibers. Chem. Mater., 1999, 11: 2619-2622
    42 X. J. Wang, J. Lu, Y. Xie, G. A. Du, Q. X. Guo, S. Y. Zhang. A Novel Route to Multiwalled Carbon Nanotubes and Carbon Nanorods at Low Temperature. J. Phys. Chem. B, 2002, 106: 933-937
    43 Y. T. Qian. Solvothermal Synthesis of Nanocrystalline III-V Semiconductors. Adv. Mater., 1999, 11: 1101-1102
    44 Y. Y. Yu, S. S. Chang, C. L. Lee, C. R. C. Wang. Gold Nanorods-Electrochemical Synthesis and Optical Properties. J. Phys. Chem., 1997, 101: 6661-6664
    45 C. N. Rao, A. Govindaraj, F. L. Deepak, N. A. Gunari, M. Nath. Surfactant-Assisted Synthesis of Semiconductor Nanotubes and Nanowires. Appl. Phys. Lett., 2001, 78: 1853-1855
    46 Y. D. Li, X. Li, Z. X. Deng, B. Zhou, S. Fan, J. Wang, X. Sun. From Surfactant-Inorganic Mesostructures to Tungsten Nanowires. Angew. Chem. Int. Edit., 2002, 412: 333-336
    47 Y. D. Li, Y. Ding, Z. Y. Wang. A Novel Chemical Route to ZnTe Semiconductor Nanorods. Adv. Mater., 1999, 11: 847-852
    48 D. Zhou, S. Seraphin. Production of Silicon-Carbide Whiskers from Carbon Nanoclusters. Chem. Phys. Lett., 1994, 222: 233-238
    49 H. Dai, E. W. Wong, Y. Z. Lu, S. S. Fan, C. M. Lieber. Synthesis and Characterization of Carbide Nanorods. Nature, 1995, 375: 769-771
    50 W. Q. Han, S. S. Fan, Q. Q. Li, W. J. Liang, B. L. Gu, D. P. Yu. Continuous Synthesis and Characterization of Silicon Carbide Nanorods. Chem. Phys. Lett., 1997, 265: 374-378
    51 W. Q. Han, S. S. Fan, Q. Q. Li, B. L. Gu, X. B. Zhang, D. P. Yu. Synthesis of Silicon Nitride Nanorods Using Carbon Nanotube as a Template. Appl. Phys. Lett., 1997, 71: 2271-2273
    52 W. Q. Han, S. S. Fan, Q. Q. Li, Y. D. Hu. Synthesis of Gallium Nitride Nanorods through a Carbon Nanotube-Confined Reaction. Science, 1997, 277: 1287-1289
    53 Y. Chen, H. Yan, X. H. Li, W. Li, J. W. Zhang, X. Y. Zhang. Assembly of Ni/γ-Fe2O3 Shell/Core Nanowires. Mater. Lett., 2006, 60: 245-247
    54 T. M. Whitney, P. C. Searson, J. S. Jiang, C. L. Chien. Fabrication and Magnetic Properties ofArrays of Metallic Nanowires. Science, 1993, 261: 1316-1318
    55 H. X. Ji, C. P. Searson. Fabrication of Nanoporous Gold Nanowires. Appl. Phys. Lett., 2002, 81: 4437-4439
    56 O. Reynes, S. Demoustier-Champagne. Template Electrochemical Growth of Polypyrrole and Gold-Polypyrrole-Gold Nanowire Arrays. J. Electrochem. Soc., 2005, 152: 130-135
    57 J. Z. Zhou, P. Dong, C. D. Cai, Z. H. Lin. Chemically Modified AAO Template and Application to PANI Nanowires Synthesis. Acta. Phys. Chim. Sin., 2004, 20: 1287-1291
    58 Y. Lei, L. D. Zhang, J. C. Fan. Fabrication, Characteration and Raman Study of TiO2 Nanowires Arrays Prepared by Anodic Oxidative Hydrolysis of TiCl3. Chem. Phys. Lett., 2001, 338: 231-236
    59 Z. B. Fang, Y. Y. Wang, X. P. Peng, X. Q. Liu, C. M. Zhen. Structural and Optical Properties of ZnO Films Grown on the AAO Templates. Mater. Lett., 2003, 57: 4187-4190
    60 K. K. Zhu, H. Y. He, S. H. Xie, X. Zhang, W. Z. Zhou, S. L. Jin, B. Yue. Crystalline WO3 Nanowires Synthesized by Templating Method. Chem. Phys. Lett., 2003, 377: 317-319
    61 J. C. Hulteen, H. X. Chen, C. K. Chambliss, C. R. Martin. Template Synthesis of Carbon Nanotubule and Nanofiber Arrays. Nanostru Mater., 1997, 9: 133-136
    62 B. Antonio, A. Fuertes. Template Synthesis of Carbon Nanotubules by Vapor Deposition Polymeri-Zation. Carbon, 2002, 40: 1597-1613
    63 A. Loiseau, P. Launois, P. Petit, S. Roche, J. P. Salvetat. Understanding Carbon Nanotubes: from Basics to Applications. Springer, 2006
    64 P. M. Ajayany, T. W. Ebbesenz. Nanometre-Size Tubes of Carbon. Rep. Prog. Phys., 1997, 60: 1025-1062
    65 R. Tenne, L. Margulis, M. Genut, G. Hodes. Polyhedral and Cylindrical Structures of WS2. Nature, 1992, 360: 444-445
    66 J. Wang, Y. Li. Rational Synthesis of Metal Nanotubes and Nanowires from Lamellar Structures. Adv. Mater., 2003, 15: 445-447
    67 C. Bae, H. Yoo, S. Kim, K. Lee, J. Kim, M. M. Sung, H. Shin. Template-Directed Synthesis of Oxide Nanotubes: Fabrication, Characterization, and Applications. Chem. Mater., 2008, 20: 756-767
    68 G. Z. Shen, Y. Bando, D. Golberg. Recent Developments in Single-Crystal Inorganic NanotubesSynthesised from Removable Templates. Int. J. Nanotechnol., 2007, 4: 730-749
    69 Y. J. Xiong, B. T. Mayers, Y. Xia. Some Recent Developments in the Chemical Synthesis of Inorganic Nanotubes. Chem. Commun., 2005, 5013-5022
    70 M. Rem?kar. Inorganic Nanotubes. Adv. Mater., 2004, 16: 1497-1504
    71 J. Goldberger, R. H. He, Y. F. Zhang, S. Lee, H. Q. Yan, H. J. Choi, P. D. Yang. Single-Crystal Gallium Nitride Nanotubes. Nature, 2003, 422: 599-602
    72 J. Q. Hu, Y. Bando, Z. W. Liu, J. H. Zhan, D. Golberg, T. Sekiguchi. Synthesis of Crystalline Silicon Tubular Nanostructures with ZnS Nanowires as Removable Templates. Angew. Chem. Int. Ed., 2003, 43: 63-66
    73 J. Q. Hu, Y. Bando, J. H. Zhan, M. Y. Liao, D. Golberg, X. L. Yuan, T. Sekiguchi. Single-Crystalline Nanotubes of IIB-VI Semiconductors. Appl. Phys. Lett., 2005, 87: 113107/1-3
    74 Z. Q. Liu, D. H. Zhang, S. Han, C. Li, B. Lei, W. G. Lu, J. Y. Fang, C. W. Zhou. Single Crystalline Magnetite Nanotubes. J. Am. Chem. Soc., 2005, 127: 6-7
    75 S. Han, C. Li, Z. Q. Liu, B. Lei, D. H. Zhang, W. Jin, X. L. Liu, T. Tang, C. W. Zhou. Transition Metal Oxide Core?Shell Nanowires: Generic Synthesis and Transport Studies. Nano Lett., 2004, 4: 1241-1246
    76 G. Z. Shen, Y. Bando, C. H. Ye, X. L. Yuan, T. Sekiguchi, D. Golberg. Single-Crystal Nanotubes of II3-V2 Semiconductors. Angew. Chem. Int. Ed., 2006, 45: 7568-7572
    77 Q. Chen, W. Zhou, G.. H. Du, L. M. Peng. Trititanate Nanotubes Made via a Single Alkali Treatment. Adv. Mater., 2002, 14: 1208-1211
    78 Z. R. Tian, J. A. Voigt, J. Liu, B. Mckenzie, H. F. Xu. Large Oriented Arrays and Continuous Films of TiO2-Based Nanotubes. J. Am. Chem. Soc., 2003, 125: 12384-12385
    79 D. V. Bavykin, J. M. Friedrich, F. C. Walsh. Protonated Titanates and TiO2 Nanostructured Materials: Synthesis, Properties, and Applications. Adv. Mater., 2006, 18: 2807-2824
    80 D. Li, Y. Xia. Electrospinning of Nanofibers: Reinventing the Wheel? Adv. Mater., 2004, 16: 1151-1170
    81 Y. D. Yin, R. M. Rioux, C. K. Erdonmez, S. Hughes, G. A. Somorjai, A. P. Alivisatos. Formation of Hollow Nanocrystals Through the Nanoscale Kirkendall Effect. Science, 2004, 304: 711-714
    82 H. J. Fan, M. Knez, R. Scholz, K. Nielsch, E. Pippel, D. Hesse, M. Zacharias, U. G?sele. Monocrystalline Spinel Nanotube Fabrication Based on the Kirkendall Effect. Nat. Mater., 2006, 5: 627-631
    83 J. T. Chen, M. F. Zhang, T. P. Russell. Instabilities in Nanoporous Media. Nano Lett., 2007, 7: 183-187
    84 A. J. Mieszawska, R. Jalilian, G. U. Sumanasekera, F. P. Zamborini. The Synthesis and Fabrication of One-Dimensional Nanoscale Heterojunctions. Small, 2007, 3: 722-756
    85 Y. Wu, R. Fan, P. Yang. Block-by-Block Growth of Si/SiGe Superlattice Nanowires. Nano Lett., 2002, 2: 83-86
    86 M. S. Gudiksen, L. J. Lauhon, J. Wang, D. C. Smith, C. M. Lieber. Growth of Nanowire Superlattice Structures for Nanoscale Photonics and Electronics. Nature, 2002, 415: 617-620
    87 D. J. Milliron, S. M. Hughes, Y. Cui, L. Manna, J. Li, L. W. Wang, A. P. Alivisatos. Colloidal Nanocrystal Heterostructures with Linear and Branched Topology. Nature, 2004, 430: 190-195
    88 P. Peng, D. J. Milliron, S. M. Hughes, J. C. Johnson, A. P. Alivisatos, R. J. Saykally. Femtosecond Spectroscopy of Carrier Relaxation Dynamics in Type II CdSe/CdTe Tetrapod Heteronanostructures. Nano Lett., 2005, 5: 1809-1813
    89 J. H. Lee, J. H. Wu, H. L. Liu, J. U. Cho, M. K. Cho, B. H. An, J. H. Min, S. J. Noh, Y. K. Kim. Iron-Gold Barcode Nanowires. Angew. Chem. Int. Ed., 2007, 46: 3663-3667
    90 Y. P. Sun, K. F. Fu, Y. Lin, W. J. Huang. Functionalized Carbon Nanotubes: Properties and Applications. Acc. Chem. Res., 2002, 35: 1096-1104
    91 V. Georgakilas, D. Gournis, V. Tzitzios, L. Pasquato, D. M. Guldi, M. Prato. Decorating Carbon Nanotubes with Metal or Semiconductor Nanoparticles. J. Mater. Chem., 2007, 17: 2679-2694
    92 G. G. Wildgoose, C. E. Banks, R. G. Compton. Metal Nanoparticles and Related Materials Supported on Carbon Nanotubes: Methods and Applications. Small, 2006, 2: 182-193
    93 V. Lordi, N. Yao, J. Wei. Method for Surport Platinum on Single-Walled Carbon Nanotubes for a Selective Hydrogenation Catalyst. Chem. Mater., 2001, 13: 733-737
    94 W. Z. Li, C. H. Liang, W. J. Zhou, J. S. Qiu, Z. H. Zhou, G. Q. Sun, Q. Xin. Preparation and Characterization of Multiwalled Carbon Nanotubes-Supported Platinum for Cathode Catalysts of DMFCs. J. Phys. Chem. B, 2003, 107: 6292-6299
    95 M. S. Raghuveer, S. Agrawal, N. Bishop, G. Ramanath. Microwave-Assisted Single-StepFunctionalization and in-situ Derivatization of Carbon Nanotubes with Gold Nanoparticles. Chem. Mater., 2006, 18: 1390-1393
    96 H. C. Choi, M. Shim, S. Bangsaruntip, H. J. Dai. Spontaneous Reduction of Metal Ions on the Sidewalls of Carbon Nanotubes. J. Am. Chem. Soc., 2002, 124: 9058-9059
    97 L. T. Qu, L. M. Dai. Substrate-Enhanced Electroless Deposition of Metal Nanoparticles on Carbon Nanotubes. J. Am. Chem. Soc., 2005, 127: 10806-10807
    98 B. M. Quinn, C. Dekker, S. G. Lemay. Electrodeposition of Noble Metal Nanoparticles on Carbon Nanotubes. J. Am. Chem. Soc., 2005, 127: 6146-6147
    99 P. K. Mohseni, G. Lawson, C. Couteau, G. Weihs, A. Adronov, R. R. LaPierre. Growth and Characterization of GaAs Nanowires on Carbon Nanotube Composite Films: Toward Flexible Nanodevices. Nano Lett., 2008, 8: 4075-4080
    100 H. Kim, W. Sigmund. Zinc Oxide Nanowires on Carbon Nanotubes. Appl. Phys. Lett., 2001, 81: 2085-2087
    101 F. Gu, C. Z. Li, S. F. Wang. Solution-Chemical Synthesis of Carbon Nanotube/ZnS Nanoparticle Core/Shell Heterostructures. Inorg. Chem., 2007, 46: 5343-5348
    102 O. E. D. Rodrigues, G. D. Saraiva, R. O. Nascimento, E. B. Barros, J. Mendes Filho, Y. A. Kim, H. Muramatsu, M. Endo, M. Terrones, M. S. Dresselhaus, A. G. Souza Filho. Synthesis and Characterization of Selenium-Carbon Nanocables. Nano Lett., 2008, 8: 3651-3655
    103 C. H. Hsieh, L. J. Chou, G. R. Lin, Y. Bando, D. Golberg. Nanophotonic Switch: Gold-in-Ga2O3 Peapod Nanowires. Nano Lett., 2008, 8: 3081-3085
    104 F. Qian, Y. Li, S. Gradeak, H. G. Park, Y. J. Dong, Y. Ding, Z. L. Wang, C. M. Lieber. Multi-Quantum-Well Nanowire Heterostructures for Wavelength-Controlled Lasers. Nat. Mater., 2008, 7: 701-706
    105 A. L. Pan, W. C. Zhou, E. S. P. Leong, R. B. Liu, A. H. Chin, B. S. Zou, C. Z. Ning. Continuous Alloy-Composition Spatial Grading and Superbroad Wavelength-Tunable Nanowire Lasers on a Single Chip. Nano Lett., 2009, 9: 784-788
    106 Y. Jung, S. H. Lee, A. T. Jennings, R. Agarwal. Core-Shell Heterostructured Phase Change Nanowire Multistate Memory. Nano Lett., 2008, 8: 2056-2062
    107 C. Xu, X. D. Wang, Z. L. Wang. Nanowire Structured Hybrid Cell for Concurrently Scavenging Solar and Mechanical Energies. J. Am. Chem. Soc., 2009, 131: 5866-5872
    108 T. Ohgai, X. Hoffer, A. Fábián, L. Gravier, J. P. Ansermet. Electrochemical Synthesis and Magnetoresistance Properties of Ni, Co and Co/Cu Nanowires in a Nanoporous Anodic Oxide Layer on Metallic Aluminium. J. Mater. Chem., 2003, 13: 2530-2534
    109 X. S. Fang, C. H. Ye, L. D. Zhang, Y. H. Wang, Y. C. Wu. Temperature-Controlled Catalytic Growth of ZnS Nanostructures by the Evaporation of ZnS Nanopowders. Adv. Funct. Mater., 2005, 15: 63-68
    110 S. L. Xiong, B. J. Xi, C. M. Wang, D. C. Xu, X. M. Feng, Z. C. Zhu, Y. T. Qian. Tunable Synthesis of Various Wurtzite ZnS Architectural Structures and Their Photocatalytic Properties. Adv. Funct. Mater., 2007, 17: 2728-2738
    111 M. H. Huang, Y. Wu, H. Feick, N. Tran, E. Weber, P. Yang. Catalytic Growth of Zinc Oxide Nanowires by Vapor Transport. Adv. Mater., 2001, 13: 113-116
    112 S. Xu, Y. G. Wei, M. Kirkham, J. Liu, W. J. Mai, D. Davidovic, R. L. Snyder, Z. L. Wang. Patterned Growth of Vertically Aligned ZnO Nanowire Arrays on Inorganic Substrates at Low Temperature without Catalyst. J. Am. Chem. Soc., 2008, 130: 14958-14959
    113 C. Y. Zhang, X. J. Zhang, X. H. Zhang, X. Fan, J. S. Jie, J. C. Chang, C. S. Lee, W. J. Zhang, S. T. Lee. Facile One-Step Growth and Patterning of Aligned Squaraine Nanowires via Evaporation-Induced Self-Assembly. Adv. Mater., 2008, 20: 1716-1720
    114 R. D. Piner, J. Zhu, F. Xu, S. Hong, C. A. Mirkin. Dip Pen Nanolithography. Science, 1999, 283: 661-663
    115 S. Hong, J. Zhu, C. A. Mirkin. Multiple Ink Nanolithography: Towards a Multiple-Pen Nanoplotter. Science, 1999, 286: 523-525
    116 C. A. Mirkin. The Power of the Pen: Development of Massively Parallel Dip-Pen Nanolithography. ACS Nano, 2007, 1: 79-83
    117 T. Kuykendall, P. J. Pauzauskie, Y. F. Zhang, J. Goldberger, D. Sirbuly, J. Denlinger, P. D. Yang. Crystallographic Alignment of High-Density Gallium Nitride Nanowire Arrays. Nat. Mater., 2004, 3: 524-528
    118 Y. Jiang, W. J. Zhang, J. S. Jie, X. M. Meng, J. A. Zapien, S. T. Lee. Homoepitaxial Growth and Lasing Properties of ZnS Nanowire and Nanoribbon Arrays. Adv. Mater., 2006, 18: 1527-1532
    119 A. Lugstein, M. Steinmair, Y. J. Hyun, G. Hauer, P. Pongratz, E. Bertagnolli. Pressure-Induced Orientation Control of the Growth of Epitaxial Silicon Nanowires. Nano Lett., 2008, 8:2310-2314
    120 G. D. Yuan, W. J. Zhang, J. S. Jie, X. Fan, J. A. Zapien, Y. H. Leung, L. B. Luo, P. F. Wang, C. S. Lee, S. T. Lee. P-Type ZnO Nanowire Arrays. Nano Lett., 2008, 8: 2591-2597
    121 Y. Cai, S. K. Chan, I. K. Sou, Y. F. Chan, D. S. Su, N. Wang. Temperature-Dependent Growth Direction of Ultrathin ZnSe Nanowires. Small, 2006, 3: 111-115
    122 J. D. Holmes, K. P. Johnston, R. C. Doty, B. A. Korgel. Control of Thickness and Orientation of Solution-Grown Silicon Nanowires. Science, 2000, 287: 1471-1473
    123 Y. Wu, Y. Cui, L. Huynh, C. J. Barrelet, D. C. Bell, C. M. Lieber. Controlled Growth and Structures of Molecular-Scale Silicon Nanowires. Nano Lett., 2004, 4: 433-436
    124 E. Monroy, F. Omnès, F. Calle. Wide-bandgap Semiconductor Ultraviolet Photodetectors. Semicond. Sci. Technol., 2003, 18: R33-R51
    125 R. N. Bhargava, D. Gallagher, X. Hong, A. Nurmikko. Optical Properties of Manganese-Doped Nanocrystals of ZnS. Phys. Rev. Lett., 1994, 72: 416-419
    126 W. Park, J. S. King, C. W. Neff, C. Liddell, C. J. Summers. ZnS-Based Photonic Crystals. Phys. Status Solidi (b), 2002, 229: 949-960
    127 B. Elidrissi, M. Addou, M. Regragui, A. Bougrine, A. Kachouane, J. C. Bernède. Structure, Composition and Optical Properties of ZnS Thin Films Prepared by Spray Pyrolysis. Mater. Chem. Phys., 2001, 68: 175-179
    128 X. S. Fang, L. D. Zhang. One-Dimensional (1D) ZnS Nanomaterials and Nanostructures. J. Mater. Sci. Technol., 2006, 22: 721-736
    129 B. Gilbert, B. H. Frazer, H. Zhang, F. Huang, J. F. Banfield, D. Haskel, J. C. Lang, G. Srajer, G. De Stasio. X-Ray Absorption Spectroscopy of the Cubic and Hexagonal Polytypes of Zinc Sulfide. Phys. Rev. B, 2002, 66: 245205/1-6
    130 S. B. Qadri, E. F. Skelton, A. D. Dinsmore, J. Z. Hu. The Effect of Particle Size on the Structural Transitions in Zinc Sulfide. J. Appl. Phys., 2001, 89: 115-119
    131 S. B. Qadri, E. F. Skelton, D. Hsu, A. D. Dinsmore, J. Yang, H. F. Gray, B. R. Ratna. Size-Induced Transition-Temperature Reduction in Nanoparticles of ZnS. Phys. Rev. B, 1999, 60: 9191-9193
    132 C. Z. Yang, Y. G. Liu, H. Y. Sun, D. F. Guo, X. H. Li, W. Li, B. T. Liu, X. Y. Zhang. Pressure-Induced Transition-Temperature Reduction in ZnS Nanoparticles. Nanotechnology2008, 19: 095704/1-5
    133 M. Law, J. Goldberger, P. Yang. Semiconductor Nanowires and Nanotubes. Annu. Rev. Mater. Sci., 2004, 34: 83-122
    134 Z. W. Wang, L. L. Daemen, Y. Zhao, C. S. Zha, R. T. Downs, X. D. Wang, Z. L. Wang, R. J. Hemleys. Morphology-Tuned Wurtzite-Type ZnS Nanobelts. Nat. Mater., 2005, 4: 922-927
    135 C. C. Chen, A. B. Herhold, C. S. Johnson, A. P. Alivisatos. Size Dependence of Structural Metastability in Semiconductor Nanocrystals. Science, 1997, 276: 398-401
    136 J. F. Suyver, S. F. Wuister, J. J. Kelly, A. Meijerink. Synthesis and Photoluminescence of Nanocrystalline ZnS:Mn2+. Nano Letters, 2001, 1: 429-433
    137 J. X. Ding, J. A. Zapien, W. W. Chen, Y. Lifshitz, S. T. Lee, X. M. Meng. Lasing in ZnS Nanowires Grown on Anodic Aluminum Oxide Templates. Appl. Phys. Lett., 2004, 85: 2361-2363
    138 G. Z. Shen, Y. Bando, J. Q. Hu, D. Golberg. High-Symmetry ZnS Hepta- and Tetrapods Composed of Assembled ZnS Nanowire Arrays. Appl. Phys. Lett., 2007, 90: 123101/1-3
    139 B. Y. Geng, X. W. Liu, Q. B. Du, X. W. Wei, L. D. Zhang. Structure and Optical Properties of Periodically Twinned ZnS Nanowires. Appl. Phys. Lett., 2006, 88: 163104/1-3
    140 Y. Ding, X. D. Wang, Z. L. Wang. Phase Controlled Synthesis of ZnS Nanobelts: Zinc Blende vs Wurtzite. Chem. Phys. Lett., 2004, 398: 32-36
    141 C. J. Barrelet, Y. Wu, D. C. Bell, C. M. Lieber. Synthesis of CdS and ZnS Nanowires Using Single-Source Molecular. J. Am. Chem. Soc., 2003, 125: 11498-11499
    142 L. L. Chai, J. Du, S. L. Xiong, H. B. Li, Y. C. Zhu, Y. T. Qian. Synthesis of Wurtzite ZnS Nanowire Bundles Using a Solvothermal Technique. J. Phys. Chem. C, 2007, 111: 12658-12662
    143谌岩.低维非晶氧化铁的相转变及壳/芯复合纳米线的制备. [燕山大学博士学位论文]. 2006, 49
    144 X. J. Xu, G. T. Fei, W. H. Yu, X. W. Wang, L, Chen, L. D. Zhang. Preparation and Formation Mechanism of ZnS Semiconductor Nanowires Made by the Electrochemical Deposition Method. Nanotechnology, 2006, 17: 426-429
    145 M. Chang, X. L. Cao, X. J. Xu, L. D. Zhang. Fabrication and Photoluminescence Properties of Highly Ordered ZnS Nanowire Arrays Embedded in Anodic Alumina Membrane. Phys. Lett. A, 2008, 372: 273-276
    146 H. Zhang, F. Huang, B. Gilbert, J. F. Banfield. Molecular Dynamics Simulations, Thermodynamic Analysis, and Experimental Study of Phase Stability of Zinc Sulfide Nanoparticles. J. Phy. Chem. B, 2003, 107: 13051-13060
    147 Z. L. Wang, M. Mohamed, S. Link, M. A. El-Sayed. Crystallographic Facets and Shapes of Gold Nanorods of Different Aspect Ratios. Surface Sci., 1999, 440: L809-L814
    148 Z. L. Wang, R. P. Gao, B. Nikoobakht, M. A. El-Sayed. Surface Reconstruction of the Unstable {110} Surface in Gold Nanorods. J. Phys. Chem. B, 2000, 104: 5417-5420
    149 E. Budevski, G. Staikov, W. J. Lorenz. Electrochemical Phase Formation and Growth: An Introduction to the Initial Stage of Metal Deposition. New York: VCH, 1996, p.267
    150 B. Gilbert, H. Z. Zhang, F. Huang, M. P. Finnegan, G. A. Waychunas, J. F. Banfield. Special Phase Transformation and Crystal Growth Pathways Observed in Nanoparticles. Geochem. Trans., 2003, 4: 20-27
    151 R. K. Pandey, S. R. Kumar, A. J. N. Rooz, S. Chandra. Composition Surface Morphology and Structure of n-CdSe Film Prepared by a Repeated Cycle of Electrodeposition. J. Mater. Sci., 1991, 24: 3617-3622
    152 J. Huang, Y. Yang, S. Xue, B. Yang, S. Liu, J. Shen. Photoluminescence and Electroluminescence of ZnS:Cu Nanocrystals in Polymeric Networks. Appl. Phys. Lett., 1997, 70: 2335-2337
    153 S. Sapra, A. Prakash, A. Ghangrekar, N. Periasamy, D. D. Sarma. Emission Properties of Manganese-Doped ZnS Nanocrystals. J. Phys. Chem. B, 2005, 109: 1663-1668
    154 N. Murase, R. Jagannathan, Y. Kanematsu, M. Watanabe, A. Kurita, K. Hirata, T. Yazawa, T. Kushida. Fluorescence and EPR Characteristics of Mn2+-Doped ZnS Nanocrystals Prepared by Aqueous Colloidal Method. J. Phys. Chem. B, 1999, 103: 754-760
    155 J. G. Wang, M. L. Tian, N. Kumar, T. E. Mallouk. Controllable Template Synthesis of Superconducting Zn Nanowires with Different Microstructures by Electrochemical Deposition. Nano Lett., 2005, 5: 1247-1253
    156 Z. L. Wang. Nanopiezotronics. Adv. Mater., 2007, 19: 889-892
    157 J. Y. Lee, D. S. Kim, J. Park. Chemical Conversion Reaction between CdS Nanobelts and ZnS Nanobelts by Vapor Transport. Chem. Mater., 2007, 19: 4663-4669
    158 X. G. Peng, M. C. Schlamp, A. V. Kadavanich, A. P. Alivisatos. Epitaxial Growth of HighlyLuminescent CdSe/CdS Core/Shell Nanocrystals with Photostability and Electronic Accessibility. J. Am. Chem. Soc., 1997, 119: 7019-7029
    159 X. F. Duan, Y. Huang, R. Agarwal, C. M. Lieber. Single-Nanowire Electrically Driven Lasers. Nature, 2002, 421: 241-245
    160 Y. F. Lin, J. H. Song, Y. Ding, S. Y. Lu, Z. L. Wang. Piezoelectric Nanogenerator Using CdS Nanowires. Appl. Phys. Lett., 2005, 86: 022105/1-3
    161 J. Yang, J. H. Zeng, S. H. Yu, L. Yang, G. E. Zhou, Y. T. Qian. Formation Process of CdS Nanorods via Solvothermal Route. Chem. Mater., 2000, 12: 3259-3263
    162 C. Li, Z. T. Liu, Y, Yang. The Selective Synthesis of Single-Crystalline CdS Nanobelts and Nanowires by Thermal Evaporation at Lower Temperature. Nanotechnology 2006, 17: 1851-1857
    163 C. L. Hsin, J. H. He, C. Y. Lee, W. W. Wu, P. H. Yeh, L. J. Chen, Z. L. Wang. Lateral Self-Aligned p-Type In2O3 Nanowire Arrays Epitaxially Grown on Si Substrates. Nano Lett., 2007, 7: 1799-1803
    164 D. Routkevitch, T. Bigioni, M. Moskovits, J. M. Xu. Electrochemical Fabrication of CdS Nanowire Arrays in Porous Anodic Aluminum Oxide Templates. J. Phys. Chem., 1996, 100: 14037-14047
    165 D. S. Xu, Y. J. Xu, D. P. Chen, G. L. Guo, L. L. Gui, Y. Q. Tang. Preparation and Characterization of CdS Nanowire Arrays by dc Electrodeposit in Porous Anodic Aluminum Oxide Templates. Chem. Phys. Lett., 2000, 325: 340-344
    166 M. L. Tian, J. G. Wang, J. Kurtz, T. E. Mallouk, M. H. W. Chan. Electrochemical Growth of Single-Crystal Metal Nanowires via a Two-Dimensional Nucleation and Growth Mechanism. Nano Lett., 2003, 3: 919-923
    167 M. D. Segall, P. J. D. Lindan, M. J. Probert, C. J. Pickard, P. J. Hasnip, S. J. Clark, M. C. Payne. First-Principles Simulation: Ideas, Illustrations and the CASTEP Code. J. Phys.: Condens. Matter, 2002, 14: 2717-2744
    168 Q. Jiang, H. M. Lu, M. Zhao. Modelling of Surface Energies of Elemental Crystals. J. Phys.: Condens. Matter., 2004, 16: 521-530
    169 W. Liu, J. C. Li, W. T. Zheng, Q. Jiang. NiAl(110)/Cr(110) Interface: A Density Functional Theory Study. Phys. Rev. B, 2006, 73: 205421/1-7
    170 A, S. Barnard, H. F. Xu. First Principles and Thermodynamic Modeling of CdS Surfaces and Nanorods. J. Phys. Chem. C, 2007, 111: 18112-18117
    171 B. L. Bramfitt. Planar Lattice Disregistry Theory and Its Application on Heterogistry Nuclei of Metal. Met. Trans., 1970, 1:1987-1993
    172 H. Pan, H. Sun, C. Poh, Y. P. Feng, J. Y. Lin. Single-Crystal Growth of Metallic Nanowires with Preferred Orientation. Nanotechnology, 2005, 16: 1559-1564
    173周绍民.金属电沉积——原理与研究方法.上海:上海科学技术出版社, 1987: 207
    174查全性.电极过程动力学导论.北京:科学出版社, 1987: 233
    175郜涛.基于多孔阳极氧化铝薄膜的纳米结构合成及其相关物性研究. [中国科学院固体物理研究所博士学位论文]. 2003, 116
    176 M. Paunovic, M. Schlesinger. Fundamentals of Electrochemical Deposition. New York: Wiley, 1998, p. 108
    177 C. L. Xu, H. Li, G. Y. Zhao, H. L. Li. Electrodeposition of Ferromagnetic Nanowire Arrays on AAO/Ti/Si Substrate for Ultrahigh-Density Magnetic Storage Devices. Mater. Lett., 2006, 60: 2335-2358
    178 L. F. Liu, S. C. Mu, S. S. Xie, W. Y. Zhou, L. Song, D. F. Liu, S. D. Luo, Y. J. Xiang, Z. X. Zhang, X. W. Zhao, W. J. Ma, J. Shen, C. Y. Wang, G. Wang. Template Synthesis, Characterization and Magnetic Property of Fe Nanowires-Filled Amorphous Carbon Nanotubes Array. J. Phys. D: Appl. Phys., 2006, 39: 3939-3944
    179 S. G. Yang, H. Zhu, D. L. Yu, Z. Q. Jin, S. L. Tang, Y. W. Du. Preparation and Magnetic Property of Fe Nanowire Array. J. Magn. Magn. Mater., 2000, 222: 97-100
    180 Y. L. Sun, Y. Dai, L. Q. Zhou, W. Chen. Single-Crystal Iron Nanowire Arrays. Solid State Phenomena, 2007, 121-123: 17-20
    181 H. Y. Sun, Y. L. Yu, X. H. Li, W. Li, F. Li, B. T. Liu, X. Y. Zhang. Controllable Growth of Electrodeposited Single-Crystal Nanowire Arrays: The Examples of Metal Ni and Semiconductor ZnS. J. Cryst. Growth, 2007, 307: 472-476
    182 H. Pan, B. H. Liu, J. B. Yi, C. Poh, S. Lim, J. Ding, Y. P. Feng, C. H. A. Huan, J. Y. Lin. Growth of Single-Crystalline Ni and Co Nanowires via Electrochemical Deposition and Their Magnetic Properties. J. Phys. Chem. B, 2005, 109: 3094-3098
    183 G. Riveros, S. Green, A. Cortes, H. Gómez, R. E. Marotti, E. A. Dalchiele. Silver NanowireArrays Electrochemically Grown into Nanoporous Anodic Alumina Templates. Nanotechnology, 2006, 17: 561-570
    184 T. Gao, G. W. Meng, Y. W. Wang, S. H. Sun, L. D. Zhang. Electrochemical Synthesis of Copper Nanowires. J. Phys.: Condens. Matter, 2002, 14: 355-363
    185 G. Yi, W. Schwarzacher. Single Crystal Superconductor Nanowires by Electrodeposition. Appl. Phys. Lett., 1999, 74: 1746-1748
    186 M. Darques, L. Piraux, A. Encinas, P. Bayle-Guillemaud, A. Popa, U. Ebels. Electrochemical Control and Selection of the Structural and Magnetic Properties of Cobalt Nanowires. Appl. Phys. Lett., 2005, 86: 072508/1-3
    187 H. Y. Sun, X. H. Li, W. Li, F. Li, B. T. Liu, X. Y. Zhang. Low-Temperature Synthesis of Wurtzite ZnS Single-Crystal Nanowire Arrays. Nanotechnology, 2007, 18: 115604/1-4
    188 H. Y. Sun, X. H. Li, Y. Chen, W. Li, F. Li, B. T. Liu, X. Y. Zhang. The Control of the Growth Orientations of Electrodeposited Single-Crystal Nanowire Arrays: a Case Study for Hexagonal CdS. Nanotechnology, 2008, 19: 225601/1-8
    189 X. C. Wang, Y. Jia, Q. K. Yao, F. Wang, J. X. Ma, X. Hu. The Calculation of the Surface Energy of High-Index Surfaces in Metals at Zero Temperature. Surf. Sci., 2004, 551: 179-188
    190 L. Vitos, A. V. Ruban, H. L. Skriver, J. Kollár. The Surface Energy of Metals. Surf. Sci., 1998, 411: 186-202
    191 C. X. Wang, M. Hirano, H. Hosono. Origin of Diameter-Dependent Growth Direction of Silicon Nanowires. Nano Lett., 2006, 6: 1552-1555
    192 V. Schmidt, S. Senz, U. G?sele. Diameter-Dependent Growth Direction of Epitaxial Silicon Nanowires. Nano Lett., 2005, 5: 931-935
    193 Y. Cai, S. K. Chan, I. K. Sou, Y. F. Chan, D. S. Su, N. Wang. The Size-Dependent Growth Direction of ZnSe Nanowires. Adv. Mater., 2006, 18: 109-114
    194 N. Wang, Y. Cai, R. Q. Zhang. Growth of Nanowires. Mater. Sci. Eng. R, 2008, 60: 1-51
    195 X. W. Wang, G. T. Fei, X. J. Xu, Z. Jin, L. D. Zhang. Size-Dependent Orientation Growth of Large-Area Ordered Ni Nanowire Arrays. J. Phys. Chem. B, 2005, 109: 24326-24330
    196 C. Ma, Z. L. Wang. Road Map for the Controlled Synthesis of CdSe Nanowires, Nanobelts, and Nanosaws—A Step Towards Nanomanufacturing. Adv. Mater., 2005, 17: 1-6
    197 C. Ma, Y. Ding, D. Moore, X. D. Wang, Z. L. Wang. Single-Crystal CdSe Nanosaws. J. Am.Chem. Soc., 2004, 126: 708-709
    198 Y. Ding, C. Ma, Z. L. Wang. Self-Catalysis and Phase Transformation in the Formation of CdSe Nanosaws. Adv. Mater., 2004, 16: 1740-1743
    199 Z. Y. Wang, Q. F. Lu, X. S. Fang, X. K. Tian, L. D. Zhang. Manipulation of the Morphology of CdSe Nanostructures: The Effect of Si. Adv. Funct. Mater., 2006, 16: 661-666
    200 C. X. Shan, Z. Liu, S. K. Hark. CdSe Nanowires with Controllable Growth Orientations. 2007, 90: 193123/1-3
    201 L. L. Zhao, T. Z. Lu, M. Yosef, M. Steinhart, M. Zacharias, U. G?sele, S. Schlecht. Single-Crystalline CdSe Nanostructures: From Primary Grains to Oriented Nanowires. Chem. Mater. 2006, 18: 6094-6096
    202 X. S. Peng, J. Zhang, X. F. Wang, Y. W. Wang, L. X. Zhao, G. W. Meng, L. D. Zhang. Synthesis of Highly Ordered CdSe Nanowire Arrays Embedded in Anodic Alumina Membrane by Electrodeposition in Ammonia Alkaline Solution. Chem. Phys. Letts., 2001, 343: 470-474
    203 D. S. Xu, X. S. Shi, G. L. Guo, L. L. Gui, Y. Q. Tang. Electrochemical Preparation of CdSe Nanowire Arrays. J. Phys. Chem. B, 2000, 104: 5061-5063
    204 Z. W. Wang, K. Finkelstein, C. Ma, Z. L. Wang. Structure Stability, Fracture, and Tuning Mechanism of CdSe Nanobelts. Appl. Phys. Lett., 2007, 90: 113115/1-3
    205 J. Sarkar, G. G. Khan, A. Basumallick. Nanowires: Properties, Applications and Synthesis via Porous Anodic Aluminium Oxide Template. Bull. Mater. Sci., 2007, 30: 271-290
    206 W. B. Zhao, J. J. Zhu, H. Y. Chen. Photochemical Synthesis of CdSe and PbSe Nanowire Arrays on a Porous Aluminum Oxide Template. Scripta Materialia, 2004, 50: 1169-1173
    207 Z. Y. Fan, J. C. Ho, Z. A. Jacobson, H. Razavi, A. Javey. Large-scale, Heterogeneous Integration of Nanowire Arrays for Image Sensor Circuitry. PNAS, 2008, 105: 11066-11070
    208 Q. Li, M. A. Brown, J. C. Hemminger, R. M. Penner. Luminescent Polycrystalline Cadmium Selenide Nanowires Synthesized by Cyclic Electrodeposition/Stripping Coupled with Step Edge Decoration. Chem. Mater., 2006, 18: 3432-3441
    209 G. Kipshidze, B. Yavich, A. Chandolu, J. Yun, V. Kuryatkov, I. Ahmad, D. Aurongzeb, M. Holtz, H. Temkin. Controlled Growth of GaN Nanowires by Pulsed Metalorganic Chemical Vapor Deposition. Appl. Phys. Lett., 2005, 86: 033104/1-3
    210 H. S. Shin, J. Yu, J. Y. Song, H. M. Park. Size Dependence of Lattice Deformation Induced byGrowth Dtress in Sn Nanowires. Appl. Phys. Lett., 2009, 94: 011906/1-3
    211 L. F. Liu, W. Lee, R. Scholz, E. Pippel, U. G?sele. Tailor-Made Inorganic Nanopeapods: Structural Design of Linear Noble Metal Nanoparticle Chains. Angew. Chem. Int. Ed., 2008, 47: 7004-7008
    212 H. Zhang, G. P. Cao, Z. Y. Wang, Y. S. Yang, Z. J. Shi, Z. N. Gu. Growth of Manganese Oxide Nanoflowers on Vertically-Aligned Carbon Nanotube Arrays for High-Rate Electrochemical Capacitive Energy Storage. Nano Lett., 2008, 8: 2664-2668
    213 G. Chen, Z. Y. Wang, D. G. Xia. One-Pot Synthesis of Carbon Nanotube@SnO2-Au Coaxial Nanocable for Lithium-Ion Batteries with High Rate Capability. Chem. Mater., 2008, 20: 6951-6956
    214 Y. W. Zhu, H. I. Elim, Y. L. Foo, T. Yu, Y. J. Liu, W. Ji, J. Y. Lee, Z. X. Shen, A. T. S. Wee, J. T. L. Thong, C. H. Sow. Multiwalled Carbon Nanotubes Beaded with ZnO Nanoparticles for Ultrafast Nonlinear Optical Switching. Adv. Mater., 2006, 18: 587-592
    215 K. Yu, Y. S. Zhang, F. Xu, Q. Li, Z. Q. Zhu, Q. Wan. Significant Improvement of Field Emission by Depositing Zinc Oxide Nanostructures on Screen-Printed Carbon Nanotube Films. Appl. Phys. Lett., 2006, 88: 153123/1-3
    216 D. S. Yu, Y. J. Chen, B. J. Li, X. D. Chen, M. G. Zhang. Fabrication and Characterization of PbS/Multiwalled Carbon Nanotube Heterostructures. Appl. Phys. Lett., 2007, 90: 161103/1-3
    217 R. Loscutova, A. R. Barron. Coating Single-Walled Carbon Nanotubes with Cadmium Chalcogenides. J. Mater. Chem., 2005, 15: 4346-4353
    218 B. Liu, J. Y. Lee. Ordered Alignment of CdS Nanocrystals on MWCNTs without Surface Modification. J. Phys. Chem. B, 2005, 109: 23783-23786
    219 J. Cao, J. Z. Sun, J. Hong, H. Y. Li, H. Z. Chen, M. Wang. Carbon Nanotube/CdS Core-Shell Nanowires Prepared by a Simple Room-Temperature Chemical Reduction Method. Adv. Mater., 2004, 16: 84-87
    220 Y. Zhang, H. J. Dai. Formation of Metal Nanowires on Carbon Nanotubes. Appl. Phys. Lett., 2000, 77: 3015-3017
    221 X. Y. Wang, F. Zhang, B. Y. Xia, X. F. Zhu, J. S. Chen, S. L. Qiu, P. Zhang, J. X. Li. Controlled Modification of Multi-Walled Carbon Nanotubes with CuO, Cu2O and Cu Nanoparticles. Solid State Sci., 2009, 11: 655-659
    222 A. Balandin, K. L. Wang, N. Kouklin, S. Bandyopadhyay. Raman Spectroscopy of Electrochemically Self-Assembled CdS Quantum Dots. Appl. Phys. Lett., 2000, 76: 137-139
    223 R. R. Prabhu, M. A. Khadar. Study of Optical Phonon Modes of CdS Nanoparticles Using Raman Spectroscopy. Bull. Mater. Sci., 2008, 31: 511-515
    224 E. Titus, G. Cabral, J. C. Madaleno, V. F. Neto, T. Shokuhfar, W. J. Blau, P. R. Babu, D. S. Misra, J. Gracio. Synthesis of Highly Oriented Carbon Nanotube Thin Films by Nickel Functionalization. Diamond Relat. Mater., 2007, 16: 1195-1199
    225 Z. L. Wang. Splendid One-Dimensional Nanostructures of Zinc Oxide: A New Nanomaterial Family for Nanotechnology. ACS NANO, 2008, 2: 1987-1992
    226 H. Q. Wang, G. H. Li, L. C. Jia, G. Z. Wang, L. Li. General in situ Chemical Etching Synthesis of ZnO Nanotips Array. Appl. Phys. Lett., 2008, 93: 153110/1-3
    227 X. F. Wu, H. Bai, C. Li, G. Lu, G. Q. Shi. Controlled One-Step Fabrication of Highly Oriented ZnO Nanoneedle/Nanorods Arrays at Near Room Temperature. Chem. Commun., 2006, 1655-1657
    228 J. L. Yang, S. J. An, W. I. Park, G. C. Yi, W. Y. Choi. Photocatalysis Using ZnO Thin Films and Nanoneedles Grown by Metal-Organic Chemical Vapor Deposition. Adv. Mater., 2004, 16: 1661-1664
    229 M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, P. Yang. Room-Temperature Ultraviolet Nanowire Nanolasers. Science, 2001, 292: 1897-1899
    230 J. J. Chen, M. H. Yu, W. L. Zhou, K. Sun, L. M. Wang. Room-Temperature Ferromagnetic Co-Doped ZnO Nanoneedle Array Prepared by Pulsed Laser Deposition. Appl. Phys. Lett., 2005, 87: 173119/1-3
    231 X. S. Fang, U. K. Gautam, Y. Bando, B. Dierre, T. Sekiguchi, D. Golberg. Multi-Angular Branched ZnS Nanostructures with Needle-Shaped Tips: Potential Luminescent and Field-Emitter Nanomaterials. J. Phys. Chem. C, 2008, 112: 4735-4742
    232 K. B. Lee, S. Park, C. A. Mirkin. Multicomponent Magnetic Nanorods for Biomolecular Separations. Angew. Chem. Int. Ed., 2004, 43: 3048-3050
    233 Z. G. Chen, J. Zou, G. Q. Lu, G. Liu, F. Li, H. M. Cheng. ZnS Nanowires and Their Coaxial Lateral Nanowire Heterostructures with BN. Appl. Phys. Lett., 2007, 90: 103117/1-3
    234 Y. F. Zhu, D. H. Fan, W. Z. Shen. A General Chemical Conversion Route to Synthesize VariousZnO-Based Core/Shell Structures. J. Phys. Chem. C, 2008, 112: 10402-10406
    235 E. Kirkendall, L. Thomassen, C. Upthegrove. Rates of Diffusion of Copper and Zinc in Alpha Brass. Trans. AIME, 1939, 133: 186-203
    236潘金生,仝健民,田民波.材料科学基础.北京:清华大学出版社, 1998: 449-451
    237 B. Liu, H. C. Zeng. Fabrication of ZnO“Dandelions”via a Modified Kirkendall Process. J. Am. Chem. Soc., 2004, 126: 16744-16746
    238 X. Liang, X. Wang, Y. Zhuang, B. Xu, S. Kuang, Y. D. Li. Formation of CeO2-ZrO2 Solid Solution Nanocages with Controllable Structures via Kirkendall Effect. J. Am. Chem. Soc., 2008, 130: 2736-2737
    239 H. J. Fan, U. G?sele, M. Zacharias. Formation of Nanotubes and Hollow Nanoparticles Based on Kirkendall and Diffusion Processes: A Review. Small, 2007, 3: 1660-1671
    240 K Raidongia, C. N. R. Rao. Study of the Transformations of Elemental Nanowires to Nanotubes of Metal Oxides and Chalcogenides through the Kirkendall Effect. J. Phys. Chem. C, 2008, 112: 13366-13371
    241 D. H. Son, S. M. Hughes, Y. Yin, A. P. Alivisatos. Cation Exchange Reactions in Ionic Nanocrystals. Science, 2004, 306: 1009-1012
    242 M. E. T. Molares, A. G. Balogh, T. W. Cornelius, R Neumann, C. Trautmann. Fragmentation of Nanowires Driven by Rayleigh Instability. Appl. Phys. Lett., 2004, 85: 5337-5339
    243 S. Bidault, F. J. G. de Abajo, A. Polman. Plasmon-Based Nanolenses Assembled on a Well-Defined DNA Template. J. Am. Chem. Soc., 2008, 130: 2750-2751

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700