金属氧化物(SnO_2、La_2O_3)传感材料的制备及其应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
金属氧化物半导体传感器作为当今科技前沿热点之一,仍然面临着诸多亟待解决的问题,提高传感器性能依然是我们所追求的研究目标。近年来,通过对传统的传感材料进行掺杂、修饰处理和开发新型传感材料,为传感器研究提供了新的发展动力。
     基于此,本论文探索对传统的SnO2薄膜材料进行稀土元素掺杂以及制备具有多孔结构的大孔SnO2薄膜材料,并详细地考察薄膜材料的气敏性质,以获得高性能的传感器。此外,合成了一种形貌新颖的Au修饰的茧型-La2O3纳米材料并发现该材料具有良好的催化发光性质。本论文的主要内容如下:
     一.采用简单的和低成本的溶胶凝胶方法和薄膜蘸涂工艺制备了掺杂稀土元素Ce的SnO2敏感薄膜,系统地研究了薄膜传感器的工作温度、掺杂量、煅烧温度、薄膜层数以及环境湿度对传感器检测丁酮的影响。研究发现,当工作温度为210℃、Ce的掺杂量为1 at%、煅烧温度为500℃、薄膜层数为4层时,在干燥空气中该Ce-SnO2薄膜传感器对100 ppm丁酮存在最高响应灵敏度为181。此外,通过掺杂稀土元素Ce可以有效的降低SnO2薄膜传感器的工作温度,提高响应灵敏度和改善选择性。结果表明,该薄膜传感器对丁酮有良好的气敏性质,在安检系统和环境监测领域具有潜在的应用前景。
     二.以碳质纳米粒子为模板,成功地合成了具有多孔结构的大孔SnO2薄膜传感器。该大孔SnO2薄膜由较致密的大孔和纳米孔结构组成,具有较大的比表面积和和较小的晶粒尺寸。气敏性研究表明:该大孔SnO2薄膜传感器对乙醇、丙酮、四氢呋喃和丁酮等有机挥发性气体表现出良好的气敏响应特性。此外,该传感器具有一定的选择性和较低的检测限、迅速的响应和恢复时间。
     三.通过简单的水热法,制备了由纳米线缠绕组成的茧形-La(OH)3前躯体,并初步探讨了实验过程中影响产物形貌的反应条件:反应温度、反应时间、反应物浓度及配比等因素。运用紫外光辐射法修饰茧形-La(OH)3纳米材料并进行高温煅烧,得到了Au修饰的茧形-La2O3纳米材料。将其用于构筑催化发光传感器研究发现,该传感器具有很好的催化发光强度和信噪比。对比未修饰的茧形-La2O3纳米材料,Au修饰后的材料对四氢呋喃、丙酮、丁酮和乙醇等四种待测物的催化发光强度得到大大增强。而且,对苯、氯仿和氯苯等也有很好的响应强度,该材料在检测挥发性有机化合物和持久性有机污染物上具有很好的应用前景。
As a research focus of science and technology, metal-oxide semiconductor sensors have been investigated several dozens years. However, improving gas-sensing properties has been a pursing goal. Recently, doped or functional of conventional sensing materials or synthesized new-style sensing materials have provided new power for the development of sensors.
     Herein, Ce-doped SnO2 thin films and macroporous SnO_2 thin films have been prepared. In order to obtained high-performance sensors, the gas-sensing properties of SnO_2 thin film were investigated in detail. Moreover, one kind of novelty morphology Au modified cocoon-like La2O3 sensing nanomaterials were synthesized and applied in cataluminescence sensor for the detection of volatile organic compounds. The main contents are summarized as follows:
     1. Different concentrations of Ce-doped SnO_2 thin films were fabricated via the sol-gel method and dip-coating technique. Furthermore, the influencing factors of gas-sensing properties for butanone, such as cerium concentration, calcination temperature, the layers of thin films and humidity, were investigated. The results indicated that four-layer 1 at% Ce-doped SnO2 thin films calcined at 500 ?C presented the best response to butanone. At the optimal working temperature of 210 ?C, the response to 100ppm of butanone vapor was about 181 in dry air. The gas-sensing results showed that the approach of doping cerium had greatly improved the gas-sensing response and decreased the working temperature. Most importantly, the gas sensor presented selective response to butanone among all investigated gases. Accordingly, the gas sensors based on 1 at% Ce-doped SnO2 thin films have a promising application for the detection of butanone in practical security inspection environment.
     2. Macroporous SnO_2 thin films sensor was prepared using carbonaceous nanospheres as templates and sol-gel method. The thin films were made up of compact macroporous and nanoporous structure with lager specific surface area. The gas-sensing properties result showed that macroporous SnO2 thin films exhibited better response to ethanol, acetone, tetrahydrofuran and butanone, compared with common SnO2 thin films. Moreover, the gas sensor showed good selectivity, low detection limit, short response and recovery times.
     3. One kind of novelty morphology cocoon-like La(OH)_3 precursor enlaced by nanowires were prepared by a simple hydrothermal method using oxalic acid as soft template. The influencing factors of morphology were researched, such as reaction temperature, reaction time, the molar of NaOH and oxalic acid. After modified by gold nanoparticles using ultraviolet irradiation method and calcined, the Au/La2O3 nanomaterials which exhibited good cataluminescence signals were obtained. For the detection of volatile organic compounds, such as acetone, tetrahydrofuran, ethanol, butanone, benzene, chloroform, chlorobenzene, the Au/La2O3 cataluminescence sensor showed stronger intensity compared with pure La2O3 nanomaterials. Accordingly, the gas sensors based on cocoon-like Au/La2O3 nanomaterials have a promising application for the detection of volatile organic compounds and persistent organic pollutants in environmental protection.
引文
[1] T. Seiyama, A. Kato, K. Fujishi, A new detector for gaseous using semiconductor thin films, Anal. chem. 34 (1962) 1502–1505.
    [2] Z. Guo, M.Q. Li, J.H. Liu, Highly porous CdO nanowires: Preparation based on hydroxy- and carbonate-containing cadmium compound precursor nanowires, gas sensing and optical properties, Nanotechnology 19 (2008) 245611.
    [3] X.L. Gou, G.X. Wang, J. Park, et al., Monodisperse hematite porous nanospheres: Synthesis, characterization, and applications for gas sensors, Nanotechnology 19 (2008) 125606.
    [4] P.C. Xu, Z.X. Cheng, Q.Y. Pan, J.Q. Xu, Q. Xiang, et al., High aspect ratio In2O3 nanowires: Synthesis, mechanism and NO2 gas-sensing properties, Sens. Actuators B 130 (2008) 802–808.
    [5] C.S. Rout, M. Hegde, C.N.R. Rao, H2S sensors based on tungsten oxide nanostructures, Sens. Actuators B 128 (2008) 488–493.
    [6] J.Q. Xu, X.H. Jia, X.D. Lou, J.N. Shen, One-step hydrothermal synthesis and gas sensing property of ZnSnO3 microparticles, Solid-State Electron. 50 (2006) 504–507.
    [7] X. Y. Xue, Y. J. Chen, Y. G. Wang, T. H. Wang, Synthesis and ethanol sensing properties of ZnSnO3 nanowires, Appl. Phys. Lett. 86 (2005) 233101.
    [8] M. Breysse, B. Claudel, L. Faure, Chemiluminescence during the catalysis of carbon monoxide oxidation on a thoria surface, J. Catalysis 45 (1976) 137–144.
    [9] K. Utsunomiya, M. Nakagawa, T. Tomiyama, Discrimination and determination of gases utilizing adsorption luminescence, Sens. Actuators B 11 (1993) 441–445.
    [10] Z.Y. Zhang, H.J. Jiang, Z. Xing, X.R. Zhang, A highly selective chemiluminescent H2S sensor, Sens. Actuators B 102 (2004) 155–161.
    [11] H.R. Tang, Y.M. Li, C.B. Zheng, J. Ye, X.D. Hou, Y. Lv, An ethanol sensor based on cataluminescence on ZnO nanoparticles, Talanta 72 (2007) 1593–1597.
    [12] Z.Y. Zhang, K. Xu, Z. Xing, X.R. Zhang, A nanosized Y2O3-based catalytic chemiluminescent sensor for trimethylamine, Talanta 65 (2005) 913–917.
    [13]常剑,蒋登高,半导体金属氧化物气敏材料敏感机理概述,传感器世界8 (2003) 14–19.
    [14]李平,余萍,肖定全,气敏传感器的近期进展,功能材料30 (1999) 126–129.
    [15]刘海峰,彭同江,孙红娟,气敏材料敏感机理研究进展,中国粉体技术4 (2007) 42–45.
    [16]田敬民等,金属氧化物半导体气敏机理探析,西安理工大学学报18 (2002) 144–147.
    [17] R.S. Khadayate, J.V. Sali, P.P. Patil, Acetone vapor sensing properties of screen printed WO3 thick films, Talanta 72 (2007) 1077–1081.
    [18] L.P. Qin, J.Q. Xu, X.W. Dong, Q.Y. Pan, Z.X. Cheng, Q. Xiang, F. Li, The template-free synthesis of square-shaped SnO2 nanowires: The temperature effect and acetone gas sensors,Nanotechnology 19 (2008) 185705.
    [19] Y.J. Choi, I.S. Hwang, J.G. Park, K.J. Choi, H.J. Park, J.H. Lee, Novel fabrication of a SnO2 nanowire gas sensor with high sensitivity, Nanotechnology 19 (2008) 095508.
    [20] B. Wang, L.F. Zhu, Y.H. Yang, N.S. Xu, G.W. Yang, Fabrication of a SnO2 nanowire gas sensor and sensor performance for hydrogen, J. Chem. Phys. C 112 (2008) 6643–6647.
    [21] Y.L. Wang, X.C. Jiang, Y.N. Xia, A Solution-Phase, precursor route to polycrystalline SnO2 nanowires that can be used for gas sensing under ambient conditions, J. Am. Chem. Soc. 125 (2003) 16176–16177.
    [22] G.X. Wang, J.S. Park, M.S. Park, X.L. Gou, Synthesis and high gas sensitivity of tin oxide nanotubes, Sens. Actuators B 131 (2008) 313–317.
    [23] E. Comini, G. Faglia, G. Sberveglieri, Z.W. Pan, Z.L. Wang, Stable and highly sensitive gas sensors based on semiconducting oxide nanobelts, Appl. Phys. Lett. 81 (2002) 1869–1871.
    [24] M. Law, H. Kind, P.D. Yang, et al., Photochemical sensing of NO2 with SnO2 nanoribbon nanosensors at room temperature, Angew. Chem. Int. Ed. 41 (2002) 2405–2408.
    [25] J.P. Ge, J. Wang, H.X. Zhang, X. Wang, Q. Peng, Y.D. Li, High ethanol sensitive SnO2 microspheres, Sens. Actuators B 113 (2006) 937–943.
    [26] J. Zhu, O.K. Tan, Y.C. Lee, T.S. Zhang, B.Y. Tay, J. Ma, Hierarchical porous/hollow tin oxide nanostructures mediated by polypeptide: Surface modification, characterization, formation mechanism and gas-sensing properties, Nanotechnology 17 (2006) 5960–5969.
    [27] N. Pinna, G. Neri, M. Antonietti, M. Niederberger, Nonaqueous synthesis of nanocrystalline semiconducting metal oxides for gas sensing, Angew. Chem. Int. Ed. 43 (2004) 4345–4349.
    [28] H.C. Chiu, C.S. Yeh, Hydrothermal synthesis of SnO2 nanoparticles and their gas-sensing of alcohol, J. Phys. Chem. C 111 (2007) 7256–7259.
    [29] E.T.H. Tan, G.W. Ho, A.S.W. Wong, et al., Gas sensing properties of tin oxide nanostructures synthesized via a solid-state reaction method, Nanotechnology 19 (2008) 255706.
    [30] Q. Wan, Q.H. Li, Y.J. Chen, T.H. Wang, X.L. He, J.P. Li, C.L. Lin, Fabrication and ethanol sensing characteristics of ZnO nanowire gas sensors. Appl. Phys. Lett. 84 (2004) 3654.
    [31] S.J. Chang, T.J. Hsueh, I.C. Chen, B.R. Huang, Highly sensitive ZnO nanowire CO sensors with the adsorption of Au nanoparticles, Nanotechnology 19 (2008) 175502.
    [32] C.S. Rout, S.H. Krishna, S.R.C. Vivekchand, et al., Hydrogen and ethanol sensors based on ZnO nanorods, nanowires and nanotubes, Chem. Phys. Lett. 418 (2005) 586–590
    [33] J.B.K. Law, J.T.L. Thong, Improving the NH3 gas sensitivity of ZnO nanowire sensors by reducing the carrier concentration, Nanotechnology 19 (2008) 205502.
    [34] L. Liao, H.B. Lu, J.C. Li, H. He, D.F. Wang, D.J. Fu, C. Liu, W.F. Zhang, Size dependence ofgas sensitivity of ZnO nanorods, J. Chem. Phys. C 111 (2007) 1900–1903.
    [35] S.H. Choi, G. Ankonina, l.D. Kim, et al., Hollow ZnO nanofibers fabricated using electrospun polymer templates and their electronic transport properties, Nano 3 (2009) 2623–2631.
    [36] Q. Qi, T. Zhang, L. Liu, X.J. Zheng, Q.J. Yu, et al., Selective acetone sensor based on dumbbell-like ZnO with rapid response and recovery, Sens. Actuators B 134 (2008) 166–170.
    [37] X.L. Gou, G.X. Wang, X.Y. Kong, D. Wexler, J. Horvat, J. Yang, J.S. Park, Flutelike porous hematite nanorods and branched nanostructures: Synthesis, characterization and application for gas-sensing, Chem. Eur. J. 14 (2008) 5996–6002.
    [38] C.Z. Wu, P. Yin, X. Zhu, C.Z. OuYang, Y. Xie, Synthesis of hematite (α-Fe2O3) nanorods: Diameter-size and shape effects on their applications in magnetism, lithium ion battery, and gas sensors, J. Phys. Chem. B 110 (2006) 17806–17812.
    [39] G.X. Wang, X.L. Gou, J. Horvat, J. Park, Facile synthesis and characterization of iron oxide semiconductor nanowires for gas sensing application, J. Phys. Chem. C 112 (2008) 15220–15225.
    [40] J.F. Liu, X. Wang, Q. Peng, Y.D. Li, Vanadium pentoxide nanobelts: Highly selective and stable ethanol sensor materials, Adv. Mater. 17 (2005) 764–767.
    [41] A. Vomiero, S. Bianchi, E. Comini, G. Sberveglieri, et al., In2O3 nanowires for gas sensors: Morphology and sensing characterization, Thin Solid Films 515 (2007) 8356–8359.
    [42] N. Du, H. Zhang, B.D. Chen, X.Y. Ma, Z.H. Liu, J.B. Wu, D.R. Yang, Porous indium oxide nanotubes: Layer-by-layer assembly on carbon-nanotube templates and application for room-temperature NH3 gas sensors, Adv. Mater. 19 (2007) 1641–1645.
    [43] J. A. Dirksen, K. Duval, T.A. Ring, NiO thin-film formaldehyde gas sensor, Sens. Actuators B 80 (2001) 106–115.
    [44] G. Wang, Y. Ji, X.R. Huang, X.Q. Yang, P.I. Gouma, M. Dudley, Fabrication and characterization of polycrystalline WO3 nanofibers and their application for ammonia sensing, J. Phys. Chem. B 110 (2006) 23777–23782.
    [45] Y.S. Kim, I.S. Hwang, S.J. Kim, C.Y. Lee, J.H. Lee, CuO nanowire gas sensors for air quality control in automotive cabin, Sens. Actuators B 135 (2008) 298–303.
    [46] J.J. Chen, K. Wang, L. Hartman, W.L. Zhou, H2S detection by vertically aligned CuO nanowire array sensors, J. Phys. Chem. C 112 (2008) 16017–16021.
    [47] X.M. Sun, J.F. Liu, Y.D. Li, Use of carbonaceous polysaccharide microspheres as templates for fabricating metal oxide hollow spheres, Chem. Eur. J. 112 (2006) 2039–2047.
    [48] X.M. Yin, C.C. Li, M. Zhang, Q.Y. Hao, S. Liu, Q.H. Li, L.B. Chen, T.H. Wang, SnO2 monolayer porous hollow spheres as a gas sensor, Nanotechnology 20 (2009) 455503.
    [49] J. Zhang, S.R. Wang, Y.M. Wang, Y. Wang, W.P. Huang, S.H. Wu, et al., NO2 sensing performance of SnO2 hollow-sphere sensor, Sens. Actuators B 135 (2009) 610–617.
    [50] J. Zhang, S.R. Wang, Y. Wang, M.J. Xu, S.H. Wu, et al., ZnO hollow spheres: Preparation, characterization, and gas sensing properties, Sens. Actuators B 139 (2009) 411–417.
    [51] Z. Guo, J.Y. Liu, Y. Jia, J.H. Liu, et al., Template synthesis, organic gas-sensing and optical properties of hollow and porous In2O3 nanospheres, Nanotechnology 19 (2008) 345704.
    [52] M.S. Tong, G.R. Dai, D.S. Gao, Gas-sensing properties of PdO-modified SnO2-Fe2O3 double-layer thin-film sensor prepared by PECVD technique, Vacuum 59 (2000) 877–884.
    [53] S. Bose, S. Chakraborty, B.K. Ghosh, D. Das, A. Sen, H.S. Maiti, Methane sensitivity of Fe-doped SnO2 thick films, Sens. Actuators B 105 (2005) 346–350.
    [54] W.J. Moon, J.H. Yu, G.M. Choi, The CO and H2 gas selectivity of CuO-doped SnO2–ZnO composite gas sensor, Sens. Actuators B 87 (2002) 464–470.
    [55] X.H. Kong, Y.D. Li, High sensitivity of CuO modified SnO2 nanoribbons to H2S at room temperature, Sens.Actuators B 105 (2005) 449–453.
    [56] L.C. Tien, D.P. Norton, B.P. Gila, S.J. Pearton, Hung-Ta Wang, B.S. Kang, F. Ren, Detection of hydrogen with SnO2-coated ZnO nanorods, Appl. Surf. Sci. 253 (2007) 4748–4752.
    [57] G. Cheng, K. Wu, P.T. Zhao, Y. Cheng, X.L. He, K.X. Huang, Solvothermal controlled growth of Zn-doped SnO2 branched nanorod clusters, J. Crys. Grow. 309 (2007) 53–59.
    [58] I.J. Kim, S.D. Han, I. Singh, H.D. Lee, J.S. Wang, Sensitivity enhancement for CO gas detection using a SnO2–CeO2–PdOx system, Sens. Actuators B 107 (2005) 825–830.
    [59] A. Chaparadza, S.B. Rananavare, Room temperature Cl2 sensing using thick nanoporous films of Sb-doped SnO2, Nanotechnology 19 (2008) 245501.
    [60] M. Epifani, J. Arbiol, E. Pellicer, E. Comini, P. Siciliano, G. Faglia, J.R. Morante, Synthesis and gas-sensing properties of Pd-doped SnO2 nanocrystals. A case study of a general methodology for doping metal oxide nanocrystals, Cryst. Growth Des. 8 (2008) 1774–1778
    [61] C.Q. Ge, C.S. Xie, S.Z. Cai, Preparation and gas-sensing properties of Ce-doped ZnO thin-film sensors by dip-coating, Mater. Sci. Eng. B 137 (2007) 53–58.
    [62] N.V. Hieu, H.R. Kim, B.K. Ju, J.H. Lee, Enhanced performance of SnO2 nanowires ethanol sensor by functionalizing with La2O3, Sens. Actuators B 133 (2008) 228–234.
    [63] D.H. Kim, S.H. Lee, K.H. Kim, Comparison of CO-gas sensing characteristic between mono- and multi-layer Pt/SnO2 thin films. Sens. Actuators B 77 (2001) 427–431.
    [64] S. Rani, S.C. Roy, Effect of Fe doping on the gas sensing properties of nano-crystalline SnO2 thin films, Sens. Actuators B 122 (2007) 204–210.
    [65] J. Zhao, L.H. Huo, S. Gao, H. Zhao, J.G. Zhao, Alcohols and acetone sensing properties ofSnO2 thin films deposited by dip-coating, Sens. Actuators B 115 (2006) 460–464.
    [66] M. Kwoka , L. Ottaviano , J. Szuber. AFM study of the surface morphology of L-CVD SnO2 thin films, Thin Solid Films 515 (2007) 8328–8331.
    [67] S.Y. Zhao, P.H. Wei, S.H. Chen, Enhancement of trimethylamine sensitivity of MOCVD-SnO2 thin film gas sensor by thorium, Sens. Actuators B 62 (2000) 117–120.
    [68] H.H. Park, Direct-patterning of SnO2 thin film by photochemical metal-organic deposition, Sens. Actuators A 132 (2006) 429–433.
    [69] Y.H.H. Choi, S.H. Hong, H2 sensing properties in highly oriented SnO2 thin films, Sens. Actuators B 125 (2007) 504–509.
    [70] M. Kroneld, S. Novikov, S. Saukko, Gas sensing properties of SnO2 thin films grown by MBE, Sens. Actuators B 118 (2006) 110–114.
    [71] M. Ivanovskaya, P. Bogdanov, G. Faglia, P.Nelli, On the role of catalytic additives in gas-sensitivity of SnO2-Mo based thin film sensors, Sen. Actuators B 77 (2001) 268–274.
    [72] J. Kaur, V.D. Vankar, M.C. Bhatnagar, Effect of MoO3 addition on the NO2 sensing properties of SnO2 thin films, Sens. Actuators B 133 (2008) 650–655.
    [73] G. Wiegleb, J. Heitbaum, Semiconductor gas-sensor for detecting NO and CO traces in ambient air of road traffic, Sens. Actuators B 17 (1994) 93–99.
    [74] L. Francioso, A. Forleo, S. Capone, P. Siciliano, et al., Nanostructured In2O3–SnO2 sol–gel thin film as material for NO2 detection, Sens. Actuators B 114 (2006) 646–655.
    [75] Y.H. Choi, M. Yang, S.H. Hong, H2 sensing characteristics of highly textured Pd-doped SnO2 thin films, Sens. Actuators B 134 (2008) 117–121.
    [76] J.Y. Liu, Z. Guo, F.L. Meng, Y. Jia, J.H. Liu, A novel antimony-carbon nanotube-tin oxide thin Film: carbon nanotubes as growth guider and energy buffer. Application for indoor air pollutants gas sensor, J. Phys. Chem. C 112 (2008) 6119–6125.
    [77] F. Quaranta, R. Rella, P. Siciliano, A novel gas sensors based on SnO2/Os thin film for the detection of methane at low temperature, Sens. Actuators B 58 (1999) 350–355.
    [78] S.B. Patil, P.P. Patil, M.A. More, Acetone vapour sensing characteristics of cobalt-doped SnO2 thin films, Sens. Actuators B 125 (2007) 126–130.
    [79] Z. Jiao, S.Y. Wang, L.F. Bian, J.H. Liu, Stability of SnO2/Fe2O3 multilayer thin film gas sensor, Mater. Res. Bull. 35 (2000) 741–745.
    [80] R.B. Vasiliev, M.N. Rumyantseva, M.V. Yakovlev, A.M. Gaskov, CuO/SnO2 thin film heterostructures as chemical sensors to H2S, Sens. Actuators B, 50 (1998) 186–192.
    [81] A. Khanna, R. Kumar, S.S. Bhatti, CuO-doped SnO2 thin films as hydrogen sulfide gas sensor, Appl. Phys. Lett. 82 (2003) 4388–4390.
    [82] S.P. Gong, J. Xia, J.Q. Liu, D.X. Zhou, Highly sensitive SnO2 thin film with low operating temperature prepared by sol-gel technique, Sens. Actuators B 134 (2008) 57–61.
    [83] K.W. Kim, P.S. Cho, S.J. Kim, J.H. Lee, C.Y. Kang, J.S. Kim, S.J. Yoon, The selective detection of C2H5OH using SnO2–ZnO thin film gas sensors prepared by combinatorial solution deposition, Sens. Actuators B 123 (2007) 318–324.
    [84] J. Kaur, S.C. Roy, M.C. Bhatnagar, Highly sensitive SnO2 thin film NO2 gas sensor operating at low temperature, Sens. Actuators B 123 (2007) 1090–1095.
    [85] G.J. Fang, Z.L. Liu, C.Q. Liu, K.L. Yao, Room temperature H2S sensing properties and mechanism of CeO2–SnO2 sol–gel thin films, Sens. Actuators B 66 (2000) 46–48.
    [86]张谢群,余家国,二氧化锡薄膜的制备和应用研究进展,化学试剂25 (2003) 203–206.
    [87] Z.F. Ding, B.M. Quinn, S.K. Haram, A.J. Bard, et al., Electrochemistry and electrogenerated chemiluminescence from silicon nanocrystal quantum dots, Science 296 (2002) 1293–1297.
    [88] S.K. Poznyak, A.I. Kulark, Characterization and photoelectrochemical properties of nanocrystalline In2O3 film electrodes, Electrochim. Acta 45(2000)1595–1605.
    [89] M. Nakagawa, A new chemiluminescence based sensor for discriminating and determining constituents in mixed gases, Sens. Actuators B 29 (1995) 94–100.
    [90] M. Nakagawa, I. Yamamoto, N. Yamashita, Detection of organic molecules dissolved in water using a gamma-Al2O3 chemiluminescence-based sensor, Anal. Sci. 14 (1998) 209–214.
    [91] M. Nakagawa, T. Okabayashi, T. Fujimoto, K. Utsunomiya, I. Yamamoto,T. Wada, Y. Yamashita, N. Yamashita, A new method for recognizing organic vapor by spectroscopic image on cataluminescence-based gas sensor, Sens. Actuators B 51 (1998) 159–162.
    [92] T. Okabayashi, T. Fujimoto, I. Yamamoto, K. Utsunomiya, T.Wada, Y. Yamashita, N. Yamashita, M. Nakagawa, High sensitive hydrocarbon gas sensor utilizing cataluminescence of gamma-Al2O3 activated with Dy3+, Sens. Actuators B 64 (2000) 54–58.
    [93] Z.Y. Sun, X.R. Zhang, et al., A highly efficient chemical sensor material for H2S:α-Fe2O3 nanotubes fabricated using carbon nanotube templates, Adv. Mater. 17 (2005) 2993–2997.
    [94] Y.Y. Wu, S.C. Zhang, X. Wang, N. Na, Z.X. Zhang, Development of a benzaldehyde sensor utilizing chemiluminescence on nanosized Y2O3, Luminescence 23 (2008) 376–380.
    [95] Z.M. Rao, L.J. Liu, J.Y. Xie, Y.Y. Zeng, Development of a benzene vapour sensor utilizing chemiluminescence on Y2O3, Luminescence 23 (2008) 163–168.
    [96] Z.Y. Zhang, C. Zhang, X.R. Zhang, Development of a chemiluminescence ethanol sensor based on nanosized ZrO2, Analyst 127 (2002) 792–796.
    [97] G.H. Liu, Y.F. Zhu, X.R. Zhang, B.Q. Xu, Chemiluminescence determination of chlorinated volatile organic compounds by conversion on nanometer TiO2, Anal. Chem. 74 (2002)6279–6284.
    [98] F. Teng, W.Q. Yao, Y.F. Zheng, Y.T. Ma, T.G. Xu, G.Z. Gao, S.H. Liang, Y. Teng, Y.F. Zhu, Facile synthesis of hollow Co3O4 microspheres and its use as a rapid responsive CL sensor of combustible gases, Talanta 76 (2008) 1058–1064.
    [99] Z.Y. Sun, X.R. Zhang, Na, Z.M. Liu, B.X. Han, G.M. An, Synthesis of ZrO2?carbon nanotube composites and their application as chemiluminescent sensor material for ethanol, J. Phys. Chem. B 110 (2006) 13410–13414.
    [100] Y.F. Zhu, J.J. Shi, Z.Y. Zhang, C. Zhang, X.R. Zhang, Development of a gas sensor utilizing chemiluminescence on nanosized titanium dioxide, Anal. Chem. 74 (2002) 120–124.
    [101] Q. Ye, Q. Gao, X.R. Zhang, B.Q. Xu, Cataluminescence and catalytic reactions of ethanol oxidation over nanosized Ce1-xZrxO2 (0≤x≤1) catalysts, Cat. Commu. 7 (2006) 589–592.
    [102] Z.J. Miao, Y.Y. Wu, X.R. Zhang, Z.M. Liu, B.X. Han, K.L. Ding, G.M. An, Large-scale production of self-assembled SnO2 nanospheres and their application in high-performance chemiluminescence sensors for hydrogen sulfide gas, J. Mater. Chem.17 (2007) 1791–1796.
    [103] G.M. An, N. Na, X.R. Zhang, Z.J. Miao, Z.M. Liu, et al., SnO2/carbon nanotube nanocomposites synthesized in supercritical fluids: highly efficient materials for use as a chemical sensor and as the anode of a lithium-ion battery, Nanotechnology 18 (2007) 435707.
    [104] Y.Y. Wu, S.C. Zhang, N. Na, X. Wang, X.R. Zhang, A novel gaseous ester sensor utilizing chemiluminescence on nano-sized SiO2, Sens. Actuators B 126 (2007) 461–466.
    [105] L. Tang, Y.M. Li, K.L. Xu, X.D Hou, Y. Lv, Sensitive and selective acetone sensor based on its cataluminescence from nano-La2O3 surface, Sens. Actuators B 132 (2008) 243–249.
    [106] X.A. Cao, G.M. Feng, H.H. Gao, X.Q. Luo, H.L. Lu, Nanosizedγ-Al2O3 + Nd2O3-based cataluminescence sensor for ethylene dichloride, Luminescence 20 (2005) 104–108.
    [107] C. Yu, G.H. Liu, B.L. Zuo, Y.J. Tang, T. Zhang, A novel gaseous pinacolyl alcohol sensor utilizing cataluminescence on alumina nanowires prepared by supercritical fluid drying, Anal. Chim. Acta 618 ( 2008 ) 204–209.
    [108] K.W. Zhou, X.L. Ji, N. Zhang, X.R. Zhang, On-line monitoring of formaldehyde in air by cataluminescence-based gas sensor, Sens. Actuators B 119 (2006) 392–397.
    [109] J.J. Shi, R.X. Yan, Y.F. Zhu, X.R. Zhang, Determination of NH3 gas by combination of nanosized LaCoO3 converter with chemiluminescence detector, Talanta 6 (2003) 157–164.
    [110] X.A. Cao, Z.Y. Zhang, X.R. Zhang, A novel gaseous acetaldehyde sensor utilizing cataluminescence on nanosized BaCO3, Sens. Actuators B 99 (2004) 30–35.
    [111] L. Luo, H. Chen, L.C. Zhang, K.L. Xu, Y. Lv, A cataluminescence gas sensor for carbon tetrachloride based on nanosized ZnS, Anal. Chim. Acta 635 (2009) 183–187.
    [112] X.A. Cao, W.F. Wu, N. Chen, Y. Peng, Y.H. Liu, An ether sensor utilizing cataluminescence on nanosized ZnWO4, Sens. Actuators B 137 (2009) 83–87.
    [113] Y.L. Xuan, J. Hu, X.D. Hou, Y. Lv, Development of sensitive carbon disulfide sensor by using its cataluminescence on nanosized-CeO2, Sens. Actuators B 136 (2009) 218–223.
    [114] Z.Y. Zhang, K.Xu, W.R.G. Baeyens, X.R. Zhang, An energy-transfer cataluminescence reaction on nanosized catalysts and its application to chemical sensors, Anal. Chim. Acta 535 (2005) 145–152.
    [115] Y.Y. Wu, N. Na, X.R. Zhang, et al., Discrimination and identification of flavors with catalytic nanomaterial-based optical chemosensor array, Anal. Chem. 81 (2009) 961–966.
    [116] Y. Lv, S.C. Zhang, X.R. Zhang, et al., Development of a detector for liquid chromatography based on aerosol chemiluminescence on porous alumina, Anal. Chem. 77 (2005) 1518–1525.
    [117] G.M. Huang, Y. Lv, S.C. Zhang, C.D. Yang, X.R. Zhang, Development of an aerosol chemiluminescent detector coupled to capillary electrophoresis for saccharide analysis, Anal. Chem. 77 (2005) 7356–7365.
    [118]苏锵编著,稀土化学,河南科学技术出版社,郑州, 1993.
    [119]霍建振,魏明真,纳米稀土氧化物的制备与应用,四川化工9 (2006) 26–29.
    [120] X. Wang, Y.D. Li, Rare-earth-compound nanowires, nanotubes, and fullerene-like nanoparticles: Synthesis, characterization, and properties, Chem. Eur. J. 9 (2003) 5627–5635.
    [121] X. Wang, X.M. Sun, D.P. Yu, B.S. Zou, Y.D. Li, Rare earth compound nanotubes, Adv. Mater. 15 (2003) 1442–1445.
    [122] Y.P. Fang, A.W. Xu, L.P. You, R.Q. Song, et al., Hydrothermal systhesis of rare earth (Tb,Y) Hydroxide and oxide nanotubes, Adv. Funct. Mater. 13 (2003) 955–960.
    [123] P. X. Huang, X. P. Gao, H. Y. Zhu, et al., Praseodymium hydroxide and oxide nanorods and Au/Pr6O11 nanorod catalysts for CO oxidation, J. Phys. Chem. B 110 (2006) 1614–1620.
    [124] A.W. Xu, Y.P. Fang, L.P. You, H.Q. Liu, A simple method to synthesize Dy(OH)3 and Dy2O3 nanotubes, J. Am. Chem. Soc. 125 (2003) 1494–1495.
    [125] M. Han, N.E. Shi, W.L. Zhang, et al., Large-scale synthesis of single-crystalline RE2O3 (RE=Y, Dy, Ho, Er) nanobelts by a solid–liquid-phase chemical route, Chem. Eur. J. 14 (2008) 1615–1620.
    [126] L. Liao, H. X. Mai, J. C. Li, et al., Single CeO2 nanowire gas sensor supported with Pt nanocrystals: Gas sensitivity, surface bond states, and chemical mechanism, J. Phys. Chem. C 112 (2008) 9061–9065.
    [127] X.Q. Fu, C. Wang, H.C. Yu, Y.G. Wang, T.H. Wang, Fast humidity sensors based on CeO2 nanowires, Nanotechnology 18 (2007) 145503.
    [1] A. Vomiero, S. Bianchi, E. Comini, G. Faglia, M.Ferroni, G. Sberveglieri, Controlled growth and sensing properties of In2O3 nanowires, Cryst. Growth Des. 7 (2007) 2500–2504.
    [2] S.B. Patil, P.P. Patil, M.A. More, Acetone vapour sensing characteristics of cobalt doped SnO2 thin films, Sens. Actuators B 125 (2007) 126–130.
    [3] X. Liu, J.F. Hu, B. Cheng, H.W. Qin, M.H. Jiang, Acetone gas sensing properties of SmFe1?xMgxO3 perovskite oxides, Sens. Actuators B 134 (2008) 483–487.
    [4] Y.L. Wang, X.C. Jiang, Y.N. Xia, A solution-phase, precursor route to polycrystalline SnO2 nanowires that can be used for gas sensing under ambient conditions, J. Am. Chem. Soc. 125 (2006) 16176–16177.
    [5] P.G.L. Baker, R.D. Sanderson, A.M. Crouch, Sol–gel preparation and characterisation of mixed metal tin oxide thin films, Thin Solid Films 515 (2007) 6691–6697.
    [6] Z.A. Ansari, T. Ko, J.-H. Oh, Effect of MoO3 doping and grain size on SnO2-enhancement of sensitivity and selectivity for CO and H2 gas sensing, Sens. Actuators B 87 (2002) 105–114.
    [7] Y. Liu, E. Koep, M.L. Liu, A highly sensitive and fast-responding SnO2 sensor fabricated by combustion chemical vapor deposition, Chem. Mater. 17 (2005) 3997–4000.
    [8] J.Y. Liu, Z. Guo, F.L. Meng, Y. Jia, J.H. Liu, A novel antimony–carbon nanotube tin oxide thin film: carbon nanotubes as growth guider and energy buffer. Application for indoor air pollutants gas sensor, J. Phys. Chem. C 112 (2008) 6119–6125.
    [9] C.M. Ghimbeua, M. Lumbreras, M. Siadat, J. Schoonman, et al., Electrostatic sprayed SnO2 and Cu-doped SnO2 films for H2S detection, Sens. Actuators B 133 (2008) 694–698.
    [10] A. Chaparadza, S.B. Rananavare, Room temperature Cl2 sensing using thick nanoporous films of Sb-doped SnO2, Nanotechnology 19 (2008) 245501.
    [11] M. Kugishima, K. Shimanoe, N. Yamazoe, C2H4O sensing properties for thick film sensor using La2O3-modified SnO2, Sens. Actuators B 118 (2006) 171–176.
    [12] M. Epifani, J. Arbiol, E. Pellicer, E. Comini, P. Siciliano, G. Faglia, J.R. Morante, Synthesis and gas-sensing properties of Pd-doped SnO2 nanocrystals. A case study of a general methodology for doping metal oxide nanocrystals, Cryst. Growth Des. 8 (2008) 1774–1778.
    [13] F. Pourfayaz, A. Khodadadi, Y. Mortazavi, S.S. Mohajerzadeh, CeO2 doped SnO2 sensor selective to ethanol in presence of CO, LPG and CH4, Sens. Actuators B 108 (2005) 172–176.
    [14] G. Fang, Z. Liu, C. Liu, K.L. Yao, Room temperature H2S sensing properties and mechanism of CeO2–SnO2 sol–gel thin films, Sens. Actuators B 66 (2000) 46–48.
    [15] C.Q. Ge, C.S. Xie, S.Z. Cai, Preparation and gas-sensing properties of Ce-doped ZnO thin-film sensors by dip-coating, Mater. Sci. Eng. B 137 (2007) 53–58.
    [16] L. Liao, H.X. Mai, Q. Yuan, H.B. Lu, J.C. Li, C. Liu, C.H. Yan, Z.X. Shen, T. Yu, Single CeO2 nanowire gas sensor supported with Pt nanocrystals: gas sensitivity, surface bond states, and chemical mechanism, J. Phys. Chem. C 112 (2008) 9061–9065.
    [17] X.Q. Fu, C. Wang, H.C. Yu, Y.G. Wang, T.H. Wang, Fast humidity sensors based on CeO2 nanowires, Nanotechnology 18 (2007) 145503.
    [18] S. Rani, S.C. Roy, M.C. Bhatnagar, Effect of Fe doping on the gas sensing properties of nano-crystalline SnO2 thin films, Sens. Actuators B 122 (2007) 204–210.
    [19] J. Kaur, V.D. Vankar, M.C. Bhatnagar, Effect of MoO3 addition on the NO2 sensing properties of SnO2 thin films, Sens. Actuators B 133 (2008) 650–655.
    [20] A.P. Maciel, P.N. Lisboa-Filho, E. Longo, et al., Microstructural and morphological analysis of pure and Ce-doped tin dioxide nanoparticles, J. Eur. Ceram. Soc. 23 (2003) 707–713.
    [21] S. Mihaiu, L. Marta, M. Zaharescu, SnO2 and CeO2-doped SnO2 materials obtained by sol–gel alkoxide route, J. Eur. Ceram. Soc. 27 (2007) 551–555.
    [22] E.A. de Morais, L.V.A. Scalvi, A.A. Cavalheiro, A. Tabata, J.B.B. Oliveira, Rare earth centers properties and electron trapping in SnO2 thin films produced by sol–gel route, J. Non-Cryst. Solids. 354 (2008) 4840–4845.
    [23] S.S. Chang, M.S. Jo, Luminescence properties of Eu-doped SnO2, Ceram. Int. 33 (2007) 511–514.
    [24] V.G. Kravets, L.V. Poperenko, Magnetic ordering effects in the Raman spectra of Sn1?xCoxO2, J. Appl. Phys. 103 (2008) 083904.
    [25] J. Fang, X.Z. Bi, D.J. Si, Z.Q. Jiang, W.X. Huang, Spectroscopic studies of interfacial structures of CeO2–TiO2 mixed oxides, Appl. Surf. Sci. 253 (2007) 8952–8961.
    [26] J. Kaur, S.C. Roy, M.C. Bhatnagar, Highly sensitive SnO2 thin film NO2 gas sensor operating at low temperature, Sens. Actuators B 123 (2007) 1090–1095.
    [27] S.K. Kim, J.Y. Son, Epitaxial ZnO thin films for the application of ethanol gas sensor: thickness and Al-doping effects, Electrochem. Solid-State Lett. 12 (2009) 17–19.
    [28] A.Z. Adamyana, Z.N. Adamyana, J.A. Turner, et al., Sol–gel derived thin-film semiconductor hydrogen gas sensor, Int. J. Hydrogen Energy 32 (2007) 4101–4108.
    [29] T. Becker, S. Ahlers, C. Bosch-v. Braunmuhl, G. Muller, O. Kiesewetter, Gas sensing properties of thin- and thick-film tin-oxide materials, Sens. Actuators B 77 (2001) 55–61.
    [30] W. Qu, W. Wlodarski, A thin-film sensing element for ozone, humidity and temperature, Sens. Actuators B 64 (2000) 42–48.
    [31] W.Q. Han, L.J. Wu, Y.M. Zhu, Formation and oxidation state of CeO2?x nanotubes, J. Am. Chem. Soc. 127 (2005) 12814–12815.
    [1] Q. Wei, Z.J. Zhang, Z.C. Li, Q. Zhou, Y. Zhu, Enhanced photocatalytic activity of porousα-Fe2O3 films prepared by rapid thermal oxidation, J. Phys. D: Appl. Phys. 41 (2008) 202002.
    [2] Z.F. Liu, Z.G. Jin, W. Li, J.J. Qiu, Assembly of ordered ZnO porous thin films by cooperative assembly method using polystyrene spheres and ultrafine ZnO particles, Mate. Res. Bull. 41 (2006) 119–127.
    [3] S.L. Chou, J.Z. Wang, H.K. Liu, S.X. Dou, Electrochemical deposition of porous Co3O4 nanostructured thin film for lithium-ion battery, J. Power Sources 182 (2008) 359–364.
    [4] H.W. Yan, Y.L. Yang, Z.P. Fu, B.F. Yang, L.S. Xia, S.Q. Fu b, F.Q. Li, Fabrication of 2D and 3D ordered porous ZnO films using 3D opal templates by electrodeposition, Electrochem. Comm. 7 (2005) 1117–1121.
    [5] C.M. Ghimbeu, J. Schoonman, M. Lumbreras, Porous indium oxide thin films deposited by electrostatic spray deposition technique, Ceram. Int. 34 (2008) 95–100.
    [6] Y.B. Shen, T. Yamazaki, Z.F. Liu, C.J. Jin, T. Kikuta, N. Nakatani, Porous SnO2 sputtered films with high H2 sensitivity at low operation temperature, Thin Solid Films 516 (2008) 5111–5117.
    [7] Z.F. Liu, Z.G. Jin, W. Li , X.X. Liu, Ordered porous ZnO thin films formed by dip-coating method using PS templates, J. Sol-Gel Sci. Technol. 40 (2006) 25–30.
    [8] Z.F. Liu, Z.G. Jin, J.J. Qiu, X.X. Liu, W.B. Wu, W. Li, Preparation and characteristics of ordered porous ZnO films by a electrodeposition method using PS array templates, Semicond. Sci. Technol. 21 (2006) 60–66.
    [9] F.Q. Sun, W.P. Cai, Y. Li, L.C. Jia, F. Lu, Direct growth of mono- and multilayer nanostructured porous films on curved surfaces and their application as gas sensors, Adv. Mater. 17 (2005) 2872–2877.
    [10] T. Hyodo, K. Sasahara, Y. Shimizu, M. Egashira, Preparation of macroporous SnO2 films using PMMA microspheres and their sensing properties to NOx and H2, Sens. Actuators B 106 (2005) 580–590.
    [11] Y.E. Chang, D.Y. Youn, G. Ankonin, D.J. Yang, I.D. Kim, et al., Fabrication and gas sensing properties of hollow SnO2 hemispheres, Chem. Commun. (2009) 4019–4021.
    [12] X.M. Sun, J.F. Liu, Y.D. Li, Use of carbonaceous polysaccharide microspheres as templates for fabricating metal oxide hollow spheres, Chem. Eur. J. 12 (2006) 2039–2047.
    [13] J. Zhang, S.R. Wang, Y.M. Wang, Y. Wang, B.L. Zhu, H.J. Xia, X.Z. Guo, S.M. Zhang, W.P. Huang, S.H. Wu, NO2 sensing performance of SnO2 hollow-sphere sensor, Sens. Actuators B 135(2009) 610–617.
    [14] J. Zhang, S.R. Wang, Y. Wang, M.J. Xu, H.J. Xia, S.M. Zhang, W.P. Huang, X.Z. Guo, S.H. Wu, ZnO hollow spheres: Preparation, characterization, and gas sensing properties, Sens. Actuators B 139 (2009) 411–417.
    [15] X.M. Sun, Y.D. Li, Ga2O3 and GaN semiconductor hollow spheres, Angew. Chem. Int. Ed. 43 (2004) 3827–3831.
    [16] X.M. Yin, C.C. Li, M. Zhang, Q.Y. Hao, S. Liu, Q.H. Li, L.B. Chen, T.H. Wang,SnO2 monolayer porous hollow spheres as a gas sensor, Nanotechnology 20 (2009) 455503.
    [17] Z. Guo, J.Y. Liu, Y. Jia, J.H. Liu, et al., Template synthesis, organic gas-sensing and optical properties of hollow and porous In2O3 nanospheres, Nanotechnology 19 (2008) 345704.
    [18]郭正,多孔气敏性氧化物纳米材料的制备与应用研究,中国科学技术大学博士论文,合肥, 2008.
    [19] F. Gu, S.F. Wang, H.M. Cao, C.Z. Li, Synthesis and optical properties of SnO2 nanorods, Nanotechnology 19 (2008) 095708.
    [1]苏锵编著,稀土化学,河南科学技术出版社,郑州, 1993.
    [2] C.G. Hu, H. Liu, W.T. Dong, Y.Y. Zhang, G. Bao, C.S. Lao, Z.L. Wang, La(OH)3 and La2O3 nanobelts—synthesis and physical properties, Adv. Mater.19 (2007) 470–474.
    [3] F. Niu, A.M. Cao, W.G. Song, L.J. Wan, La(OH)3 hollow nanostructures with trapezohedron morphologies using a new kirkendall diffusion couple, J. Phys. Chem. C 112 (2008) 17988–17993.
    [4] H.M. Zhu, B.F. Yang, J. Xu, Z.P. Fu, M.W. Wen, T. Guo, S.Q. Fu, J. Zuo, S.Y. Zhang, Construction of Z-scheme type CdS–Au–TiO2 hollow nanorod arrays with enhanced photocatalytic activity, Appl. Catal. B: Environ. 90 (2009) 463–469.
    [5] X. Wang, Y.D. Li, Synthesis and characterization of lanthanide hydroxide single-crystal nanowires, Angew. Chem. Int. Ed. 41 (2002) 4790–4793.
    [6] X. Wang, Y.D. Li, Rare-earth-compound nanowires, nanotubes, and fullerene-like nanoparticles: Synthesis, characterization, and properties, Chem. Eur. J. 9 (2003) 5627–5635.
    [7] Y.P. Fang, A.W. Xu, L.P. You, R.Q. Song, J.C. Yu, H.X. Zhang, Q. Li, H.Q. Liu, Hydrothermal synthesis of rare earth (Tb, Y) hydroxide and oxide nanotubes, Adv. Funct. Mater. 13 (2003) 955–960.
    [8] A.W. Xu, Y.P. Fang, L.P. You, H.Q. Liu, A simple method to synthesize Dy(OH)3 and Dy2O3 nanotubes, J. Am. Chem. Soc. 125 (2003) 1494–1495.
    [9] D. Kohl, The role of noble-metals in the chemistry of solid-state gas sensors, Sens. Actuators B 1 (1990) 158–165.
    [10]. T.J. Hsueh, S.J. Chang, C.L. Hsu, Y.R. Lin, I.C. Chen, Highly sensitive ZnO nanowire ethanol sensor with Pd adsorption, Appl. Phys. Lett. 91 (2007) 053111.
    [11] P.X. Huang, F. Wu, B.L. Zhu, G.R. Li, Y.L. Wang, X.P. Gao, H.Y. Zhu, T.Y. Yan, W.P. Huang, S.M. Zhang, D.Y. Song, Praseodymium hydroxide and oxide nanorods and Au/Pr6O11 nanorod catalysts for CO oxidation, J. Phys. Chem. B 110 (2006) 1614–1620.
    [12] S.J. Chang, T.J. Hsueh, I.C. Chen, B.R. Huang, Highly sensitive ZnO nanowire CO sensors with the adsorption of Au nanoparticles, Nanotechnology 19 (2008) 175502.
    [13]姚超,马江权,林西平,汪信,纳米氧化镧的制备,高校化学工程学报17 (2003) 685–688.
    [14] L. Tang, Y.M. Li, K.L. Xu, X.D. Hou, Y. Lv, Sensitive and selective acetone sensor based on its cataluminescence from nano-La2O3 surface, Sens. Actuators B 132 (2008) 243–249.
    [15] F.J. Jing, L. Wang, Y.W. Liu, R.K.Y. Fu, X.B. Zhao, R. Shen,N. Huang, Paul K. Chu,Hemocompatibility of lanthanum oxide films fabricated by dual plasma deposition, Thin Solid Films 515 (2006) 1219–1222.
    [16] P.Kannan, S.A. John, Synthesis of mercaptothiadiazolefunctionalized gold nanoparticles and their self-assembly on Au substrates, Nanotechnology 19 (2008) 085602.
    [17] F. Teng, W.Q. Yao, Y.F. Zheng, Y.T. Ma, T.G. Xu, G.Z. Gao, S.H. Liang, Y. Teng, Y.F. Zhu, Facile synthesis of hollow Co3O4 microspheres and its use as a rapid responsive CL sensor of combustible gases, Talanta 76 (2008) 1058–1064.
    [18] Y.L. Xuan, J. Hu, K.L. Xu, X.D. Hou, Y. Lv, Development of sensitive carbon disulfide sensor by using its cataluminescence on nanosized-CeO2, Sens. Actuators B 136 (2009) 218–223.
    [19] X. Wang, N. Na, S.C. Zhang, Y.Y. Wu, X.R. Zhang, Rapid screening of gold catalysts by chemiluminescence-based array imaging, J. Am. Chem. Soc. 129 (2007) 6062–6063.
    [20] G.H. Liu, Y.F. Zhu, X.R. Zhang, B.Q. Xu, Chemiluminescence determination of chlorinated volatile organic compounds by conversion on nanometer TiO2, Anal. Chem. 74 (2002) 6279–6284.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700