二氧化铬纳米结构的合成及物性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
  • 英文题名:Synthesis of Chromium Dioxide Nanostructures and Investigations of Their Physical Properties
  • 作者:赵强
  • 论文级别:博士
  • 学科专业名称:凝聚态物理
  • 学位年度:2010
  • 导师:毛河光 ; 温戈辉
  • 学科代码:070205
  • 学位授予单位:吉林大学
  • 论文提交日期:2010-05-01
摘要
CrO_2是一种重要的半金属磁体,是目前凝聚态物理和自旋电子学领域研究的热点之一。但是CrO_2在常压下处于亚稳态,这使得其合成工作异常艰难。所以CrO_2的合成,尤其是CrO_2纳米结构的合成,及其物理性质的研究具有很重要的科学意义。本论文对CrO_2纳米结构的合成进行了探索,获得了一系列重要的结果。并对CrO_2纳米结构的磁、电性质进行了研究。
     采用高温高压方法合成了高纯度的CrO_2,并且通过对温度和压强的控制实现了CrO_2颗粒由直径为400nm粒子到长5μm棒的调控。研究了不同形状CrO_2颗粒的磁性。
     通过常压化学气相沉积法合成了具有不同取向的CrO_2薄膜。对其磁性研究发现,不同取向的CrO_2薄膜磁性存在差异。磁电阻研究表明CrO_2薄膜在室温及低温下呈现出由不同的机制所导致的磁电阻效应。
     借助于氧化铝模板,通过化学气相沉积法,首次合成大面积有序排列的单晶CrO_2纳米棒、纳米线阵列。磁性研究表明,CrO_2纳米棒、纳米线阵列具有优良的磁各向异性,在高密度垂直磁记录领域具有潜在应用价值。
In recent years, half-metallic ferromagnets such as Chromium dioxide, magnetite, manganites and heusler alloys have been of considerable interest due to their potential applications in the next generation of electronic devices. Among them, Chromium dioxide (CrO_2) is very attractive. Because it has been reported with the highest spin polarization (>98%) ever measured by spin-polarized photoemission and point-contact Andreev reflection. And CrO_2 has good electronic conductivity as well as adequate Curie temperature about 395K, so it appears to be an ideal candidate for magnetic tunnel junctions and other spintronic devices. In addition, CrO_2 has been widely used in the magnetic recording industry for a long time and presents a high performance in magnetic recording devices. However, CrO_2 is a metastable oxide at ambient condition, it would decompose to Cr2O3 easily and which is known as the most stable one in all chromium oxides. This means that it is difficult to synthesize of purity CrO_2 at ambient pressure, in particular, CrO_2 nanostructures. In this thesis, we introduce some methods to synthesize high-purity CrO_2 powders and CrO_2 nanostructures (films and nanowires arrays). The magnetic and electronic properties of CrO_2 powders and nanostructures were investigated.
     High-purity CrO_2 powders were prepared under high temperature (400 oC-600 oC) and high pressure (1GPa-5GPa) conditions. The shape, size and the grain boundary density of the CrO_2 powders can be tuned via simply changing the experiment conditions, such as temperature and pressure. We can tune the size of the CrO_2 powders from 5?m to several hundred. Magnetic properties of the CrO_2 powders prepared under different conditions were investigated also. The saturation magnetizations of the samples can reach to 105 emu/g, which accords with the best value ever reported. And we found that CrO_2 powders with low aspect ratio have smaller coercivity, which was due to the shape anisotropy. The synthesis of high-purity CrO_2 powders with controlled morphology could be of interest in tunneling magnetoresistance research, this may facilitate the further fundamental research on the TMR in granular CrO_2.
     (100)-oriented and (101)-oriented CrO_2 films had been grown on Al2O3 (001) and (012) substrates by atmospheric pressure CVD. The (100)-oriented CrO_2 film exhibited better crystalline qualities than (101)-oriented CrO_2 film. At room temperature, the MR of the (100)-oriented and (101)-oriented CrO_2 films are nearly same, and not sensitive to the qualities of the films, both show a linear dependence on magnetic field up to 2.5T. This result can be interpreted in terms of double-exchange mechanism. There are strong coupling between conduction electrons and local magnetic moment in CrO_2 films. When applied magnetic field aligns adjacent moments, the mobility of conduction electrons will be increased. Thus the resistance decreases with increasing magnetic field. While at 80K, the MR of the films exhibit a significant difference. The MR of both films decrease quickly at low fields, and decrease relatively slowly at higher fields. These phenomena imply that the MR in the CrO_2 films at 80K should mainly arise from intergrain tunneling MR. The intergrain tunneling MR is sensitive to the grain boundary density in CrO_2 films.
     In previous, most of the studies about CrO_2 were mainly focused on CrO_2 powder compacts. Only a few reports have been made on CrO_2 thin films and nanostructures patterned on especial substrates, despite the CrO_2 nanostructures are fundamental importance in the applications for high-density magnetic recording devices and spintronics devices. Here we further tried to prepare CrO_2 nanorod and nanowire arrays using AAO template- assisted chemical vapor deposition. Large area, vertically aligned CrO_2 nanorod and nanowire arrays with high density were obtained via the atmospheric pressure CVD assisted by AAO templates. The dense CrO_2 nanorod and nanowires arrange in a hexagonal close packed pattern over a large area, and the areal density can reaches to 3.3×10~(10) cm~(-2). And the CrO_2 nanorod and nanowires show a high crystalline quality and uniform size. In our experiment, we found that in all cases the pores were not completely filled with CrO_2 nanowires. And the length of the CrO_2 nanowires is closely related to the pore diameter, which decreases with increasing pore diameter. The capillary action is introduced to explain the formation of the CrO_2 nanowires. The CrO_2 nanowires arrays exhibits excellent magnetic property even the interwires distance decrease to 65 nm, thus appears a good application in high-density magnetic recording devices. In addition, CrO_2 nanowires prepared by this method can separate from AAO template to form individual elements simply, and these individual crystalline CrO_2 nanowires may be ideal candidate in low-dimensionality half-metallic fundamental research and application in spintronic devices as building blocks.
引文
[1] Wolf S A, Awschalom D D, Buhrman R A, Daughton J M, Molnár S V, Roukes M L, Chtchelkanova A Y, Treger D M. Spintronics:A Spin-Based Electronics Vision for the Future [J]. Science. 2001, 294: 1488-1495.
    [2] ?uti? I, Fabian J, Sarma S D. Spintronics: Fundamentals and applications [J]. Rev. Mod. Phys. 2004, 76: 323-410.
    [3]焦正宽,曹光旱.磁电子学[M].浙江大学出版社, 2005.
    [4] Prinz G A. Magnetoelectronics [J]. Science. 1998, 282: 1660-1663.
    [5] Julliere M. Tunneling between ferromagnetic films [J]. Phys. Lett. A. 1975, 54: 225-226.
    [6] Miyazaki T, Tezuka N. Spin polarized tunneling in ferromagnet /insulator/ ferromagnet junctions [J] J. Magen. Magen. Mater. 1995, 151: 403-410.
    [7] Butler W H, Zhang X -G, Schulthess T C, MacLaren J M. Spin-dependent tunneling conductance of Fe|MgO|Fe sandwiches [J]. Phys. Rev. B. 2001, 63:054416.
    [8] Yuasa S, Nagahama T, Fukushima A, Suzuki Y, Ando K. Giant room-temperature magnetoresistance in single-crystal Fe/MgO/Fe magnetic tunnel junctions [J]. Nature Materials. 2004, 3: 868-871.
    [9] Djayaprawira D D, Tsunekawa K, Nagai M, Maehara H, Yamagata S, Watanabe N, Yuasa S, Suzuki Y, Ando K. 230% room-temperature magnetoresistance in CoFeB/MgO/CoFeB magnetic tunnel junctions [J] Appl. Phys. Lett. 2005, 86: 092502.
    [10] de Groot R A, Mueller F M, van Engen P G, Buschow K H J. New Class of Materials Half-Metallic Ferromagnets [J]. Phys. Rev. Lett. 1983, 50: 2024-2027.
    [11]任尚坤,张凤鸣,都有为.半金属磁性材料的研究进展[M].前沿进展(物理), 2003, 12, 791-799.
    [12] Moodera J S, Mathon G. Spin polarized tunneling in ferromagnetic junctions [J]. J. Magen. Magen. Mater. 1999, 200: 248-273.
    [13] Coey J M D, Venkatesan M. Half-metallic ferromagnetism: Example of CrO2 (invited) [J]. J. Appl. Phys. 2002, 91: 8345-8350.
    [14] Fujita Y, Endo K, Terada M, Kimura R. Magnetic properties of heusler type alloys M2XSn (M = Fe, Co or Ni, X = Ti or V) [J]. J. Phys. Chem. Solids. 1972, 33: 1443-1446.
    [15] de Wijs G A, Groot R A. Towards 100% spin-polarized charge-injection: The half-metallic NiMnSb/CdS interface [J]. Phys. Rev. B. 2001, 64: 020402.
    [16] Orgassa D, Fujiwara H. First-principles calculation of the effect of atomic disorder on the electronic structure of the half-metallic ferromagnet, NiMnSb [J]. Phys. Rev. B. 1999, 60: 13237.
    [17] Lewis S P, Allen P B, Sasaki T. Band structure and transport properties of CrO2 [J]. Phy. Rev. B. 1997, 55: 10253.
    [18] Weht R, Pickett W E. Half-metallic ferrimagnetism in Mn2Val [J]. Phys. Rev. B. 1999, 60: 13006.
    [19] Lu Y, Li X W, Gong G Q, Xiao G, Gupta A, Lecoeur P, Sun J Z, Wang Y Y, Dravid V P. Large magnetotunneling effect at low magnetic fields in micrometer-scale epitaxial La0.67Sr0.33MnO3 tunnel junctions [J]. Phys. Rev. B. 1996, 54: R8357-R8360.
    [20] Szotek Z, Temmerman W M, Svane A, Petit L, Stocks G M, Winter H. Ab initio study of charge order in Fe3O4 [J]. Phys. Rev. B. 2003, 68: 054415.
    [21] Pickett W E, Singh D J. Electronic structure and half-metallic transport in the La1-xCaxMnO3 system [J]. Phys. Rev. B. 1996, 53: 1146.
    [22] Park J H, Vescovo E, Kim H J, Kwon C, Ramesh R, Venkatesan T. Direct evidence for a half-metallic ferromagnet [J]. Nature (London). 1998, 392: 794-796.
    [23] Galankis I, Surface half-metallicity of CrAs in the zinc-blende structure [J]. Phys. Rev. B. 2002, 66: 012406.
    [24] Galankis I, Mavropoulos P. Zinc-blende compounds of transition elements with N, P, As, Sb, S, Se, and Te as half-metallic systems [J]. Phys. Rev. B. 2003, 67: 104417.
    [25] Moodera J S, Mathon G J. Spin Polarized Tunneling in Ferromagnetic Junction [J]. J. Magn. Magn. Mater. 1999, 200: 248-273.
    [26] Pickett W E. Spin-density-functional-based search for half-metallic antiferromagnets [J]. Phys. Rev.B. 1998, 57: 10613.
    [27] Lu Yu, Li X W, Gong G Q, Xiao G, et al. Large magnetotunneling effect at low magnetic fields in micrometer-scale epitaxial La0.67Sr0.33MnO3 tunnel junctions [J]. Phys. Rev. B. 1996, 54: R8357-R8360.
    [28] de Teresa J M, Fert A, Contour J P, et al. Inverse Tunnel Magnetoresistance in Co/SrTiO3/La0.7Sr0.3MnO3: New Ideas on Spin-Polarized Tunneling [J]. Phys. Rev. Lett. 1999, 82: 4288-4291.
    [29] Hwang H Y, Cheong S W, Ong N P. Spin-Polarized Intergrain Tunneling in La2/3Sr1/3MnO3 [J]. Phys. Rev. Lett. 1996, 77: 2041-2044.
    [30] Coey J M D, Berkowitz A E, Balcells L et al. Magnetoresistance of Chromium Dioxide Powder Compacts [J]. Phys. Rev. Lett. 1998, 80: 3815-3818.
    [31] Versluijs J J, Bari M A, Coey J M D, Magnetoresistance of Half-Metallic Oxide Nanocontacts [J]. Phys. Rev. Lett. 2001, 87: 026601.
    [32] Nadgorny B, Mazin I I, Osofsky M, et al. Origin of high transport spin polarization in La0.7Sr0.3MnO3: Direct evidence for minority spin states [J]. Phys. Rev. B. 2001, 63: 184433.
    [33] Tanaka C T, Nowa k J, Moodera J S. Spin-polarized tunneling in a half-metallic ferromagnet [J]. J. Appl. Phys. 1999, 86: 6239-6242.
    [34] Viret M, Drouet M, Nassar J, et al, Low-field colossal magnetoresistance in manganite tunnel spin valves [J]. Europhys.Letters. 1997, 39: 545-549.
    [35] Soulen R J, Byers J M, Osofsky M S, et al. Measuring the Spin Polarization of a Metal with a Superconducting Point Contact [J]. Science. 1998, 282: 85-88.
    [36] Versluijs J J, Bari M A, Coey J M D. Magnetoresistance of Half-Metallic Oxide Nanocontacts [J]. Phys. Rev. Lett. 2001, 87: 026601.
    [37] Watts S M, Wirth S, et al. Evidence for two-band magnetotransport in half-metallic chromium dioxide [J]. Phys. Rev. B. 2000, 61: 9621.
    [38] Ji Y, Strijkers J, Yang F Y et al. Determination of the Spin Polarization of Half-Metallic CrO2 by Point Contact Andreev Reflection [J]. Phys. Rev. Lett. 2001, 86:5585-5588.
    [39] Anguelouch A,Xiao G, Abraham D W, et al. Near-complete spin polarization in atomically-smooth chromium-dioxide epitaxial films prepared using a CVD liquid precursor [J]. Phys. Rev. B. 2001, 64: 180408.
    [40] Wen G H, Zhao H W, Zhao J G, Zhang X X. Magnetoresistance in as-deposited CoCu granular films [J]. Materials Science & Engineering C. 2001, 16: 81-84.
    [41] Berkowitz E, Mitchell J R, Carey M J, Young A P, Zhang S, Spada F E , Parker F T, Hutten A, Thomas G. Giant magnetoresistance in heterogeneous Cu-Co alloys [J]. Phys. Rev. Lett. 1992, 68: 3745-3748.
    [42] Xiao J Q, Jiang J S, Chien C L. Giant magnetoresistance in nonmultilayer magnetic systems [J]. Phys. Rev. Lett. 1992, 68: 3749-3752.
    [43] Yamagishi Y, Honda S, Inoue J. Numerical simulation of giant magnetoresistance in magnetic multilayers and granular films [J]. Phys. Rev. B. 2010, 81: 054445.
    [44] Cheng K W, Yu C, Lin L K, Yao Y D, Liou Y, Huang J H, Lee S F. Compensation between magnetoresistance and switching current in Co/Cu/Co spin valve pillar structure [J]. Appl. Phys. Lett. 2010, 96: 093110.
    [45] Barraud C, Deranlot C, Seneor P, Mattana R, Dlubak B, Fusil S, Bouzehouane K, Deneuve D, Petroff F, Fert A. Magnetoresistance in magnetic tunnel junctions grown on flexible organic substrates [J]. Appl. Phys. Lett. 2010, 96: 072502.
    [46] Qu T L, Li J, Zhao Y G, Mei J W, Liu X, Tian H F, Shi J P, Guo S M, Li J, Zheng D N, Li J Q. Nonlinear current-voltage behavior and giant positive magnetoresistance in nonmagnetic Au/Yttria-stabilized zirconia/Si heterostructures [J]. Appl. Phys. Lett. 2009, 95: 242113.
    [47] De K, Majumdar S, Giri S. Low-temperature transport anomaly in the self doped manganite, La0.9Mn0.98M0.02O3 (M=0, Fe, and Co) [J]. Journal of Magnetism and Magnetic Materials. 2010, 322: 337-341.
    [48] Xiong Z H, Wu D, Vardeny Z V, Shi J. Giant magnetoresistance in organic spin-valves [J]. Nature, 2004, 427: 821-824.
    [49] Sanvito S, Lambert C J, Jefferson J H, Bratkovsky A M. GeneralGreen’s-function formalism for transport calculations with spd Hamiltonians and giant magnetoresistance in Co- and Ni-based magnetic multilayers [J]. Phys. Rev. B. 1998, 59: 11936.
    [50]宫崎照宣.固体物理[M]. 1997.
    [51] Tondra M, Daughton J M, Wang D, Beech R S, Fink A, Taylor J A. Picotesla field sensor design using spin-dependent tunneling devices [J]. J. Appl. Phys. 1998, 83: 6688-6690.
    [52] Schraga B D, Xiao G. Submicron electrical current density imaging of embedded microstructures [J]. Appl.Phys.Lett. 2003, 82: 3272.
    [53] Daughton J M. Magnetic tunneling applied to memory [J]. J. Appl. Phys. 1997, 81: 3758-3763.
    [54] Han X F, Wen Z C, Wei H X. Nanoring magnetic tunnel junction and its application in magnetic random access memory demo devices with spin-polarized current switching [J]. J. Appl. Phys. 2008, 103: 07E933-07E938.
    [55] Schwarz K.CrO2 predicted as a half-metallic ferromagnet [J] J. Phys. F: Met. Phys. 1986, 16: L211-L215.
    [56] K?mper K P, Schmitt W, Güntherodt G et al. CrO2—A New Half-Metallic Ferromagnet [J]. Phys. Rev. Lett. 1987, 59: 2788-2791.
    [57] Coey J M D, Berkowitz A, Balcells L, Putris F F, Barry A. Magnetoresistance of chromium dioxide powder compacts [J]. Phys. Rev. Lett. 1998, 80: 3815.
    [58] Manoharan S S, Elefant D, Reiss G, Goodenough J B. Extrinsic giant magnetoresistance in chromium (IV) oxide, CrO2 [J]. Appl. Phys. Lett. 1998, 72: 984.
    [59] Chen Y J, Zhang X Y, Cai T Y, Li Z Y. Temperature dependence of ac response in diluted half-metallic CrO2 powder compact [J]. J. Alloy. Compd. 2004, 379: 240-246.
    [60] Baipai A, Nigam A K. Synthesis of high-purity samples of CrO2 by a simple route [J]. Appl. Phys. Lett. 2005. 87: 222502.
    [61] Baipai A, Nigam A K. Fluctuation-induced tunneling conductance and enhanced magnetoresistance in polycrystalline CrO2 and its composites [J]. Phys. Rev. B. 2007. 75: 064403.
    [62] Ishibashi S, Namikawa T. Epitaxial growth of ferromagnetic CrO2 films in air, Japan. J. Appl. Phys. 1978, 17: 249-250.
    [63] Rüdiger U, Rabe M, Samm K, ?zyilmaz B, Pommer J, Fraune M, Güntherodt G. Extrinsic and intrinsic magnetoresistance contributions of CrO2 thin films [J]. J. Appl. Phys. 2001, 89: 7699-7701.
    [64] Miao G X, LeClair P, Gupta A. Magnetic tunnel junctions based on CrO2/SnO2 epitaxial bilayers [J]. Appl. Phys. Lett. 2006, 89: 022511.
    [65] Gu Z, Parans P M, Xu J, Pan Z W. Aligned ZnO Nanorod Arrays Grown Directly on Zinc Foils and Zinc Spheres by a Low-Temperature Oxidization Method [J]. ACS Nano. 2009, 3 : 273-278.
    [66] Kamalakar M V, Raychaudhuri A K. A Novel Method of Synthesis of Dense Arrays of Aligned Single Crystalline Copper Nanotubes Using Electrodeposition in the Presence of a Rotating Electric Field [J]. Adv. Mater. 2008, 20: 149-154.
    [67] Zhang B, Wang H, Lu L, Ai K, Zhang G, Cheng Xi. Large-Area Silver-Coated Silicon Nanowire Arrays for Molecular Sensing Using Surface-Enhanced Raman Spectroscopy [J]. Adv. Funct. Mater. 2008, 18: 23482355.
    [68] Kustandi T S, Samper V D, Yi D K, Ng W S, Neuzil P, Sun W. Self-Assembled Nanoparticles Based Fabrication of Gecko Foot-Hair-Inspired Polymer Nanofibers [J]. Adv. Funct. Mater. 2007, 17: 2211-2218.
    [69] Lin C J, Yu W Y, Lu Y T, Chien S H. Fabrication of open-ended high aspect-ratio anodic TiO2 nanotube films for photocatalytic and photoelectrocatalytic applications [J]. Chem. Commun. 2008, 45: 6031.
    [70] El-Sayed H A, Birss V I. Controlled Interconversion of Nanoarray of Ta Dimples and High Aspect Ratio Ta Oxide Nanotubes [J]. Nano. Lett. 2009, 9: 1350-1355.
    [71] Pereira A, Grojo D, Chaker M, Delaporte P, Guay D, Sentis M. Laser-Fabricated Porous Alumina Membranes for the Preparation of Metal Nanodot Arrays [J]. small. 2008, 4: 572-576.
    [72] Chong A S M, Tan L K, Deng J, Gao H. Soft Imprinting: Creating Highly Ordered Porous Anodic Alumina Templates on Substrates for Nanofabrication [J].Adv. Funct. Mater. 2007, 17: 1629-1635.
    [73] Jennings J R, Ghicov A, Peter L M, Schmuki P, Walker A B. Dye-Sensitized Solar Cells Based on Oriented TiO2 Nanotube Arrays: Transport, Trapping, and Transfer of Electrons [J]. J. Am. Chem. Soc. 2008, 130: 13364-13372.
    [74] Zou X, Xiao G. Magnetic domain configurations of epitaxial chromium dioxide (CrO2) nanostructures [J]. Appl. Phys. Lett. 2007, 91: 113512.
    [75] Zou X, Xiao G. Electronic transport and magnetoresistance in polycrystalline and epitaxial CrO2 nanowires [J]. Phys. Rev. B. 2008, 77: 054417.
    [76] Song Y, Schmitt A L, Jin S. Spin-Dependent Tunneling Transport into CrO2 Nanorod Devices with Nonmagnetic Contacts [J]. Nano Lett. 2008, 8: 2356-2361.
    [77]任尚坤,张凤鸣,都有为.半金属磁性材料[M].物理学进展. 2004, 24: 381-397
    [78] Lewis S P, Allen P B, Sasaki T. Band structure and transport properties of CrO2 [J]. Phys. Rev. B. 1997, 55: 10253.
    [79] Buichi Kubota, Am J. Decomposition of higher oxides of chromium under various pressures of oxygen [J]. Ceram. Soc. 1961, 44: 239-248.
    [80] Shibasaki Y, Kanamaru F, Koizumi M, Kume S. CrO2-Cr2O3 phase Boundary under high O2 pressure [J]. J. Am. Ceram. Soc. 1973, 56: 248-249.
    [81] Ivanov P G, Watts S M, Lind D M. Epitaxial growth of CrO2 thin films by chemical-vapor deposition from a Cr8O21 precursor [J]. J. Appl. Phys. 2001, 89: 1035-1040.
    [82] Tripathy D, Adeyeye A O. Electronic properties of field aligned CrO2 powders [J]. Phys. B. 2005, 368: 131-138.
    [83] Coey J M D, Versluijs J J, Venkatesan M. Half-metallic oxide point contacts [J]. J. Phys. D: Appl. Phys. 2002, 35: 2457-2466.
    [84] Liu H, Zheng R K, Wang Y, Zhang X X. Mechanical magnetoresistance in broken cold-pressed CrO2 powder sample [J]. J. Magn. Magne. Mater. 2006. 302: 211-215.
    [85] Ding B J, Ju S. Li Z Y. The effect of remanence on the magnetoresistance in CrO2 powder compacts [J]. Phys. Lett. A. 2006, 353: 349-354.
    [86] Jaleel V A, Kannan T S. Hydrothermal synthesis of chromium dioxide powders and their charactrisation [J]. Bull. Mater. Sci. 1983, 5: 231-246.
    [87] Montiglio U, Basile G, et al. United States Patent [P]. 3911095.
    [88] Kubota B, Shi H, Osaka, Nishikawa T, et al. United States Patent [P]. 3243260.
    [89] Morero D, Montiglio U, et al. United States Patent [P]. 3929978
    [90] Kawamata T, Hirota E, Terada Y. United States Patent [P]. 3956151.
    [91] Demazeau G, Maestro P, Plante T, et al. United States Patent [P]. 4092439.
    [92] Steck W, Kovacs J, Mueller N, Jakusch H. Acicular Ferromagnetic Chromium Dioxide Particles. United States Patent [P]. 4495246.
    [93] Manoharan S S. Magneto-resistive CrO2 Polymer Composite Blend. United States Patent [P]. US2002/006549 A1.
    [94] Zhou S G, Zang C Y, Ma H A, Li X L, Zhang H M, Jia X P. Study on growth of coarse grains of diamond with high quality under HPHT [J]. Chin. Sci. Bull. 2009, 54: 163-167.
    [95] Ma H A, Jia X P, Zhang G, Bex P, et al. High-pressure pyrolysis study of C3N6H6: a route to preparing bulk C3N4 [J]. J. Phys. Condens. Matter. 2002, 14: 11269-11273.
    [96] Dai J B, Tang J K. Temperature dependence of the conductance and magnetoresistance of CrO2 powder compacts [J]. Phys. Rev. B. 2001, 63: 054434.
    [97] Hwang H Y, Cheong S W, Ong N P, Batlogg B. Spin-polarized intergrain tunneling in La2/3Sr1/3MnO3 [J]. Phys. Rev. Lett. 1996, 77: 2041-2044.
    [98] Coey J M D, Berkowitz A, Balcells L, Putris F F, Barry A. Magnetoresistance of chromium dioxide powder compacts [J]. Phys. Rev. Lett. 1998, 80: 3815-3818.
    [99] Wang J Q, Xiao G. Large finite-size effect of giant magnetoresistance in magnetic granular thin films [J]. Phys. Rev. B. 1995, 51: 5863.
    [100] Chien C L. Granular magnetic solids [J]. J. Appl. Phys. 1991, 69: 5267-5272.
    [101] Wolf S A, Awschalom D D, Buhrman R A, Daughton J M, von Molnár S, Roukes M L, Chtchelkanova A Y, Treger D M. Spintronics: A Spin-Based Electronics Vision for the Future [J]. Science. 2001, 294: 1488-1495.
    [102] ?uti? I, Fabian J, Sarma S D. Spintronics: Fundamentals and applications [J].Rev. Mod. Phys. 2004, 76: 323–410.
    [103] Gupta A, Sun J Z. Spin-polarized transport and magnetoresistance in magnetic oxides, Journal of Magnetism and Magnetic Materials [J] 1999, 200: 24-43.
    [104] Mireles F, Kirczenow G. Ballistic spin-polarized transport and Rashba spin precession in semiconductor nanowires [J]. Phys. Rev. B. 2001, 64: 024426.
    [105] Yeh N -C, Vasquez R P, Fu C C, Samoilov A V, Li Y, Vakili K. Nonequilibrium superconductivity under spin-polarized quasiparticle currents in perovskite ferromagnet-insulator-superconductor heterostructures [J]. Phys. Rev. B. 1999, 60: 10522–10526.
    [106] Burkov A A, Nú?ez A S, MacDonald A H. Theory of spin-charge-coupled transport in a two-dimensional electron gas with Rashba spin-orbit interactions [J]. Phys. Rev. B. 2004, 70: 155308.
    [107] Rodrigues V, Bettini J, Silva P C, Ugarte D. Evidence for Spontaneous Spin-Polarized Transport in Magnetic Nanowires [J]. Phys. Rev. Lett. 2003, 91: 096801.
    [108] Rippard W H, Buhrman R A. Spin-Dependent Hot Electron Transport in Co/Cu Thin Films [J]. Phys. Rev. Lett. 1999, 84: 971–974.
    [109] Versluijs J J, Bari M A, Coey J M D. Magnetoresistance of Half-Metallic Oxide Nanocontacts [J]. Phys. Rev. Lett. 2001, 87: 026601.
    [110] Gupta A, Li X W, Xiao G. Magnetic and transport properties of epitaxial and polycrystalline chromium dioxide thin films [J]. J. Appl. Phys. 2000, 87: 6073-6078.
    [111] Li X, Gupta A, Xiao G. Selective-area and lateral overgrowth of chromium dioxide (CrO_2) films by chemical vapor deposition [J]. Appl. Phys. Lett. 1999, 75: 2996.
    [112] Chetry K B, Pathak M, LeClair P, Gupta A. Structural and magnetic properties of (100)- and (110)-oriented epitaxial CrO_2 films [J]. J. Appl. Phys. 2009, 105: 083925.
    [113] Dho J. Structural and magnetic properties of heteroepitaxial CrO_2/TiO_2 bilayers grown on the Al2O3 substrate [J]. Journal of Crystal Growth, 2009, 311:2635-2640.
    [114] Dho J, Kim D-H, Kwon D, Kim B G. Thermal instability of the half-metallic CrO_2 film epitaxially grown on TiO_2 [J]. J. Appl. Phys. 2008, 104: 063528-063534.
    [115] Pathak M , Sims H, Chetry K B, Mazumdar D , LeClair P R , Mankey G J, Butler W H, Gupta A. Robust room-temperature magnetism of (110) CrO_2 thin films [J]. Phys. Rev. B. 2009, 80: 212405-212408.
    [116] Zhao Q, Yuan J J, Wen G H, Zou G T. Preparation and magnetoresistance of thin CrO_2 films [J]. J Magn Magn Mater. 2008, 320: 2356-2358.
    [117] DeSisto W J, Broussard P R, Ambrose T F, Nadgorny B E, Osofsky M S. Highly spin-polarized chromium dioxide thin films prepared vapor deposition from chromyl [J]. Appl. Phys. Lett. 2000, 76: 3789-3791.
    [118] Ji Y, Strijkers G J, Yang F Y, Chien C L, Byers J M, Anguelouch A, Xiao G, Gupta A. Determination of the Spin Polarization of Half-Metallic CrO_2 by Point Contact Andreev Reflection [J]. Phys. Rev. Lett. 2001, 86: 5585-5588.
    [119] Watts S M, Wirth S, Molnár S V. Evidence for two-band magnetotransport in half-metallic chromium dioxide [J]. Phys. Rev. B. 2000, 61: 9621-9628.
    [120] Ivanov P G, Watts, S M, Lind D M. Epitaxial growth of CrO_2 thin films by chemical-vapor deposition from a Cr8O_21 precursor [J]. J. Appl. Phys. 2001, 89: 1035-1040.
    [121] Suzuki K, Tedrow P M. Longitudinal magnetoresistance of CrO_2 thin films [J]. Appl. Phys. Lett. 1999, 74: 428-429.
    [122] Anguelouch A, Gupta A, Xiao G, Abraham D W, Ji Y, Ingvarsson S, Chien C L. Near-complete spin polarization in atomically-smooth chromium-dioxide epitaxial films prepared using a CVD liquid precursor [J]. Phys. Rev. B. 2001, 64: 180408-180411.
    [123] Dedkov Y S, Fonine M, K?nig C, Rüdiger U, Güntherodt G. Room-temperature observation of high-spin polarization of epitaxial CrO_2 (100) island films at the Fermi energy [J]. Appl. Phys. Lett. 2002, 80: 4181-4183.
    [124] Miao G X, Xiao G. Variations in the magnetic anisotropy properties of epitaxialCrO_2 films as a function of thickness [J]. Phys. Rev. B. 2005, 71: 094418-094424.
    [125] Rameev B Z, Gupta A, Y?ld?z F, Tagirov L R, Aktas B. Strain-induced magnetic anisotropies in epitaxial CrO_2 thin films probed by FMR technique [J]. J. Magn. Magn. Mater. 2006, 300: e526-e529.
    [126] Fu C M, Lai C J, Wu J S. High frequency impedance spectra on the chromium dioxide thin film [J]. J. Appl. Phys. 2001, 89: 7702-7704.
    [127] Anguelouch A, Gupta A,Xiao G,Miao G X. Properties of epitaxial chromium dioxide films grown by chemical vapor deposition using a liquid precursor [J]. J. Appl. Phys. 91. 7140: 2002-2004.
    [128] Ranno L, Barry A, Coey J M D. Production and magnetotransport properties of CrO_2 films [J]. J. Appl. Phys. 1997, 81: 5774-5776.
    [129] Ishibashi S. Namikawa T, Satou M. Epitaxial growth of ferromagnetic CrO_2 films in air [J]. Mater. Res. Bull.1979, 14: 51-57.
    [130] Rabe M, Dre J, Dahmen D, Pommer J, Stahl H, RuKdiger U, G. GuK ntherodt, Senz S, Hesse D. Preparation and characterization of thin ferromagnetic CrO_2 flims for applications in magnetoelectronics [J]. J. Magn. Magn. Mater. 2000, 211: 314-319.
    [131] Rabe M, Pommer J, Samm K, Zyilmaz B ?, K?nig C, Fraune M, Rüdiger U, Güntherodt G, Senz S, Hesse D. Growth and magnetotransport study of thin ferromagnetic CrO_2 films [J]. J. Phys.: Condens. Mater, 2002, 14: 7-21
    [132] Korotin M A, Anisimov V I, Khomskii D I, Sawatzky G A. CrO_2: A Self-Doped Double Exchange Ferromahnet [J]. Phys. Rev. Lett. 1998, 80: 4305-4308.
    [133] Rüdiger U, Rabe M, Samm K, ?zyilmaz B, Pommer J, Fraune M, Güntherodt G, Senz S, Hesse D. Extrinsic and intrinsic magnetoresistance contributions of CrO_2 thin films [J]. J. Appl. Phys. 2001, 89: 7699-7682.
    [134] Lee S, Hwang H Y, Shraiman B I, Ratcliff W D, Cheong S-W. Intergrain Magnetoresistance via Second-Order Tunneling in Perovskite Manganites [J]. Phys. Rev. Lett. 1999, 82: 4508-4511.
    [135] Hwang H Y, Cheong S W, Ong N P, Batlogg B. Spin-Polarized Intergrain Tunneling in La2/3Sr1/3MnO3 [J]. Phys. Rev. L.1996, 77: 2041-2044.
    [136] Bajpai A, Nigam A K. Fluctuation-Induced Tunneling Conductance and Enhanced Magnetoresistance in Polycrystalline CrO_2 and its Composites [J]. Phys. Rev. B. 2007, 75: 064403-064409.
    [137] Gold S, Goering E. Temperature dependence of the magnetocrystalline anisotropy energy and projected microscopic magnetic moments in epitaxial CrO_2 films [J]. Phys. Rev. B. 2005, 71: 220404-220407.
    [138] Tan S G, Kumar S B. Layer Thickness Effect on the Magnetoresistance of a Current-Perpendicular-to-Plane Spin Valve [J]. J. Appl. Phys. 2006, 100: 063703-063707.
    [139] Zhang Q, Nurmikko A V, Miao G X. Ultrafast Spin-Dynamics in Half-Metallic CrO_2 Thin Films [J]. Phys. Rev. B. 2006, 74: 064414-064419.
    [140] Sun S H, Murray C B, Weller D, Folks L, Moser A. Monodisperse FePt Nanoparticles and Ferromagnetic FePt Nanocrystal Superlattices [J]. Science. 2000, 287: 1989-1992.
    [141] Hueso L E Pruneda, J M, Ferrari V, Burnell G, Valdés-Herrera1 J ,P Simons B D, Littlewood P B, Artacho E, Fert A, Mathur N. Transformation of spinin formation into large Electrical signals using carbon nanotubes [J]. Nature. 2007, 445: 410-413.
    [142] Yasui N, Imada A, Den T. Electrodeposition of (001) oriented CoPt L10 columns into anodic alumina?lms [J]. Appl. Phys. Lett. 2003, 83: 3347-3349.
    [143] Maurer T, Ott F, Chaboussant G., Soumare Y, Piquemal J Y, Viau G. Magnetic nanowires as permanent magnet materials [J]. Appl. Phys. Lett. 2007, 91: 172501-172503.
    [144] Chen Y P, Ding K Yang, L, Xie B, Song F Q, Wan J G, Wang G H, Han M. Nanoscale ferromagnetic chromium oxide ?lm from gas-phase nanocluster deposition [J]. Appl. Phys. Lett. 2008, 92:173112-173114.
    [145] Bao J C, Tie C Y, Xu Z, Zhou Q F, Shen D, Ma Q. Template Synthesis of an Array of Nickel Nanotubules and Its Magnetic Behavior [J]. Adv. Mater. 2001, 13: 1631-1633.
    [146] Gao J H, Sun D L, Zhang X Q, Zhan Q F, He W, Sun Y, Cheng Z H. Structureand magnetic properties of the self-assembled Co52Pt48 nanowire arrays [J]. Appl. Phys. Lett. 2008, 92: 102501-102503.
    [147] Tsymbal E Y, Mryasov O N, LeClair P R. Spin-dependent tunnelling in magnetic tunnel junctions [J]. J. Phys. Condens. Matter, 2003, 15: R109-R142.
    [148] Teresa J M D , Barthélémy A , Fert A, Contour J P, Lyonnet R, Montaigne P, Vaurès A. Inverse Tunnel Magnetoresistance in Co/SrTiO3/La0.7Sr0.3MnO3: New Ideas on Spin-Polarized Tunneling [J]. Phys. Rev. Lett. 1999, 82: 4288-4291.
    [149] Jo M, Mathur N D, Todd N K, Blamire M G. Very large magnetoresistance and coherent switching in half-metallic manganite tunnel junctions [J]. Phys. Rev. B. 2000, 61: R14905–R14908.
    [150] Cardoso S, Freitas1 P P, Jesus C D, Wei P, Soares J C. Spin-tunnel-junction thermal stability and interface interdiffusion above 300°C [J]. Appl. Phys. Lett. 2000, 76: 610-612.
    [151] Nielsch K, Müller F, Li A, G?sele U. Uniform Nickel Deposition into Ordered Alumina Poresby Pulsed Electro deposition [J]. Adv. Mater. 2000, 12: 582-586.
    [152] Oshima H, Kikuchi H, Nakao H, Itoh K, Kamimura T, Morikawa T, Matsumoto K, Umada T, Tamura H, Nishio K, Masuda H. Detecting dynamic signals of ideally ordered nanohole patterned disk media fabricated using nanoimprint lithography [J]. Appl. Phys. Lett. 2007, 91: 022508-022510.
    [153] Xiao S G, Yang X M, Park S J, Weller D, Russell T P. A Novel Approach to Addressable 4Teradot/in.2 Patterned Media [J]. Adv. Mater. 2009, 21: 1-4.
    [154] Piraux L, George J M, Despres J F, Leroy C, Ferain E, Legras R.Giant magnetoresistance in magnetic multilayered nanowires [J]. Appl. Phys. Lett. 1994, 65: 2484-2486.
    [155] Parker J S, Watts S M, Ivanov P G. Xiong P. Spin Polarization of CrO_2 at and across an Artificial Barrier [J]. Phys. Rev. Lett. 2002, 88: 196601-196604.
    [156] Chen Y J, Zhang X Y, Cai T Y, Li Z Y. Temperature dependence of ac response in diluted half-metallic CrO_2 powder compact [J]. J. Alloy. Compd. 2004, 379: 240-246.
    [157] Coey J M D. Powder magnetoresistance [J]. J. Appl. Phys. 1999, 85: 5576-5581.
    [158] Mazin I I , Singh D J, Ambrosch-Draxl C. Transport, optical, and electronic properties of the half-metal CrO_2 [J]. Phys. Rev. B. 1998, 59: 411-418.
    [159] Gupta A, Li X W, Xiao G. Inverse magnetoresistance in chromium-dioxide-based magnetic tunnel junctions [J]. Appl. Phys. Lett. 2001, 78: 1894-1896.
    [160] Yang F Y, Chien C L, Ferrari E F, Li X W, Xiao G, Gupta A. Uniaxial anisotropy and switching behavior in epitaxial CrO_2 ?lms [J]. Appl. Phys. Lett. 2000, 77: 286-288.
    [161] Dai J B, Tang J K. Temperature dependence of the conductance and magnetoresistance of CrO_2 powder compacts [J]. Phys. Rev. B. 2001, 63: 064410-064414.
    [162] Barry E, Coey J M D. Charge dynamics in the half-metallic ferromagnet CrO_2 [J]. Phys. Rev. B. 1999, 60: 4126-4130.
    [163] Zhao Q, Yuan J J, Wen G H, Zou G. T. Preparation and magnetoresistance of thin CrO_2 ?lms [J]. J. Magen. Magen. Mater. 2008, 320: 2356-2358.
    [164] Zhao Q, Fan Y B, Wen G H, Liu Z G, Ma H A, Jia X P, Zou G T, Mao H K. Shape-controlled synthesis of high-purity CrO_2 under HTHP [J]. Mater. Lett. 2010, 64: 592-595.
    [165] Chu S Z, Wada K J, Inoue S, Isogai M, Yasumori. Fabrication of Ideally Ordered Nanoporous Alumina Films and Integrated Alumina Nanotubule Arrays by High-Field Anodization [J]. Adv. Mater. 2005, 17: 2115-2119.
    [166] Lee W, Ji R, Gosele U, Nielsch K. Fast fabrication of long-range ordered porous alumina membranes by hard anodization [J]. nature. Mater. 2006, 5: 741-747.
    [167] Li F Y, Zhang L, Metzger R M. On the Growth of Highly Ordered Pores in Anodized Aluminum Oxide [J]. Chem. Mater. 1998, 10: 2470-2480.
    [168] Zhang X Y, Wen G. H, Chan Y F, Zheng R K, Zhang X X, Wang N. Fabrication and magnetic properties of ultrathin Fe nanowire arrays [J]. Appl. Phys. Lett. 2003, 83: 3341-3343.
    [169] Wen G H, Ren F X, Deng Y F, Zhao Q. Template Preparation and magnetic Properties of Cobalt Nanowires [J]. Chenical Journal of Chinese Universitles. 2006, 27:1708-1710.
    [170] Kokonou1 M , Rebholz1 C, Giannakopoulos1 K P, Doumanidis C C. Fabrication of nanorods by metal evaporation inside the pores of ultra-thin porous alumina templates [J]. Nanotechnology. 2007, 18: 495604-495608.
    [171] Masuda H, Yanagishita T, Yasui K, Nishio K, Yagi I , Rao T N, Fujishima A. Sythesis of Well-Aligned Diamond Nanocylinfers [J]. Adv. Mater. 2001, 13: 247-249.
    [172] Miao Z, Xu D S, Ouyang J H, Guo G L, Zhao X S, Tang Y Q. Electrochemically Induced Sol?Gel Preparation of Single-Crystalline TiO2 Nanowires [J]. Nano. Lett. 2002, 2: 717-720.
    [173] Masuda H, Fukuda K. Ordered Metal Nanohole Arrays Made by a Two-Stap Replication of Honeycomb Structures of Anodic Alumina [J]. Scince. 1995, 268:1466-1468.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700