一维碳纳米材料及其复合结构的制备与表征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
以碳纳米管为代表的一维纳米材料是目前研究最为广泛的一类新型功能材料,其可控合成是当今纳米材料研究领域的前沿和热点之一。如何设计结构新颖、形貌独特的一维纳米材料,并在制备过程中实现对其结构维度、物质组成的准确控制,进而对其本征性能进行调变对于深入理解物质结构与性质的关联、人工设计合成新型功能材料具有重要意义。本文就碳纳米管及由其衍生的一维碳-金属(或其化合物)复合纳米材料的结构选择制备进行了系统研究,主要研究结果如下:
     以煤为碳源前躯体,在电弧等离子体条件下实现了碳纳米管的结构选择制备。通过调节反应条件如催化剂种类、缓冲气氛种类及压力等可以得到形态结构各异的碳纳米管如双壁碳纳米管、多壁碳纳米管、分枝碳纳米管等。在惰性气氛中,以活性较高的铁作为催化剂时可以制备双壁碳纳米管,其管径分布在1-5 nm左右,管壁间距恒定(约0.41nm),在范德华力作用下可以定向集结形成长达20 cm的宏观绳状沉积物;而以传统意义上对碳材料生长催化活性极弱的铜作为催化剂时则可实现多壁碳纳米管及分枝碳纳米管的大量合成,其中分枝碳纳米管的纯度经优化后可达90%以上。
     以碳纳米管作为形态模板,通过电弧等离子体原位填充技术制备了外壳为碳纳米管、内芯为一维铜或稀土氟化物纳米线的“纳米电缆”复合结构(Cu/LnF_3@CNT纳米电缆)。在碳纳米管内腔中合成了长达十余微米、直径分布均一的超长铜、稀土氟化物晶体纳米线并对其在碳纳米管限域内腔中的晶体生长行为进行了探讨;研究表明:碳纳米管的紧密包覆可以严格限制物质晶体的外延生长,从而强制其以理想各向异性方式生长形成长程结构连续的一维纳米线,在此过程中,晶体纳米线可以沿高能晶面或低能晶面方向取向,生长模式较为多样。在纳米电缆结构制备的基础上,通过热氧化反应除去碳纳米管壳层,可以在不损伤晶体纳米线形态及结构的前提下实现由稀土氟化物@碳纳米管复合结构向纯净稀土氟化物纳米线的转化。
     利用水热法,在温和条件下原位制备了Cu@C纳米电缆复合结构。此类纳米电缆结构的外壳为厚度均一(20-30 nm)的无定形炭层,内芯为直径100-200 nm、长约数微米的铜晶体纳米线;经高温炭化处理后,Cu@C纳米电缆可部分向Cu@CNT纳米电缆结构转化。通过调节反应条件,使用类似的液相方法还可以实现炭微米球或氧化铜微米球的制备。
As a class of novel functional materials, one-dimensional(1D)nanomaterials have attractedextensive research interests across the world in recent years, of which the controllablesynthesis is one of the hot topics of nanoscience and nanotechnology. The big challenge onthe understanding of the relationship between the structure and characteristics of the 1Dnanomaterials and their artificial synthesis is how to design them with novel structure andunique shape, and how to precisely control the structure, dimensionality and composition ofthe materials, further to tailor their intrinsic properties. In the present thesis, the research isprimarily focused on the structure-selective synthesis and characterization of carbonnanotubes (CNTs) and related 1D hybrid nanostruetures, of which the majority results arebriefly summarized as follows.
     The CNTs with diverse morphologies have been selectively synthesized from coal via arcdischarge method by tuning the reaction parameters such as the catalysts, carbon source andbuffer gas to be appropriate. High-quality double-walled CNTs (DWNTs) could besynthesized in large scale by the arc-discharge of coal-based carbon with Fe as catalyst in ahydrogen-free atmosphere, of which the diameter falls in a range of 1-5 nm and the distancebetween the tube walls is about 0.41 nm. When the Cu, a traditional weak catalyst for carbonmaterial growth, was used, abundant multi-walled CNTs (MWNTs) could be produced, andtheir structure could be deformed through the Cu-catalyzed introduction of non-hexagonalcarbon ring into the lattice of the tubes. Consequently, branched CNTs (BCNTs) wereobtained after the optimization of the reaction, of which the purity can be as high as about90%.
     The CNTs synthesized above could be used as ideal nanotemplate for the synthesis ofM@CNT(M: copper or lanthanide fluoride) nanocables by an in-situ filling technique.Super-long crystalline nanowires(over ten micrometers in length) of copper or lanthanidefluoride could be fabricated inside the inner cavities of the CNTs under proper conditions.The crystal nature of lanthanide fluoride nanowires confined inside the CNT cavity wasinvestigated to make the confining effect of the nanotubes clear. It indicates that the presenceof CNT sheath retards the lateral growth of filling crystals by preventing the formation of freesurface, and enforces the formation of 1D nanowire with diverse growth directions inside thetube, whereas for uncoated nanowires the surface energy and facet formation plays crucial role for their intrinsic anisotropic growth. This work can be extended to the preparation ofpure lanthanide fluoride nanowires from the corresponding nanoeables by simple thermaloxidation treatment while their 1D shape and crystalline nature remaining unchanged.
     In addition, Cu@C nanoeables have been produced by a mild solution technique, in whichthe carbon coating is amorphous while the copper nanowires are well crystalline. After thecarbonization, the carbon coating outside the copper nanowires could be evolved to be ananalogy of graphitie structure. Furthermore, the technique can be also used for the synthesisof the microspheres of carbon or CuO after the modification of reaction conditions.
引文
[1] 韦进全,张先锋,王昆林.碳纳米管宏观体.北京:清华大学出版社,2006.
    [2] Rols S, Almairac R, Henrard L, et al. Diffraction by finite-size crystalline bundles of single wall nanotubes. Eur Phys J B, 1999, 10:263-270.
    [3] heimann R B, Evsyukov S E, Koga Y. Carbon allotropes: a suggested classification scheme based on valence orbital hybridization. Carbon, 1997, 35: 1654-1658.
    [4] 成会明.纳米碳管:制备、结构、物性及应用.北京:化学工业出版社,2002.
    [5] Kroto H W, Heath J R,O′ Brien S C , et al. C_(60): Buckminsterfullerene. Nature, 1985, 318:162-163.
    [6] Iijima S. Helical microtubes of graphitic carbon. Nature, 1991, 354:56-58.
    [7] http://nobelprize.org.
    [8] Ebbesen T W, Ajayan P M. Large-scale Synthesis of Carbon Nanotubes. Nature, 1992, 358: 220-222.
    [9] Iijima S, Ichihashi T. Single-shell carbon nanotubes of 1-nm diameter. Nature, 1993, 363: 603-605.
    [10] Bethune D S, Kiang C H, De Vries M S, et al. Cobalt-catalyzed growth of carbon nanotubes with single-atomic-layer walls. Nature, 1993, 363:605-607.
    [11] Wildoer J W G, Venema L C, Rinzler A G. Electronic structure of atomically resolved carbon nanotube. Nature, 1998, 391:59-62.
    [12] Dresselhaus M S, Dresselhaus G, Saito R. Carbon fibers based on C_(60) and their symmetry. Phys Rev B, 1992, 45: 6234-6242.
    [13] Ishigami M, Cumings J, Zettl A, et al. A simple method for the continuous production of carbon nanotubes. Chem Phys Lett, 2000, 319:457-459.
    [14] Journet C, Master W K, Bernier P, et al. Large-scale production of single-walled carbon nanotubes by the electric-arc technique. Nature, 1997, 388:756-758.
    [15] Liu C, Cong H T, Li F, et al. Semi-continuous synthesis of single-walled carbon nanotubes by a hydrogen arc discharge method. Carbon, 1999, 37:1865-1868.
    [16] Liu C, Fan Y Y, Liu M, et al. Hydrogen storage in single-walled carbon nanotubes at room temperature. Science, 1999, 286:1127-1129.
    [17] Hutchison J L, Kiselev N A, Krinichnaya E P, et al. Double-walled carbon nanotubes fabricated by a hydrogen arc discharge method. Carbon, 2001, 39:761-770.
    [18] Sugai T, Yoshida H, Shimada T, et al. New Synthesis of high-quality double-walled carbon nanotubes by high-temperature pulsed arc discharge. Nano Lett, 2003, 3:769-773.
    [19] Huang H J, Kajiura H, Tsutsui S, et al. High-quality double-walled carbon nanotube super bundles grown in a hydrogen-free atmosphere. J Phys Chem B, 2003, 107:8794-8798.
    [20] Pang L S K, Prochazka L, Quezada R A, et al. Competitive reactions during plasma arcing of carbonaceous materials. Energy & Fuels, 1995, 9:704-706.
    [21] Pang L S K, Wilson M A, Taylor G H, et al. Formation of unusual graphitic structures during fullerene production. Carbon, 1992, 30:1130-1131.
    [22] Patney H K, Nordlund C, Moy A, et al. Fullerenes and nanotubes from coal. Fullerene Sci & Tech, 1999, 7:941-971.
    [23] Wilson M A, Taylor G H, Kalman J. New development of carbon nanotubes from coal. Fuel, 2002, 81:5-14.
    [24] 邱介山,韩红梅,周颖等.由两种烟煤制备碳纳米管的探索性研究.新型碳材料,2001,16:1-6.
    [25] Qiu J S, Zhang F, Han H M, et al. Carbon nanomaterials from eleven caking coals. Fuel, 2002, 81:1509-1514.
    [26] Li Y F, Qiu J S, Zhao Z B, et al. Bamboo-shaped Carbon Tubes from Coal. Chem Phys Lett, 2002, 366:544-550.
    [27] Qiu J S, Li Y F, Wang Y P, et al. High-purity single-walled carbon nanotubes synthesized from coal by arc discharge. Carbon, 2003, 41:2170-2173.
    [28] Qiu J S, Li Y F, Wang Y P, et al. Production of carbon nanotubes from coal. Fuel Process Tech, 2004, 85:1663-1670.
    [29] Wang Z Y, Zhao Z B, Qiu J S. Synthesis of branched carbon nanotubes from coal. Carbon, 2006, 44:1321-1324.
    [30] Wang Z Y, Zhao Z B, Qiu J S, et al. Synthesis of double-walled carbon nanotubes from coal in hydrogen-free atmosphere. Fuel, 2007, 86:282-286.
    [31] 田亚峻,谢克昌,樊友三.用煤合成碳纳米管的新方法.高等学校化学学报,2001,22:1456-1458.
    [32] Tian Y J, Zhang Y L, Wang B J, et al. Coal-derived carbon nanotubes by thermal plasma jet. Carbon, 2004, 42:2597-2601.
    [33] Saito Y, Tani Y, Miyagawa N, et al. High yield of single-wall carbon nanotubes by arc discharge using Rh-Pt mixed catalysts. Chem Phys Lett, 1998, 294:593-598.
    [34] Guo T, Nikolaev P, Thess A, et al. Catalytic growth of single-walled nanotubes by laser vaporization. Chem Phys Lett, 1995, 243:49-54.
    [35] Thess A, Lee R, Nikolaev P, et al. Crystalline ropes of metallic carbon nanotubes. Science, 1996, 273:483-487.
    [36] Yudasaka M, Komatsu T, Ichihashi T, et al. Single-wall carbon nanotube formation by laser ablation using double-targets of carbon and metal. Chem Phys Lett, 1997, 278:102-106.
    [37] Wang Y, Wei F, Luo G H, et al. The large-scale production of carbon nanotubes in a nanoagglomerate fluidized-bed reactor. Chem Phys Lett, 2002, 364:568-572.
    [38] Yacaman M J, Yoshida M M, Rendon L. Catalytic growth of carbon microtubes with fullerenes structure. Appl Phys Lett, 1993, 62:657-659.
    [39] Kong J, Cassell A M, Dai H J. Chemcial vapor deposition of methane for single-walled carbon nanotubes. Chem Phys Lett, 1998, 292:567-574.
    [40] Cheng H M, Li F, Su G, et al. Large-scale and low-cost synthesis of single-walled carbon nanotubes by the catalytic pyrolysis of hydrocarbons. Appl Phys Lett, 1998, 72:3282-3284.
    [41] Cheng H M, Li F, Sun X. Bulk morphology and diameter distribution of single-walled carbon nanotubes synthesized by catalytic decomposition of hydrocarbons. Chem Phys Lett, 1998, 289:602-610.
    [42] Nikolaev P, Bronikowski M J, Bradley R K, et al. Gas-phase catalytic growth of single-walled carbon nanotubes from carbon monoxide. Chem Phys Lett, 1999, 313:91-97.
    [43] Hata K, Futaba D N, Mizuno K, et al. Water-assisted highly efficient synthesis of impurity-free single-walled carbon nanotubes. Science, 2004, 306:1362-1364.
    
    [44] Ren W C, Li F, Chen J, et al. Morphology, diameter distribution and Raman scattering measurements of double-walled carbon nanotubes synthesized by catalytic decomposition of methane. Chem Phys Lett, 2002, 359:196-202.
    [45] Flahaut E, Bacsa R, Peigney A, et al. Gram-scale CCVD synthesis of double-walled carbon nanotubes. Chem commun, 2003, 1442-1443.
    
    [46] http://ipn2.epfl.ch/CHBU (homepage of the CNT group at IPN)
    [47] Kuwana K, Endo H, Saito K, et al. Catalyst deactivation in CVD synthesis of carbon nanotubes. Carbon, 2005, 43:253-260.
    [48] Liu B C, Lyu S C, Jung S I, et al. Single-walled carbon nanotubes produced by catalytic chemical vapor deposition of acetylene over Fe-Mo/MgO catalyst. Chem Phys Lett, 2004, 383:104-108.
    [49] Li W Z, Wen J G, Sennett M, et al. Clean double-walled carbon nanotubes synthesized by CVD. Chem Phys Lett, 2003, 368:299-306.
    [50] Fan S S, Chapline M G, Franklin N R. Self-oriented regular arrays of carbon nanotubes and their emission properties. Science, 1999, 283:512-514.
    [51] Pan Z W, Xie S S, Lu L, et al. Tensile tests of ropes of very long aligned multiwall carbon nanotubes. Appl Phys Lett, 74:3152-3154.
    [52] Wei B Q, Vajtai R, Jung Y, et al. Organized assembly of carbon nanotubes. Nature, 2002, 416:495-495.
    [53] Wei B Q, Vajtai R, Jung Y, et al. Assembly of highly organized carbon nanotube architectures by chemical vapor deposition. Chem Mater, 2003, 15:1598-1606.
    [54] Li X S, Cao A Y, Jung, Y J, et al. Bottom-up growth of carbon nanotube multilayers: unprecedented growth. Nano Lett, 2005, 5:1997-2000.
    [55] Cao A Y, Veedu V P, Li X S, et al. Multifunctional brushes made from carbon nanotubes. Nature Materials, 2005, 4:540-545.
    [56] Srivastava A, Srivastava O N, Talapatra S, et al. Carbon nanotube filters. Nature Materials, 2004, 3:610-614.
    [57] Ajayan P M, Iijima S. Capillarity induced filling of carbon nanotubes. Nature, 1993, 361:333-335.
    [58] Harris P J F. Carbon Nanotubes and Related Structures. Cambridge, UK: Cambridge University Pr., 1999.
    [59] Pederson M R, Broughton J Q. Nanocapillarity in fullerene tubules. Phys Rev Lett, 1992, 69:2689-2692.
    [60] Guerret-Plecourt C, Le Bouar Y, Loiseau A, et al. Relation between metal electronic structure and morphology of metal-compounds inside carbon nanotubes. Nature, 1994, 372:761-765.
    [61] Ruoff R S, Lorents D C, Chan B C, et al. Single-crystal metals encapsulated in carbon nanoparticles. Science, 1993, 259:346-348.
    [62] Seraphin S, Zhou D, Jiao J, et al. Yttrium carbide in nanotubes. Nature, 1993, 362:503-503.
    [63] Seraphin S, Zhou D, Jiao J, et al. Selective encapsulation of the carbides of yttrium and titanium into carbon nanoclusters. Appl Phys Lett, 1993, 63:2073-2075.
    [64] Loiseau A, Pascard H. Synthesis of long carbon nanotubes filled with Se, S, Sb and Ge by the arc method. Chem Phys Lett, 1996, 256:246-252.
    [65] Dai J Y, Lauerhaas J M, Setlur A A, et al. Synthesis of carbon-encapsulated nanowires using polycyclic aromatic hydrocarbon precursors. Chem Phys Lett, 1996, 258:547-553.
    [66] Setlur A A, Lauerhaas J M, Dai J Y, et al. A method for synthesizing large quantities of carbon nanotubes and encapsulated copper nanowires. Appl Phys Lett, 1996, 69:345-347.
    [67] Setlur A A, Dai J Y, Lauerhaas J M, et al. Formation of filled carbon nanotubes and nanoparticles using polycyclic aromatic hydrocarbon molecules. Carbon, 1998, 36:721-723.
    [68] Wang Z Y, Zhao Z B, Qiu J S. In situ synthesis of super-long Cu nanowires inside carbon nanotubes with coal as carbon source. Carbon, 2006, 44:1845-1847.
    [69] Ajayan P M, Ebbesen T W, Ichihashi T, et al. Opening carbon nanotubes with oxygen and implication for Tilling. Nature, 1993, 362:522-525.
    [70] Harris P J F, Tang S C. A simple technique for the synthesis of filled carbon nanoparticles. Chem Phys Lett, 1998, 293:53-58.
    [71] Dujardin E, Ebbesen T W, Hiura H, et al. Capillarity of carbon nanotubes. Science, 1994, 265:1850-1852.
    [72] Ajayan P M, Stephan O, Redlich Ph, et al. Carbon nanotubes as removable templates for metal oxide nanocomposites and nanostructures. Nature, 1995, 375:564-567.
    [72] Ugarte D, Chatelain A, de Heer W A. Nanocapillarity and chemistry in carbon nanotubes. Science, 1996, 274:1897-1899.
    [74] Tsang S C, Chen Y K, Harris P J F, et al. A simple chemical method of opening and filling carbon nanotubes. Nature, 1994, 372:159-162.
    [75] Lago R M, Tsang S C, Lu K L, et al. Filling carbon nanotubes with small palladium metal crystallites-the effect of surface acid groups. Chem Commun, 1995, 1355-1356.
    [76] Tsang S C, Davis J J, Green M L H, et al. Immobilization of Small Proteins on Carbon Nanotubes: HRTEM Study and Catalytic Activity. Chem Commun, 1995, 1803-1804.
    [77] Mayne M, Grobert N, Terrones M, et al. Pyrolytic of aligned carbon nanotubes from homogeneously dispersed benzene-based aerosols. Chem Phys Lett, 2001, 338:101-107.
    [78] Grobert N, Terrones M, Osborne A J, et al. Thermolysis of Ceo thin film yields Ni-filled tapered nanotubes. Appl Phys A, 1998, 67:595-598.
    [79] Terrones M, Grobert N, Zhang J P, et al. Preparation of aligned carbon nanotubes catalysed by laser-etched cobalt thin films . Chem Phys Lett, 1998, 285:299-305.
    [80] Cheng J P, Zhang X B, Liu F, et al. Synthesis of carbon nanotubes filled with Fe3C nanowires by CVD with titanate modified palygorskite as catalyst. Carbon, 2003, 41:1965-1970.
    [81] Guan L H, Shi Z J, Li H J, et al. Super-long continuous Ni nanowires encapsulated in carbon nanotubes. Chem Commun, 2004, 1988-1989.
    [82] Hu J P, Bando Y, Zhan J H, et al. Carbon nanotubes as nanoreactors for fabrication of single-crystalline Mg_3N_2 nanowires. Nano Lett, 2006, 6:1136-1140.
    [83] Jankovic L, Gournis D, Trikalitis P N, et al. Carbon nanotubes encapsulating superconducting single-crystalline Tin nanowires. Nano Lett, 2006, 6:1131-1135.
    [84] Chancolon J, Archaimbault F, Pineau A, et al. Filling of multiwalled carbon nanotubes with oxides and metals. In: Carbon' 2003, Oviedo, Spain, July 6-10, 2003.
    [85] Liang C H, Meng G W, Zhang L D, et al. Carbon nanotubes filled partially or completely with nickel. J Cryst Growth, 2000, 218:136-139.
    [86] Chen Y K, Chu A, Cook J, Green M L H, et al. Synthesis of carbon nanotubes containing metal oxides and metals of the d-block and f-block transition metal and related studies. J Mater Chem, 1997, 7:545-549.
    [87] Zhang G Y, Wang E G. Cu-f illed carbon nanotubes by simultaneous plasma-assisted copper incorporation. Appl Phys Lett, 82:1926-1928.
    [88] Chu A, Cook J, Heesom R J R, et al. Filling of carbon nanotubes with silver, gold and gold chloride. Chem Mater, 1996, 8:2751-2754.
    [89] Ajayan P M, Colliex C, Lambert J M, et al. Growth of manganese filled carbon nanofibers in the vapor phase. Phys Rev Lett, 1994, 72:1722-1725.
    [90] Subramoney S, Ruoff R S, Lorents D C, et al. Magnetic separation of GdC_2 encapsulated in nanoparticles. Carbon, 1994, 32:507-513.
    [91] Sloan J, Hammer J, Zwiefka-Sibley M, et al. The opening and filling of single walled carbon nanotubes(SWNTs). Chem Commun, 1998, 347-348.
    [92] Sloan J, Wright D M, Woo H G, et al. Capillarity and silver nanowire formation observed in single walled carbon nanotubes. Chem Commun, 1999, 699-700.
    [93] Meyer R R, Sloan J, Dunin-Borkowski R E, et al. Discrete atom imaging of one dimensional crystals formed within single-walled carbon nanotubes. Science, 2000, 289:1324-1326.
    [94] Sloan J, Novotny M C, Bailey S R, et al. Two layer 4:4 co-ordinated KI crystals grown within single walled carbon nanotubes. Chem Phys Lett, 2000, 329:61-65.
    [95] Brown G, Bailey S, Sloan J, et al. Electron beam induced in situ clusterisation of 1D ZrC14 chains within single-walled carbon nanotubes. Chem Commun, 2001, 845-846.
    [96] Sloan J, Kirkland A I, Hutchison J L, et al. Integral atomic layer architectures of 1D crystals inserted into single walled carbon nanotubes. Chem Commun, 2002, 1319-1332.
    [97] Xu C, Sloan J, Brown G, et al. 1D lanthanide halide crystals inserted into single-walled carbon nanotubes. Chem Commun, 2000, 2427-2428.
    [98] Mittal J, Monthioux M, Allouche H, et al. Room temperature filling of single-wall carbon nanotubes with chromium oxide in open air. Chem Phys Lett, 2001, 339:311-318.
    [99] Friedrichs S, Meyer RR, Sloan J, et al. Complete characterisation of a Sb_2O_3/(21, 8)SWNT inclusion composite. Chem Commun, 2001, 929-930.
    [100] Friedrichs S, Sloan J, Hutchison J L, et al. Simultaneous determination of inclusion crystallography and nanotube conformation for a Sb_2O_3/single-walled nanotube composite. Phys Rev B, 2001, 64:045406/1-8.
    [101] Li Y F, Hatakeyama R, Okada T, et al. Synthesis of Cs-filled double-walled carbon nanotubes by a plasma process. Carbon, 2006, 44:1586-1589.
    [102] Qiu H X, Shi Z J, Gu Z N, et al. Controllable preparation of triple-walled carbon nanotubes and their growth mechanism. Chem Commun, 2007, 1092-1094.
    [103] Smith B W, Monthioux M, Luzzi D E. Encapsulated C60 in carbon nanotubes. Nature, 1998, 396:323-324.
    [104] Burteaux B, Claye A, Smith B W, et al. Abundance of encapsulated C_(60) in single-wall carbon nanotubes. Chem Phys Lett, 1999, 310:21-24.
    [105] Smith B W, Monthioux M, Luzzi D E. Carbon nanotube encapsulated fullerenes: a unique class of hybrid materials. Chem Phys Lett, 1999, 315:31-36.
    [106] Monthioux M, Smith B W, Burteaux B, et al. Sensitivity of single-wall carbon nanotubes to chemical processing: an electron microscopy investigation. Carbon, 2001, 39:1251-1272.
    [107] Hirahara K, Suenaga K, Bandow S, et al. One-dimensional metallofullerene crystal generated inside single-walled carbon nanotubes. Phys Rev Lett, 2000, 85:5384-5387.
    [108] Suenaga K, Tence M, Mory C, et al. Element-selective single atom imaging. Science, 2000, 290:2280-2282.
    [109] Smith B W, Luzzi D E, Achiba Y. Tumbling atoms and evidence for charge transfer in La_2@C_(80)@SWNT. Chem Phys Lett, 2000, 331:137-142.
    [110] Routkevitch D, Bigioni T, Moskovits M, et al. Electrochemical fabrication of CdS nanowire arrays in porous anodic aluminum oxide templates. J Phys Chem, 1996, 100:14037-14047.
    [111] Matui K, Pradhan B K, Kyotani T, et al. Formation of nickel oxide nanoribbons in the cavity of carbon nanotubes. J Phys Chem B, 2001, 105:5682-5688.
    [112] Matui K, Kyotani T, Tomita A. Hydrothermal synthesis of single-crystal Ni(OH)_2 nanorods in carbon-coated anodic alumina film. Adv Mater, 2002, 14:1216-1219.
    [113] Ferre R, Ounadjela K, George J M, et al. Magnetization processes in nickel and cobalt electrodeposited nanowires. Phys Rev B, 1997, 56:14066-14075.
    [114] Kyotani T, Tsai L F, Tomita A. Preparation of ultrafine carbon tubes in nanochannels of an anodic aluminum oxide film. Chem Mater, 1996, 8:2109-2113.
    [115] Hsu W K, Hare J P, Terrones M, et al. Condensed-phase nanotubes. Nature, 1995, 377:687-687.
    [116] Hsu W K, Terrones M, Terrones H, et al. Electrochemical formation of novel nanowires and their dynamic effects. Chem Phys Lett, 1998, 284:177-183.
    [117] Hsu W K, Li J, Terrones H, et al. Electrochemical production of low-melting metal nanowires. Chem Phys Lett, 1999, 301:159-166.
    [118] Ugarte D, Stockli T, Bonard J M, et al. Filling carbon nannotubes. Appl Phys A, 1998, 67:101-105.
    [119] Sloan J, Cook J, Heesom J R, et al. The encapsulation and in situ rearrangement of polycrystalline SnO inside carbon nanotubes. J Cryst Growth, 1997, 173:81-87.
    [120] Zhao L P, Gao L. Filling of multi-walled carbon nanotubes with tin(IV) oxide. Carbon, 2004, 42, 3269-3272.
    [121] Kiang C H, Choi J S, Tran T T, et al. Molecular nanowires of 1 nm diameter from capillary filling of single-walled carbon nanotubes. J Phys Chem B, 1999, 103:7449-7751.
    [122] Zhang Z L, Li B, Shi Z J, et al. Filling of single-walled carbon nanotubes with silver. Mater Res, 2000, 15:2658-2661.
    [123] Monthioux M. Filling single-wall carbon nanotubes. Carbon, 2002, 40:1809-1823.
    [124] Tsang S C, Davis J J, Green M L H, et al. Chem. Commun., 1995, 1803-1804.
    
    [125] Davis J J, Green M L H, Hill H A, et al. Inorg Chim Acta, 1998, 261-266.
    
    [126] Demoncy N, Stephan 0, Brun N, et al. Filling carbon nanotubes with metals by the arc-discharge method: the key role of sulfur. J European Phys B, 1998, 4:147-157.
    [127] Demoncy N, Stephan 0, Brun N, et al. Sulfur: the key for filling carbon nanotubes with metals. Synth Metals, 1999, 103:2380-2383.
    
    [128] Satio Y. Nanoparticles and filled nanocapsules. Carbon, 1995, 33:979-988.
    [129] Satio Y, Yoshikawa T, Okuda M, et al. Synthesis and electron-beam incision of carbon nanocapsulaes encaging YC_2. Chem Phys Lett, 1993, 209:72-76.
    [130] Satio Y, Nishikubo K, Kawabata K, et al. Carbon nanocapsules and single-layered nanotubes produced with platinum-group metals (Ru, Rh, Pd, Os, Ir, Pt) by arc discharge. J Appl Phys, 1996, 80:3062-3067.
    [131] Dravid V P, Host J, Teng M H, et al. Controlled-size nanocapsules. Nature 1995, 374:602-602.
    [132] Hsin Y L, Hwang K C, Chen F R, et al. Production and in-situ metal filling of carbon nanotubes in water. Adv Mater, 2001, 13:830-833.
    [133] Wang Z Y, Zhao Z B, Qiu J S, et al. In-situ synthesis of long nanowires inside coal-derived carbon nanotubes. In Carbon' 2005, Gyeongju, Korean. July 3-7, 2005.
    [134] Grobert N, Hsu W K, Zhu Y Q, et al. Enhanced magnetic coercivities in Fe nanowires. Appl Phys Lett, 1999, 75:3363-3365.
    [135] Leonhardt A, Ritschel M, Kozhuharova R, et al. Synthesis and properties of filled carbon nanotubes. Diamond Relat Mater, 2003, 12:790-793.
    [136] Sinha A K, Hwang D W, Hwang L P. A novel approach to bulk synthesis of carbon nanotubes filled with metal by a catalytic chemical vapor deposition method. Chem Phys Lett, 2000, 332:455-460.
    [137] Sen R, Govindaraj A, Rao C N R, et al. Carbon nanotubes by the metallocene route. Chem Phys Lett, 1997, 267:276-280.
    [138] Grobert N, Mayne M, Terrones M, et al. Alloy nanowires: Invar inside carbon nanotubes. Chem Commun, 2001, 471-472
    [139] Elias A L, Rodriguez-Manzo J A, McCartney M R, et al. Production and Characterization of Single-Crystal FeCo Nanowires Inside Carbon Nanotubes. Nano Lett, 2005, 5:457-472.
    [140] Chan L H, Hong K H, Lai S H, et al. The formation and characterization of palladium nanowires in growing carbon nanotubes using microwave plasma-enhanced chemical vapor deposition. Thin Solid Films, 2003, 423:27-32.
    [141] Pan Z W, Xie S S, Chang B H, et al. Very long carbon nanotubes. Nature, 1998, 394:631-632.
    [142] Whitney T M, Jiang J S, Searson P C, et al. Fabrication and magnetic properties of arrays of metallic nanowires. Science, 1993, 261:1316-1319.
    [143] Che G, Lakshmi B B, Martin C R, et al. Meal-nanocluster-filled carbon nanotubes: catalytic properties and possible applications in electrochemical energy storage and production. Langmuir, 1999, 15:750-758.
    [144] Kyotani T, Tsai L F, Tomita A. Formation of platinum nanorods and nanopracticles in uniform carbon nanotubes prepared by a template carbonization method. Chem Commun, 1997, 701-702.
    [145] Pradhan B K, Toba T, Kyotani T, et al. Inclusion of crystalline iron oxide nanoparticles in uniform carbon nanotubes prepared by a template carbonization method. Chem Mater, 1998, 10:2510-2515.
    [146] Bao J C, Tie C Y, Xu Z, et al. A facile method for mreating an array of metal-filled carbon nanotubes. Adv Mater, 2002, 14:1483-1486.
    [147] Che G L, Lakshmi B B, Martin C R, et al. Metal-nanocluster-filled carbon nanotubes: catalytic properties and possible applications in electrochemical energy storage and production. Langmuir, 1999, 15:750-758.
    [148] Kumar T P, Ramesh R, Lin Y Y, et al. Tin-filled carbon nanotubes as insertion anode materials for lithium-ion batteries. Electrochem Commun, 2004, 6:520-525.
    [149] Garcia-Vidal F J, Pitarke J M, Pendry J B. Silver-filled carbon nanotubes used as spectroscopic enhancers. Phys Rev B, 1998, 58:6783-6786.
    [1] Wang X K, Lin X W, Mesleh M, et al. The effect of hydrogen on the formation of carbon nanotubes and fullerenes. J Mater Res, 1995, 10:1977-1983.
    
    [2] Ando Y, Zhao X, KatauraH. Multiwalled carbon nanotubes prepared by hydrogen arc. Diamond Relate Mater, 1999, 9:847-852.
    [3] Tang D S, Xie S S, Liu W, et al. Evidence for an open-ended nanotubes growth model in arc discharge. Carbon, 2000, 38:475-480.
    [4] Ajayan P M, Nugent J M, Siegel R W, et al. Growth of carbon micro-trees. Nature, 2000, 404:243-243.
    [5] Takikawa H, Ikeda M, Hirahara K, et al. Fabrication of single-walled carbon nanotubes and nanoborns by means of a torch arc in open air. Physica B, 2002, 323:277-299.
    [6] Sano N, Naito M, Chhowalla M, et al. Pressure effects on nanotubes formation using the submerged arc in water method. Chem Phys Lett, 2003, 378:29-34.
    [7] Ishigami M, Cumings J, Zettl A. A simple method for the continuous production of carbon nanotubes. Chem Phys Lett, 2000, 319:457-459.
    [8] Hsu W K, Hare J P, Terrones M, et al. Condensed-phase nanotubes. Nature, 1995, 377:687-687.
    [9] Hsu W K, Terrones M, Terrones H, et al. Electrochemical formation of novel nanowires and their dynamic effects. Chem Phys Lett, 1998, 284:177-183.
    [10] Hsu W K, Li J, Terrones H, et al. Electrochemical production of low-melting metal nanowires. Chem Phys Lett, 1999, 301:159-166.
    
    [11] Hutchison J L, Kiselev N A, Krinichnaya E P, et al. Double-walled carbon nanotubes fabricated by a hydrogen arc discharge method. Carbon, 2001, 39: 761-770.
    
    [12] Liu C, Cong H T, Li F, et al. Semi-continuous synthesis of single-walled carbon nanotubes by a hydrogen arc discharge method. Carbon, 1999, 37:1865-1868.
    [13] Huang H J, Kajiura H, Tsutsui S, et al. High-quality double-walled carbon nanotube super bundles grown in a hydrogen-free atmosphere. J Phys Chem B, 2003, 107:8794-8798.
    [14] Wang Z Y, Zhao Z B, Qiu J S. Carbon Nanotube templated synthesis of CeF_3 nanowires. Chem Mater, 2007, accepted.
    [15] Pang L S K, Prochazka L, Quezada R A, et al. Competitive reactions during plasma arcing of carbonaceous materials. Energy & Fuels, 1995, 9:704-706.
    [16] Pang L S K, Wilson M A, Taylor G H, et al. Formation of unusual graphitic structures during fullerene production. Carbon, 1992, 30:1130-1131.
    [17] Patney H K, Nordlund C, Moy A, et al. Fullerenes and nanotubes from coal. Fullerene Sci & Tech, 1999, 7:941-971.
    [18] Wang Z Y, Zhao Z B, Qiu J S. Synthesis of branched carbon nanotubes from coal. Carbon, 2006, 44:1298-1352.
    [19] Qiu J S, Zhang F, Han H M, et al. Carbon nanomaterials from eleven caking coals. Fuel, 2002, 81:1509-1514.
    [20] Li Y F, Qiu J S, Zhao Z B, et al. Bamboo-shaped carbon tubes from coal. Chem Phys Lett, 2002, 366:544-550.
    [21] Williams K A, Tachibana M, Allen J L, et al. Single-wall carbon nanotubes from coal. Chem Phys Lett, 1999, 310:31-37.
    [22] Qiu J S, Li Y F, Wang Y P, et al. Production of carbon nanotubes from coal. Fuel Process Tech, 2004, 85:1663-1670.
    [23] Wang Z Y, Zhao Z B, Qiu J S. Synthesis of branched carbon nanotubes from coal. Carbon, 2006, 44:1321-1324.
    [24] Wang Z Y, Zhao Z B, Qiu J S, et al. Synthesis of double-walled carbon nanotubes from coal in hydrogen-free atmosphere. Fuel, 2007, 86:282-286.
    [25] Tian Y J, Zhang Y L, Wang B J, et al. Coal-derived carbon nanotubes by thermal plasma jet. Carbon, 2004, 42:2597-2601.
    [26] Lyu S C, Lee T J, Yang C W, et al. Synthesis and characterization of high-quality double-walled carbon nanotubes by catalytic decomposition of alcohol. Chem Commun, 2003, 1404-1405.
    [27] Lyu S C, Liu C B, Lee J C, et al. High-quality double-walled carbon nanotubes produced by catalytic decomposition of benzene. Chem Mater, 2003, 15:3951-3954.
    [28] Sugai T, YoshidaH, ShimadaT, et al. New Synthesis of high-quality double-walled carbon nanotubes by high-temperature pulsed arc discharge. Nano Lett, 2003, 3:769-773.
    [29] Bandow S, Takizawa M, Hirahara K, et al. Raman scattering study of double-wall carbon nanotubes derived from the chains of fullerenes in single-wall carbon nanotubes. Chem Phys Lett, 2001, 337:48-54.
    [30] Saito Y, Nakahira T, Uemura S. Growth conditions of double-walled carbon nanotubes in arc discharge. J Phys Chem B, 2003, 107:931-934.
    [31] Li L X, Li F, Liu C, et al. Synthesis and characterization of double-walled carbon nanotubes from multi-walled carbon nanotubes by hydrogen-arc discharge. Carbon, 2005, 43:623-629.
    [32] Wei J Q, Jiang B, Wu D H, et al. Large-scale synthesis of long double-walled carbon nanotubes. J Phys Chem B, 2004, 108:8844-8847.
    [33] Endo M, Muramastu H, Hayashi T, et al. 'Buckypaper' from coaxial nanotubes. Nature, 2005, 433:476-476.
    [34] Qiu J S, Li Y F, Wang Y P, et al. High-purity single-walled carbon nanotubes synthesized from coal by arc discharge. Carbon, 2003, 41:2170-2173.
    [35] Kiang C H, Endo M, Ajayan P M, et al. Size effects in carbon nanotubes. Phys Rev Lett, 1998, 81:1869-1872.
    [36] Hertel T, Walkup R E, Avouris P. Deformation of carbon nanotubes by surface van der waals forces. Phys Rev B, 1998, 58:13870-13873.
    [37] Kasuya A, Sakaki Y, Saito Y, et al. Evidence for size-dependent discrete dispersions in single-wall nanotubes. Phys Rev Lett, 1997, 78:4434-4437.
    [38] Wilson M A, Patney H K, Kalman J. New developments in the formation of nanotubes from coal. Fuel, 2002, 81:5-14.
    [39] Geldard L, Keegan J T, Young B R, et al. Pathways of polycyclic hydrocarbon formation during plasma arcing of carbonaceous materials. Fuel, 1998, 77:15-18.
    [40] Yu J L, Lucas J, Strezov V, et al. Coal and carbon nanotube production. Fuel, 2003, 82:2025-2032.
    [41] Pang L S K, Prochazka L, Quezada R A, et al. Competitive reactions during plasma arcing of carbonaceous materials. Energy & Fuel, 1995, 9:38-44.
    [42] Derbyshire F, Marzec A, Schulten H R, et al. Molecular structure of coals: a debate. Fuel, 1989, 68:1091-1106.
    
    [43] Xie K C. Coal structure and its reactivityb. Beijing: Science Pr., 2002.
    [44] Qiu J S, Zhou Y, Yang Z G, et al. Preparation of fullerenes using carbon rods manufactured from Chinese hard coals. Fuel, 2000, 79:1303-1308.
    [45] Wilson M A, Moy A, Rose H, et al. Fullerene blacks and cathode deposits derived from plasma arcing of graphite with naphthalene. Fuel, 2000, 79:47-56.
    [46] Lauerhaas J M, Dai J Y, Setlur A A, et al. The effect of arc parameters on the growth of carbon nanotubes. J Mater Res, 1997,12: 1536-1544.
    [47]Lai H J, Lin M C, Yang M H, et al. Synthesis of carbon nanotubes using polycyclic aromatic hydrocarbons as carbon sources in an arc discharge. Mater Sci Engin C, 2001, 16:23-26.
    [48] Tibbetts G G, Bernardo C A, Gorkiewicz D W, et al. Role of sulfur in the production of carbon fibers in the vapor phase. Carbon, 1994, 32:569-576.
    [49] Kim M S, Rodriguez N M, Baker P T K. The interplay between sulfur adsorption and carbon deposition on cobalt catalysts. J Catal, 1993, 143:449-463.
    
    [50] 韦进全,张先锋,王昆林.碳纳米管宏观体.北京:清华大学出版社,2006.
    
    [51] Kiang C H, Goddart III W A, Beyer R, et al. Catalytic synthesis of single-layer carbon nanotubes with a wide range of diameters. J Phys Chem B, 1994, 98:6612-6618.
    
    [52] Journet C, Master WK, Bernier P, et al. Large-scale production of single-walled carbon nanotubes by the electric-arc technique. Nature, 1997, 388:756-758.
    
    [53] Ebbesen T W, Ajayan P M. Large-scale Synthesis of Carbon Nanotubes. Nature, 1992, 358:220-222
    [54] Yacaman M J, Yoshida M M, Rendon L. Catalytic growth of carbon microtubes with fullerenes structure. Appl Phys Lett, 1993, 62:657-659.
    [55] Ivanov V, Nagy J B, Lambin P, et al. Catalytic production and purification of nanotubules having fullerene-scale diameters. Chem Phys Lett, 1994, 223: 329-335.
    [56] Ong T P, Xiong F, Chang R P H, et al. Nucleation and growth of diamond on carbon-implanted single crystal copper surfaces. J Mater Res, 1992, 7:2429-2439.
    [57] 邱介山,韩红梅,周颖等.由二种烟煤制备碳纳米管的探索性研究.新型炭材料,2001,16:1-5.
    [58] Oya A, Otani S. Catalytic graphitization of carbons by various metals. Carbon, 1979, 17: 131-137.
    [59] LaCava A I, Bernardo C A, Trimm D L. Studies of deactivation of metals by carbon deposition. Carbon, 1983, 20:219-223.
    [60] Scuseria G E. Negative curvature and hyperfullerenes. Chem Phys Lett, 1992, 195:534-536.
    [61] Chernazatonskii k A. Carbon nanotube connectors and planar jungle gyms. Phys Lett A, 1992, 172:173-176.
    [63] Satishkumar B C, Thomas P J, Govindaraj A, et al. Appl Phys Lett, Y-junction carbon nanotubes. 2000, 77:2530-2532.
    [64] Papadopoulos C, Rakitin A, Li J, et al. Electronic Transport in Y-Junction Carbon Nanotubes. Phys Rev Lett, 2000, 85:3476-3479.
    [65] Papadopoulos C, Yin A J, Xu J M. Temperature-dependent studies of Y-junction carbon nanotube electronic transport, hppl Phys Lett, 2004, 85:1769-1771.
    [66] Cummings A, Osman M, Srivastava D, et al. Thermal conductivity of Y-junction carbon nanotubes. Phys Rev B, 2004, 70:115405-115410.
    [67] Wu H L, Qiu J S, Hao C, et al. Molecular dynamics study of hydrogen adsorption in Y-junction carbon nanotubes. J Mol Struct (Theochem), 2004, 684:75-80.
    [68] Li W Z, Pandey B, Liu Y Q. Growth and Structure of Carbon Nanotube Y-Junctions. J Phys Chem B, 2006, 110: 23694-23700.
    [69] Chernozatonskii L. Three-terminal junctions of carbon nanotubes: synthesis, structures, properties and applications. J Nanopart Res, 2003, 5:473-484.
    [70] BandaruP R, Daraio C, Jin S, et al. Novel electrical switching behaviour and logic in carbon nanotube Y-junctions. Nature, 2005, 4:663-666.
    [71] Chico L, Crespi V H, Benedict L X, et al. Pure Carbon Nanoscale Devices: Nanotube Heterojunctions. Phys Rev Lett, 1996, 76:971-974.
    [72] Meunier V, Henrard L, Lambin P H. Energetics of bent carbon nanotubes. Phys Rev B, 1998, 57: 2586-2591.
    [73] Lambin P, Fonseca A, Vigneron J P, et al. Structural and electronic properties of bent carbon nanotubes. Chem Phys Lett, 1995, 245:85-89.
    [74] Li J, Papadopoulos C, Xu J. Nanoelectronics: growing Y-junction carbon nanotubes. Nature, 1999, 402:253-4.
    [75] Zhou D, Seraphin S. Complex branching phenomena in the growth of carbon nanotubes. Chem Phys Lett, 1995, 238:286-289.
    [76] Osvath Z, Koos A A, Horvath Z E, et al. Arc-grown Y-branched carbon nanotubes observed by scanning tunneling microscopy (STM). Chem Phys Lett, 2002, 365:338-342.
    [77] Gan B, Ahn J, Zhang Q, et al. Y-junction carbon nanotubes grown by in situ evaporated copper catalyst. Chem Phys Lett, 2001, 333:23-28.
    [78] Deepak F L, Govindaraj A, Rao C N R. Synthetic strategies for Y-junction carbon nanotubes. Chem Phys Lett, 2001, 345:5-10.
    [79] Heyning O T, Bernier P, Glerup M. A low cost method for the direct synthesis of highly Y-branched nanotubes. Chem Phys Lett, 2005, 409:43-47.
    [80] Tao X Y, Zhang X B, Cheng J P, et al. Synthesis of novel multi-branched carbon nanotubes with alkali-element modified Cu/MgO catalyst. Chem Phys Lett, 2005, 409:89-92.
    [81] Zhu H W, Ci L J, Xu C L, et al. Growth mechanism of Y-junction carbon nanotubes. Diamond Relat Mater, 2002, 11:1349-1352.
    [82] Gan, B, Ahn J, Zhang Q, et al. Branching carbon nanotubes deposited in HFCVD system. Diamond Relat Mater, 2000, 9:897-900.
    [83] Qin, Y, Zhang Q, Cui Z L. Effect of synthesis method of nanocopper catalysts on the morphologies of carbon nanofibers prepared by catalytic decomposition of acetylene. J Catal, 2004, 223:389-394.
    [1] 成会明.纳米碳管:制备、结构、物性及应用.北京:化学工业出版社,2002.
    [2] Jankovic L, Gournis D, Trikalitis P N. Carbon nanotubes encapsulating superconducting single-crystalline Tin nanowires. Nano Lett, 2006, 6:1131-1135.
    [3] Liu Z W, Bando Y. A novel method for preparing copper nanorods and nanowires. Adv Mater, 2003, 15:303-305.
    [4] Harris P J F. Carbon nanotubes and related structures. UK: Cambridge university Pr., 1999.
    [5] Wang Z Y, Zhao Z B, Qiu J S. Carbon nanotube templated synthesis of CeF_3 nanowires. Chem Mater, 2007, accepted.
    [6] Liu Z P, Yang Y, Liang J B, et al. Synthesis of copper nanowires via a complex-surfactant-assisted hydrothermal reduction process. J Phys Chem B, 2000, 107: 12658-12661.
    [7] Monson C F, Wolley A T. DNA-templated construction of copper nanowires. Nano Lett, 2003, 3: 359-363.
    [8] Yen M Y, Chiu C W, Hsia C H, et al. Synthesis of cable-like Cu nanowires. Adv Mater, 2003, 15:235-237.
    [9] Chang Y, Lye L M, Zeng C H. Large-Scale Synthesis of high-quality ultralong Cu nanowires. Langmuir, 2005, 21:3746-3748.
    [10] Wen X G, Xie Y T, Choi C L, et al. Copper-based nanowire materials: templated Syntheses, characterizations, and applications. Langmuir, 2005, 21:4729-4737.
    [11] Zhang G Y, Wang E G. Cu-filled carbon nanotubes by simultaneous plasma assisted copper incorporation. Appl Phys Lett, 2003, 82: 1926-1928.
    [12] Setlur A A, Dai J Y, Lauerhaas J M, et al. Formation of filled carbon nanotubes and nanoparticles using polycyclic aromatic hydrocarbon molecules. Carbon, 1998, 36: 721-723.
    [13] Ivanov V, Nagy J B, Lambin P, et al. Catalytic production and purification of nanotubules having fullerene-scale diameters. Chem Phys Lett, 1994, 223: 329-335.
    [14] Ong T P, Xiong F, Chang R P H, et al. Nucleation and growth of diamond on carbon-implanted single crystal copper surfaces. J Mater Res, 1992, 7:2429-2439.
    [15] Gan, B, Ahn J, Zhang Q, et al. Branching carbon nanotubes deposited in HFCVD system. Diamond Relat Mater, 2000, 9: 897-900.
    [16] Qin, Y, Zhang Q, Cui Z L. Effect of synthesis method of nanocopper catalysts on the morphologies of carbon nanofibers prepared by catalytic decomposition of acetylene. J Catal, 2004, 223: 389-394.
    [17] Setlur A A, Lauerhaas J M, Dai J Y, et al. A method for synthesizing large quantities of carbon nanotubes and encapsulated copper nanowires. Appl Phys Lett, 1996, 69:345-347.
    [18] Yosida Y. A new type of ultrafine particles: Rare earth dicarbide crystals encapsulated in carbon nanocages. Physica B, 1997, 229:301-305.
    [19] Xu C G, Sloan J, Brown G, et al. 1D lanthanide halide crystals inserted into single-walled carbon nanotubes. Chem Commun, 2000, 2427-2428.
    [20] Cao L, Chen H Z, Li H Y, et al. Fabrication of rare-earth biphthalocyanine encapsulated by carbon nanotubes using a capillary filling method. Chem Mater, 2003, 15:3247-3249.
    [21] Wang X, Li Y D. Fullerene-like rare-earth nanoparticles. Angew Chem Int Ed, 2003, 42:3497-3500.
    [22] Wang X, Li Y D. Rare-earth-compound nanowires, nanotubes, and fullerene-Like nanoparticles-synthesis, characterization, and properties. Chem Eur J, 2003, 9: 5627-5635.
    [23] Mai H X, Zhang Y W, Si R, et al. High-quality sodium rare-earth fluoride nanocrystals: controlled synthesis and optical properties. J Am Chem Soc, 2006, 128:6426-6436.
    [24] Carcer I A, Herrero P, Landa-Canovas A R, et al. Nanocrystals of cerium and europium trif luorides generated by coaxial taylor cone electrospray of aqueous solutions at room temperature. Appl Phys Lett, 2005, 87:053105-1.
    [25] Wang X, Zhuang J, Peng Q, et al. Hydrothermal synthesis of rare-earth fluoride nanocrystals. Inorg Chem, 2006, 45:6661-6665.
    [26] Wang X, Zhuang J, Peng Q, et al. A general strategy for nanocrystal synthesis. Nature, 2005, 437:121-124.
    [27] Lemyre J L, Ritcey AM. Synthesis of lanthanide fluoride nanoparticles of varying shape and size. Chem Mater, 2005, 17:3040-3043.
    [28] Zhang Y W, Sun X, Si R, et al. Single-crystalline and monodisperse LaF3 triangular nanoplates from a single-source precursor. J Am Chem Soc, 2005, 127:3260-3261.
    [29] Jin J Y, Cui J, Tang X L, et al. On polyetherimide modified bismaleimide resins, 1 Effect of the chemical backbone of polyetherimide. Macromol Chem Phys, 1999, 200:1956-1960.
    [30] Oya A, Otani S. Catalytic graphitization of carbons by various metals. Carbon, 1979, 17:131-137.
    [31] Ajayan P M, Nugent J M, Siegel R W, et al. Growth of carbon micro-trees. Nature, 2000, 404:243-243.
    [1] Sun X M, Li Y D. Ag@C core/shell structured nanoparticles: controlled synthesis, characterization, and assembly. Langmuir, 2005, 21:6019-6024.
    
    [2] Sun X M, Li Y D. Colloidal carbon spheres and their core/shell structures with noble-metal nanoparticles. Angew Chem Int Ed, 2004, 43:597-601.
    [3] Sun X M, Li Y D. Cylindrical silver nanowires: preparation, structure, and optical properties. Adv Mater, 2005, 17:2626-2630.
    [4]Luo L B, Yu S H, Qian H S, et al. Large-scale fabrication of flexible silver-cross-linked poly(vinyl alcohol) coaxial nanocables by a facile solution approach. J Am Chem Soc, 2005, 127:2822-2823.
    [5] Yu S H, Cui X J, Li L L, et al. From starch to metal-carbon hybrid nanostructures hydrothermal metal-catalyzed carbonization. Adv Mater, 2004, 16:1636-1640.
    [6] Luo L B, Yu S H, Qian H S, et al. Large scale synthesis of uniform silver@carbon rich composite (carbon and cross-linked PVA) sub-microcables by a facile green chemistry carbonization approach. Chem Commun, 2006, 793-795.
    [7] Gong J Y, Luo L B, Yu S H, et al. Synthesis of copper/cross-linked poly (vinyl alcohol) (PVA) nanocables via a simple hydrothermal route. J Mater Chem, 2006, 101-105.
    [8]Qian S H, Yu S H, Luo L B, et al. Synthesis of uniform Te@carbon-rich composite nanocables with photoluminescence properties and carbonaceous nanofibers by the hydrothermal carbonization of glucose. Chem Mater, 2006, 18:2102-2108.
    [9] Deng B, Xu A W, Chen G Y. Synthesis of copper-core/carbon-sheath nanocables by a surfactant-assisted hydrothermal reduction/carbonization process. J Phys Chem B, 2006, 110:11711-11716.
    [10] Wang W Z, Xiong S L, Chen L Y, et al. Formation of flexible ag/c coaxial nanocables through a novel solution process. Cryst growth Des, 2006, 6:2422-2426.
    
    [11] Sun Y G, Gates B, Mayers B, et al. Crystalline silver nanowires by soft solution processing. Nano Letter, 2002, 2:165-168.
    
    [12] Im S H, Lee Y T, Wiley B, et al. Large-scale synthesis of silver nanocubes the role of HCl in promoting cube perfection and monodispersity. Angew Chem Int Ed, 2005, 117:2192-2195.
    [13] Sun Y G, Xia Y N. Large-scale synthesis of uniform silver nanowires through a soft, self-seeding, polyol process. Adv Mater, 2002, 14:833-837.
    [14] Sun Y G, Mayers B, Herricks T, et al. Polyol synthesis of uniform silver nanowires a plausible growth mechanism and the supporting evidence. Nano Lett, 2003, 3:955-960.
    [15]Sun Y G, Xia Y N. Shape-controlled synthesis of gold and silver nanoparticles. Science, 298:2176-2179.
    [16] Wiley B, Sun Y G, Mayers B, et al. Shape-controlled synthesis of metal nanostructures the case of silver. Chem Eur J, 2005, 11:454-463.
    [17] Zhang J T, Liu J F, Peng Q, et al. Nearly monodisperse Cu_2O and CuO nanospheres preparation and applications for sensitive gas sensors. Chem Mater, 2006, 18:867-871.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700