ZnO的体相和表面改性及可见光光催化性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
ZnO因价廉、无毒、来源广、光催化活性高而受到人们的广泛关注,但是,由于其带隙较宽,只能被紫外光激发,而太阳光谱中仅含有5%左右的紫外线,因而对太阳光的利用率低,而且ZnO由于易发生光腐蚀,光稳定性较差,从而大大降低了光催化活性,不利于其在环境治理中的应用。因此,通过对ZnO的掺杂改性从而获得既具有光稳定性,又具有较高可见光光催化活性的ZnO光催化剂成为极具挑战性的课题,也是当前国际研究的前沿。
     本论文研究了C掺杂及表面络合物形成对ZnO可见光光催化活性和光稳定性的影响。选择4-氯苯酚、2,4-二氯苯酚、苯酚和甲醛为目标降解物研究其可见光光催化活性和光稳定性能,运用各种现代分析测试手段,如:X射线衍射(XRD)、X射线光电子能谱(XPS)、红外光谱、拉曼光谱、紫外-可见漫反射光谱、N_2吸附及荧光光谱(PL)等对其进行表征,探讨了其结构变化与光催化性能的关系。其主要研究结果如下:
     (1)以ZnCl_2与乙二醇合成反应生成有机含锌化合物,然后将该有机物煅烧制成C掺杂ZnO。该催化剂中的C取代了ZnO中的晶格氧,从而使其光响应范围从紫外光区拓展到可见光区。光催化性能测试表明其在室内日光灯照射下能有效地使甲醛矿化为CO_2,而且其光催化活性优于目前光催化活性最好的N掺杂TiO_2。
     (2)酚类化合物(PC)如:4-氯苯酚、2,4-二氯苯酚、苯酚都能与ZnO形成表面络合物。4-氯苯酚与ZnO形成的表面络合物通过酚Zn-O-Ph-Cl键与ZnO相结合,这个键强于4-氯苯酚与YiO_2形成的表面络合物上的酚Ti-O-Ph-Cl键。这些表面络合物在可见光激发下发生配位体向余属中心的电荷转移,使ZnO的光吸收响应范围从紫外区拓展到可见光区,从而使ZnO具有较高的可见光光催化降解酚类化合物的催化活性。在可见光照射下,ZnO光催化降解4-氯苯酚的光催化活性比TiO_2在同样条件下高3.7倍,ZnO比TiO_2可见光光催化活性高是因为PC/ZnO比PC/TiO_2具有更高的光电流,说明前者比后者有更多的电荷转移。而且,表面络合物的形成明显提高了ZnO的光稳定性,其主要原因是由于ZnO的表面缺陷大大降低,且在紫外-可见光照射下ZnO表面捕获的光生空穴优先与表面络合物发生反应,而没有与表面氧原子发生反应。
ZnO has been attracting much attention due to cheap, non-toxic, widely source and high photocatalytic activity. However, it is activated only under UV light irradiation because of its large band gap. But solar spectra only contain 5% UV, thus ZnO has the low utilization of sunlight. Moreover, ZnO significantly decreases the photocatalytic activity of ZnO and blocks its practical application in environment purification because of its photocorrosion and photoinstability. Therefore, it is a great challenging issue to explore efficient visible-light-induced photocatalysts by the modification of ZnO, which is the forefront of current international research.
     In this paper, we have researched the effect of carbon-doped and surface complex formation on the visible photocatalytic activity and photostabilty of ZnO. We chose photodegradation formaldehyde, 4-chlorophenol, 2, 4-dichlorophenol and phenol with irradiation of visible light to evaluate the photocatalytic activity of the photocatalysts. The as-prepared samples were characterized by XRD, XPS, FTIR, Raman, DRUV-vis, BET, PL, and so on. The relationship between the changes of structure and photocatalytic property has been investigated. The main results and conlusions are as follows:
     (1) Carbon-doped ZnO was prepared by calcination of organic zinc compound synthesized by the reaction between ZnCl_2 and glycol. It was characterized by thermal analysis, XPS, XRD, DRUV-vis, and PL. The results show that the substitution of lattice oxygen by carbon in ZnO results in significantly extending for its optical response from UV to visible region. The photocatalytic test shows that it efficiently photomineralize formaldehyde to CO_2 under the irradiation of indoor fluorescent lamp and its photocatalytic activity is much better than nitrogen-doped TiO_2.
     (2) Phenolic compound (PC) such as 4-chlorophenol, 2, 4-dichloropehol and phenol, can form a surface complex with ZnO. The surface 4-CP/ZnO complex binds to ZnO through phenolate Zn-O-Ph-Cl linkage, which is much stronger than the phenolate Ti-O-Ph-Cl linkage of the surface 4-CP/TiO_2 complex. The formation of the surface complex shifts the absorption response of ZnO from UV to visible region through ligand-to-metal charge transfer with excitation of visible photon, and induces efficient visible photocatalytic activity. ZnO exhibits 3.7 times higher photocatalytic activity for the photodegradation of 4-CP than TiO_2 under visible irradiation. The much higher visible photocataltyic activity of ZnO than TiO_2 is attributed to the higher efficiency of the charge transfer in the former than in the latter evidenced by the much larger photocurrent of PC/ZnO than PC/TiO_2 Moreover, the formation of the surface complex results in the substantial improvement of the photostability of ZnO as it leads to a considerable decrease of the surface defect sites of ZnO, and the photogenerated holes trapped on the surface of ZnO probably prefer reacting with the surface complex to reacting with surface oxygen atom under UV-visible irradiation.
引文
[1]韩世同,习海玲,史瑞雪,等.半导体光催化研究进展与展望[J].化学物理学报,2003,16(4):339-349.
    [2]Hoffmann M R,Martin S T,Choi W,et al.Environmental applications of semiconductor photocatalysis[J].Chem.Rev.,1995,95(1):69-96.
    [3]Fujishima A,Honda K.Electrochemical photocatalysis of water at a semiconductor electrode[J].Nature,1972,238(5358):37-38.
    [4]Fujishima A,Rao T N,Tryk D A.Titanium dioxide photocatalysis[J].J.Photochem.and Photobi.C:Photochem.Rev.,2000,1(1):1-21.
    [5]Service R F.Materials science:Will UV lasers beat the blues?[J].Science,1997,276(5314):895-895.
    [6](O|¨)zg(u|¨)r(U|¨),Alivov Ya I,Liu C,et al.A comprehensive review of ZnO materials and devices[J].J.Appl.Phys.,2005,98(4):041301.
    [7]Norton D P,Heo Y W.Ivill M P,et al.ZnO:growth,doping & processing[J].Materialstoday,2004,7(6):34-40.
    [8]King S L,Gardeniers J G E,Boyd L W.Pulsed-laser deposited ZnO for device applications[J].Applied.Surface.Science,1996,96(8):811-818.
    [9]王步国,仲维卓,华素坤,等.ZnO晶体的极性生长习性与双晶的形成机理[J].人工晶体学报,1997,26(2):102-107.
    [10]祖庸,吴金龙,王训,等.纳米ZnO的奇妙用途[J].化工新型材料,1999,27(3):14-16.
    [11]李卫华,郝彦中,乔学斌,等.纳米结构ZnO/染料/聚吡咯光阳极的光电化学性质[J].物理化学学报,1999,15(10):905-911.
    [12]张莉,杨迈之,孟凡颖,等.五甲川菁敏化ZnO纳米结构电极的光电化学行为[J].化学通报,1999,(8):43-47.
    [13]刘福春,韩恩厚,柯伟.抗紫外纳米TiO_2/ZnO/复合丙烯酸酯涂料[J].材料研究学报,2003,17(2):138-144.
    [14]唐春,杨综璐,王真,等.ZnO光降解甲基橙初步研究[J].云南化工,2000,27(3):4-5.
    [15]Ou H H,Lo S L,Wu C H.Exploring the interparticle electron transfer process in the photocatalytic oxidation of 4-chlorophenol[J].Journal of Hazardous Materials,2006,137(3):1362-1370.
    [16]井立强,徐自力,杜尧国,等.ZnO超微粒子光催化氧化降解n-C_7H_(16)的研究[J].高等化学学报,2002,23(5):871-875.
    [17]Sawai J.Quantitative evaluation of antibacterial activities of metallic oxide powders(ZnO,MgO and CaO) by conductimetric assay[J].Journal of Mierobiological Methods,2003,54(3):177-182.
    [18]牛新书,杜卫平,杜卫民,等.纳米ZnO的制备及其气敏性能[J].应用化学,2003,20(10):968-971.
    [19]Min Y K,Tuller H L,Palzer S.Gas response of reactively sputtered ZnO films on Si-based micro-array[J].Sensors and Actuators B:Chemical.,2003,93(1-3):435-441.
    [20]Bhooloka R B.Zinc oxide ceramic semi-conductor gas sensor for ethanol vapour[J].Materials Chemistry and Physics,2000,64(1):62-65.
    [21]Xu J Q,Shun Y,Pan Q Y,et al.Sensing characteristics of double layer film of ZnO[J].Sensors and Actuators B:Chemical,2000,66(1):161-163.
    [22]Chang J F,Kuo H H,Leu I C,et al.The effects of thickness and operation temperature on ZnO:AI thin film CO gas sensor[J].Sensors and Actuators B:Chemical,2002,84(2-3):258-264.
    [23]Kang X Y,Han Y,Tao M,et al.Analysis of ZnO varistors prepared from nanosize ZnO precursors[J].Materials Research Bulletin,1998,33(11):1703-1708.
    [24]Kuoni A,Holzherr R,Boillat M,et al.Polyimide membrane with ZnO piezoelectric thin film pressure transducers as a differential pressure liquid flow sensor[J].Journal of Micromechanics and Microengineering,2003,3(4):103-107.
    [25]Huang M H,Wu Y Y,Yang P D,et al.Catalytic growth of zinc oxide nanowires by vapor transport[J].Advanced Materials,2001,13(2):113-116.
    [26]Huang M H,Mao S,Feiek H,et al.Room-Temperature Ultraviolet Nanowire Nanolasers[J].Science,2001,292(5523):1897-1899.
    [27]Banerjee A,Jo S H,Ren Z F,et al.Enhanced field emission of ZnO nanowires[J].Advanced Materials,2004,16(22):2028-2032.
    [28]Wang Z L,Song J H.Piezeoelectric nanogenerators based on zinc oxide nanowire arrays[J].Science,2006,312(5771):242-246.
    [29]邓南圣,吴峰.环境光化学[M].北京:化学工业出版社,2003.
    [30]Nakamura R,Imanishi A,Murakoshi K,et al.In situ FTIR studies of primary intermediates of photocatalytic reactions on nanocrystalline TiO_2 films in contact with aqueous solutions[J].J.Am.Chem.Soc.,2003,125(24):7443-7450.
    [31]Daneshvar N,Salari D,Khataee A R.Photocatalytic degradation of azo dye acid red 14 in water on ZnO as an alternative catalyst to TiO_2[J].J.Phtochem.Photobiol.A:Chem.,2004,162(2-3):317-322.
    [32]Khodja A,Sehili T,Pilichowski J F,et al.Photocatalytic degradation of 2-phenylphenol on TiO_2 and ZnO in aqueous suspensions[J].J.Phtochem.Photobiol.A:Chem.,2001,141(2-3):231-239.
    [33]Serpone N,Maruthamuthu P,Pichat P,et al.Exploiting the interparticle electron transfer process in the photocatalysed oxidation of phenol,2-chlorophenol and pentachlorophenol:chemical evidence for electron and hole transfer between coupled semiconductors[J].J.Photochem.Photobiol.A:Chem.,1995,85(3):247-255.
    [34]Gr(a|¨)tzel M.Heterogeneous photochemical electron transfer[J].CRC Press,Baton Rouge,F L,1988,93(2):671-674.
    [35]贺飞,唐怀军,赵文宽,等.纳米TiO_2光催化剂负载技术研究[J],环境污染治理技术与设备,2001,2(2):47-56.
    [36]魏洪斌.光催化氧化法影响因素和发展趋势[J].上海环境科学,1995,14(3):7-10.
    [37]Okazaki M,Takeshi S,Shigera S,et al.Isotope enrichment by electron spin resonance transitions of the intermediate radical pair[J].J.Phys.Chem.,1988,92(6):1402.
    [38]Ishibashi K I,Fujishima A,Watanabe T,et al.Quantum yields of active oxidative species formed on TiO_2 photocatalyst[J].J.Photochem.Photobio.A:Chem.,2000,134(1-2):139-142.
    [39]Assabane A,Yahia A I,Tahiri H,et al.Photocatalytic degradation of polycarboxylic benzoic acids in UV-irradiated aqueous suspensions of titania.:Identification of intermediates and reaction pathway of the photomineralization of trimellitic acid(1,2,4-benzene tricarboxylic acid)[J].Appl.Catal.B:Environ.,2000,24(2):71-87.
    [40]Behnajady M A,Modirshahla N,Hamzavi R.Kinetic study on photocatalytic degradation of C.I.Acid Yellow 23 by ZnO photoeatalyst[J].Journal of Hazardous Materials,2006,133(1-3):226-232.
    [41]韩世同,习海玲.半导体光催化研究进展与展望[J].化学物理学报,2003,16(5):339-349.
    [42]Linsebigler A L,Lu G Q,Yates J T.Photocatalysis on TiO_2 surfaces:Principles,mechanisms,and selected results[J].Chem.Rev.,1995,95(3):735-758.
    [43]Spathis P,Poulio I.The corrosion and photocorrosion of zinc and zinc oxide coatings[J].Corros.Sci.,1995,37(5):673-680.
    [44]Rudd A L,Bresli C B.Photo-induced dissolution of zinc in alkaline solutions[J].Electrochim.Acta,2000,45(10):1571-1579.
    [45]Wang D,Song C.Controllable synthesis of ZnO nanorod and prism arrays in a large area[J].J.Phys.Chem.B,2005,109(26):12697-12700.
    [46]Fu H B,Xu T G.,Zhu S B,et al.Photocorrosion inhibition and enhancement of photocatalytic activity for ZnO via hybridization with C_(60)[J].Environ.Sci.Technol.,2008,42(21):8064-8069.
    [47]Jin Z,Zhang X,Lu G,et al.Improved quantum yield for photocatalytic hydrogen generation under visible light irradiation over eosin sensitized TiO_2-Investigation of different noble metal loading[J].J.Mol.Catal.A:Chem.,2006,259(1-2):275-280.
    [48]闫俊萍,张中大,唐子龙,等.半导体基纳米复合材料光催化研究进展[J].无机材料学报,2003,18(5):980-987.
    [49]Maeda K,Takata T,Hara M,et al.GaN:ZnO solid solution as a photoeatalyst for visible-light-driven overall water splitting[J].Journal of the American Chemical Soeiety,2005,127(23):8286-8287.
    [50]郭光美,王振川,李景印,等.可见光响应纳米TiO_2-ZnO光催化性能的研究[J].工业水处理,2007,27(2):43-45.
    [51]Keis K,Bauer C,Boschloo G,et al.Nanostructured ZnO electrodes for dye sensitized solar cell applications[J].Journal of Photochemistry and Photobiology A:Chemistry,2002,148(1-3):57-64.
    [52]Pavasupree S,Ngamsinlapasathian S,Nakajima M,et al.Synthesis,characterization,photocatalytic activity and dye-sensitized solar cell performance of nanorods/nanopartieles TiO_2 with mesoporous structure[J].Journal of Photochemistry and Photobiology A:Chemistry,2006,184(1-2):163-169.
    [53]Agrios A G.,Gray K A,Weitz E.Photocatalytic transformation of 2,4,5-trichlorophenol on TiO_2 under sub-band-gap illumination[J].Langmuir,2003,19(4):1402-1409.
    [54]Agrios A G.,Gray K A,Weitz E.Narrow-band irradiation of a homologous series of chlorophenols on TiO2:Charge-transfer complex formation and reactivity[J].Langmuir,2004,20(14):5911-5917.
    [55]Kim S H.,Choi W Y.Visible-light-induced photocatalytic degradation of 4-chlorophenol and phenolic compounds in aqueous suspension of pure titania:Demonstrating the existence of a surface-complex-mediated path[J].J.Phys.Chem.B.,2005,109(11):5143-5149.
    [56]Li D,Haneda H.Photocatalysis of sprayed nitrogen-containing Fe_2O_3-ZnO and WO_3-ZnO composite powders in gas-phase acetaldehyde decomposition[J].J.Photochem.Photobio.A:Chemistry,2003,160(3):203-212.
    [57]Li D,Saito N,Ohashi N,et al.The 3rd Asia-Pacific Congress on Catalysis[C].Dalian:Dalian Institute of Chemical Physics Press,2003,589-590.
    [58]Wei H Y,Wu Y S,Wu L L,et al.Preparation and photoluminescence of surface N-doped ZnO nanocrystal[J].Mater.Lett.,2005,59(2-3):271-275.
    [59]Lin H F,Liao S C,Hung S W.The dc thermal plasma synthesis of ZnO nanoparticles for visible-light photocatalyst[J].J.Photochem.Photobiol.A:Chemistry,2005,174(1):82-87.
    [60]Chen S F,Zhao W,Zhang S J,et al.Preparation,characterization and photocatalytic activity of N-containing ZnO powder[J].Chem.Eng.J.,2009,148(2-3):263-269.
    [61]Pan Z W,Dai Z R,Wang Z L.Nanobelts of semiconducting oxides[J].Science.2001,291(5510):1947-1949.
    [62]Sernelius B E,Berggren K F,Jin Z C,et al.Band-gap tailoring of ZnO by means of heavy Al doping[J].Phys.Rev.B,1988,37(17):10244-10248.
    [63]Xu Q,Schmidt H,Hartmann L,et al.Room temperature ferromagnetism in Mn-doped ZnO films mediated by acceptor detects[J].Appl.Phys.Lett,2007,91(9):092503.
    [64]Fujihara S,Ogawa Y,Kasai A.Tunable Visible Photoluminescence from ZnO Thin Films through Mg-Doping and Annealing[J].Chem.Mater.,2004,16(15):2965-2968.
    [65]Park C H,Zhang S B,Wei S H.Origin of p-type doping difficulty in ZnO:The impurity perspective[J].Phys.Rev.B,2002,66(7):073202.
    [66]Xiang B,Wang P,Zhang X,et al.Rational synthesis of p-type zinc oxide nanowire arrays using simple chemical vapor deposition[J].Nano.Lett.,2007,7(2):323-328.
    [67]Yuan G D,Zhang W J,Jie J S,et al.p-type ZnO nanowire arrays[J].Nano.Lett.,2008,8(8):2591-2597.
    [68]Pan H,Yi J B,Shen L,et al.Room-temperature ferromagnetism in carbon-doped ZnO[J].Phys.Rev.Lett.,2007,99(12):127201.
    [69]Tan S T,Sun X W,Yu Z G,et al.p-type conduction in unintentional carbon-doped ZnO thin films[J].Appl.Phys.Lett.,2007,91(7):072101.
    [70]Noguchi T,Fujishima A,Sawunyama P,et al.Photocatalytic Degradation of Gaseous Formaldehyde Using TiO_2 Film[J].Environ.Sci.Technol.,1998,32(23):3831-3833.
    [71]Yin S,Ihara K,Komatsu M,et al.Low temperature synthesis of TiO_(2-x)N_y powders and films with visible light responsive photocatalytic activity[J].Solid.State.Commun.,2006,137(3):132-137.
    [72]Zhou S Q,Xu Q Y,Potzger K,et al.Room temperature ferromagnetism in carbon-implanted ZnO[J].Appl.Phys.Lett.,2008,93(23):232507.
    [73]Duan M Y,Xu M,Zhou H P,et al.Electronic structure and optical properties of ZnO doped with carbon[J].Acta.Physica.Sinica.,2008,57(10):6250-6256.
    [74]Vanheusden K,Warren W L,Seager C H,et al.Mechanisms behind green photoluminescence in ZnO phosphor powders[J].J.Appl.Phys.,1996,79(10):7983.
    [75]Yang J J,Li D X,Zhang Z J,et al.A study of the photocatalytic oxidation of formaldehyde on Pt/Fe_2O_3/TiO_2[J].Journal of Photochemistry and Photobiology A:Chemistry,2000,137(2-3):197-202.
    [76]邹丽霞.高比表面积纳米WO_3的制备及其光催化降解气相甲醛的研究[D].南京:南京理工大学化学工程与技术,2005.
    [77]Li F B,Li X Z.The enhancement of photodegradation efficiency using Pt-TiO_2 catalyst[J].Chemosphere,2002,48(10):1103-1111.
    [78]Jang E S,Won J H,Hwang S J,et al.Fine tuning of the face orientation of ZnO crystals to optimize their photocatalytic activity[J].Adv.Mater.,2006,18(24):3309-3312.
    [79]Sun T J,Qiu J S,Liang C H.Controllable fabrication and photocatalytic activity of ZnO nanobelt arrays[J].J.Phys.Chem.C,2008,112(3):715-721.
    [80]Ye C H,Bando Y,Shen G Z,et al.Thickness-dependent photocatalytic performance of ZnO nanoplatelets[J].J.Phys.Chem.B,2006,110(31):15146-15151.
    [81]Yu J G.,Yu X X.Hydrothermal synthesis and photocatalytic activity of zinc oxide hollow spheres[J].EnViron.Sci.Technol.,2008,42(13):4902-4907.
    [82]Deng Z W,Chen M,Gu G X,et al.A facile method to fabricate ZnO hollow spheres and their photocatalytic property[J].J.Phys.Chem.B,2008,112(1):16-22.
    [83] Lu F, Cai W P, Zhang Y G. ZnO hierarchical micro/nanoarchitectures: Solvotherma! synthesis and structurally enhanced photocatalytic performance[J]. Adv. Funct. Mater., 2008, 18(7): 1047-1056.
    [84] Meulenkamp E A. Size dependence of the dissolution of ZnO nanoparticles[J]. J. Phys. Chem. B, 1998, 102(40): 7764-7769.
    [85] van Dijken A, Janssen A H, Smitsmans M H P, et al. Size-selective photoetching of nanocrystalline semiconductor particles[J]. Chem. Mater., 1998, 10(11): 3513-3522.
    [86] Jongh P E, Meulenkamp E A, Vanmaekelbergh D, et al. Charge carrier dynamics in illuminated, particulate ZnO electrodes [J]. J. Phys. Chem. B, 2000, 104(32): 7686-7693.
    [87] Comparelli R, Fanizza E, Curri M L, et al. UV-induced photocatalytic degradation of azo dyes by organic-capped ZnO nanocrystals immobilized onto substrates [J]. Appl. Catal. B, 2005,60(1-2): 1-11.
    [88] Zhang L W, Cheng H Y, Zong R L, et al. Photocorrosion suppression of ZnO nanoparticles via hybridization with graphite-like carbon and enhanced photocatalytic activity[J]. J. Phys. Chem. C, 2009, 113(6): 2368-2374.
    [89] Li X, Chen C, Zhao J C. Mechanism of photodecomposition of H_2O_2 on TiO_2 surfaces under visible light irradiation [J]. Langmuir, 2001, 17(13): 4118-4122.
    [90] Cho Y, Kyung H, Choi W. Visible light activity of TiO_2 for the photoreduction of CC1_4 and Cr(VI) in the presence of nonionic surfactant[J], Appl. Catal. B, 2004, 52(1): 23-32.
    [91] Li M, Tang P S, Hong Z L, et al. High efficient surface-complex-assisted photodegradation of phenolic compounds in single anatase titania under visible-light[J]. Colloids and Surfaces A, 2008, 318(1-3): 285-290.
    [92] Moser J, Punchihewa S, Infelta P P, et al. Surface complexation of colloidal semiconductors strongly enhances interfacial electron-transfer rates [J]. Langmuir, 1991, 7(12): 3012-3018.
    [93] Orlov A, Watson D J. Williams F J, et al. Interactions of 4-chlorophenol with TiO_2 polycrystalline surfaces: A study of environmental interfaces by NEXAFS, XPS, and UPS[J]. Langmuir, 2007, 23(19): 9551-9554.
    [94] Bohle D S, Spina C J. Cationic and anionic surface binding sites on nanocrystalline zinc oxide: surface influence on photoluminescence and photocatalysis[J]. J. Am. Chem. Soc,2009, 131(12): 4397-4404.
    [95] Eaton D C. Laboratory in vestigation in organic chemistry, McGraw-Hill[C]. Inc.: NewYork, 1989.
    [96] Alderman S L, Dellinger B. FTIR investigation of 2-chlorophenol chemisorption on a silica surface from 200 to 500 degrees C[J]. J. Phys. Chem. A, 2005, 109(34): 7725-7231.
    [97] Huang G L, Zhang S C, Xu T G, et al. Fluorination of ZnWO_4 photocatalyst and influence on the degradation mechanism for 4-chlorophenol[J]. EnViron. Sci. Technol., 2008, 42(22): 8516-8521.
    [98] Sagar P, Shishodia P K, Mehra R M, et al. Photoluminescence and absorption in sol-gel-derived ZnO films[J]. Lumin., 2007, 126(2): 800-806.
    
    [99] Vanheusden K, Seager C H, Warren W L, et al. Correlation between photoluminescence and oxygen vacancies in ZnO phosphors[J]. Appl. Phys. Lett., 1996, 68(3): 403.
    
    [100] Hurum, D C, Gray K A, Rajh T, et al. Photoinitiated reactions of 2, 4, 6 TCP on Degussa P25 formulation TiO_2: Wavelength-sensitive decomposition[J]. J. Phys. Chem. B, 2004, 108(42): 16483-16487.
    
    [101] Wang Y H, Hang K, Anderson N A, et al. Comparison of electron transfer dynamics in molecule-to-nanoparticle and intramolecular charge transfer complexes[J]. J. Phys. Chem. B,2003, 107(35): 9434-9440.
    
    [102] Look D C, Reynolds D C, Sizelove J R, et al. Electrical properties of bulk ZnO[J]. Solid. State. Commun, 1998, 105(6): 399-401.
    
    [103] Frederikse H P R. Recent studies on rutile (TiO_2)[J]. J. Appl. Phys., 1961, 32(10): 2211.
    
    [104] Damen T C, Porto S P S, Tell B. Raman effect in zinc oxide[J]. Phys. Rev., 1966, 142(2): 570-574.
    
    [105] Spathis P, Poulio I. The corrosion and photocorrosion of Zn and ZnO coatings[J]. Corros.Sci., 1995,51:673.
    
    [106] Kislov N, Lahiri J, Verma H, et al. Photocatalytic degradation of methyl orange over single crystalline ZnO: Orientation dependence of photoactivity and photostability of ZnO[J]. Langmuir, 2009, 25(5): 3310-3315.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700