双壁碳纳米管的合成与填充研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
碳纳米管一经发现便吸引了全世界科学家的广泛关注,已成为当前纳米科学研究领域最热门的材料之一。双壁碳纳米管(DWNTs)具有介于单壁碳纳米管与多壁碳纳米管之间的独特双层石墨层结构,因此兼具单壁碳纳米管与多壁碳纳米管的优点,对碳纳米管内部进行填充不但能改变碳纳米管本身的电学、力学等性能,而且还能调变被填充物质的性质。本论文的工作主要围绕双壁碳纳米管的可控合成、填充以及纳米空间内填充物质的结构与性质等展开,获得的主要结果如下:
     1.高产率合成了克量级、纯度达90wt%以上的双壁碳纳米管。采用FeS代替传统的Fe、Co、Ni、S等催化剂,并添加卤化物作为助催化剂,在有效改造传统电弧炉样品收集装置基础上,利用直流电弧法高选择性合成了DWNTs,其产率由文献报导的10wt%左右提高到50wt%以上,而且DWNTs的结构和质量都有很大改善。发展了一种有效的DWNTs纯化方法,经过空气选择性灼烧、过氧化氢氧化、盐酸溶液回流等简单纯化处理,获得了纯度大于90wt%的高质量DWNTs,为研究DWNTs本身的结构与性能及探索其应用途径提供了必要的物质前提与基础。
     2.发现了DWNTs的特殊形貌和新奇性质。在扫描电子显微实验中观测到丝状DWNTs原始烟炱在连续受到外力作用下表现出很强的机械力学性能,杂乱无章的碳纳米管逐渐变得取向有序;发现DWNTs管束的V型一维纳米结结构,每一个拐点处都存在一种特殊的纳米异质结,这种结构形态的纳米材料可能具有独特的电子输运特性。此工作为碳纳米管异质结的可控制备以及新型纳米电子器件的构建提供了新的思路。
     3.基于单壁和双壁碳纳米管材料,成功制备出富勒烯分子高效率填充的豆荚型新型碳纳米材料。通过高真空气相扩散的方法,成功地将富勒烯C_(60)分子填充到单壁碳纳米管和双壁碳纳米管的管腔内部,合成了C_(60)@SWNTs与C_(60)@DWNTs纳米豆荚新型材料。利用高分辨透射电子显微镜研究了被填充到碳纳米管内的C_(60)分子与体相材料的结构差异,发现C_(60)分子在DWNTs内随着DWNTs管径的不同具有不同的排列结构,并直接观测到一维直链型和双层排列型的C_(60)分子排列结构。这一结果很好地验证了前人的理论预测,为今后可控制备具有独特结构和性质的碳纳米材料提供了重要的实验依据。
     4.用拉曼光谱研究了C_(60)@DWNTs纳米豆荚的性质。发现在激光照射下填充到DWNTs内的C_(60)分子容易发生双分子聚合反应;DWNTs管壁与内部C_(60)分子之间具有弱的范得华力相互作用,并伴有电子转移发生。这一发现使得对碳纳米管进行电子给体或者电子受体搀杂以调控碳纳米管的能带结构成为可能,亦为制备具有特殊电学性质的电子器件奠定了物质基础。
     5.制备了二茂铁高效填充的双壁碳纳米管复合材料(Fc@DWNTs)。采用分子气相扩散的方法将有机小分子二茂铁填充入DWNTs纳米空腔内部,制得高比例填充的Fc@DWNTs纳米材料。红外光谱研究结果表明,填充到DWNTs孔腔内的二茂铁与DWNTs之间存在强的范得华力相互作用,且二茂铁容易将电子转移给DWNTs从而对其进行n型掺杂。研究了Fc@DWNTs的电化学性质,发现Fc@DWNTs表现出与Fc@SWNTs不同的循环伏安电化学性质,在低扫速情况下表现出薄层电化学行为,而在高扫速下表现为扩散电化学行为。电化学结果表明,DWNTs可以作为分子导线连接填充在其内部的二茂铁与外部电极,这将为新型电化学传感器的研制等提供有益的启示。
     6.利用热重—质谱联用仪研究了二茂铁在双壁纳米碳管空腔内,即在纳米限域空间内的热力学性质。发现二茂铁在DWNTs纳米空间内的热力学分解温度(540℃)比常规条件下(约500℃)有明显提高,表明二茂铁分子在纳米限域条件下变得的更加稳定,显现出与不同于常规条件下的物理化学性质。
     7.以双壁纳米碳管为限域性模板,成功实现了三壁碳纳米管的可控制备。以DWNTs为纳米反应模板,以填充入的二茂铁充当碳源与催化剂,发展了一种可控制备TWNTs的方法。用高分辨透射电子显微镜研究了内层碳纳米管的生长机理,证实内层碳纳米管的生长遵循根部生长(Root-growth)机制,这一工作为今后选控制备其它具有特定构型的碳纳米管材料提供了一种新的合成思路,亦对早期对有关碳纳米管生长机理的理论预测提供了新的直观而清晰的实验证据。
Being a transition from single-walled carbon nanotubes (SWNTs) to multi-walled carbon nanotubes (MWNTs), double-walled carbon nanotubes (DWNTs) with unique structures and extraordinary properties are ideal and unique thinnest MWNTs, possessing the advantages of both SWNTs and MWNTs, and have been attracting considerable interests and broad attention of scientists all over the world. DWNTs have become one of the most prominent materials in nanoscience and are of great potential in nanoelectronics, nanobiology and other related fields. Filling foreign materials into the hollow cavities of carbon nanotubes may significantly modify their electronic and mechanical properties, as well as alter the properties of the filled materials. This thesis is mainly focused on the synthesis and filling of DWNTs, and the properties of substance filled in the nanospace, i.e. the central cavity of the DWNTs.
     1. Mass preparation of double-walled carbon nanotubes with perfect structural integrity has been achieved in high yiled by a modified DC arc discharge method. By adding trace amount of halide typically KC1 into the iron sulfide catalyst, the yield of DWNTs could be increased dramatically from about 10 wt% in related references to over 50 wt%. The quality of DWNTs can be greatly improved by using a newly developed purification method; DWNTs with a purity of over 90wt% have been obtained. It is believed that chlorine in halide plays an important role in the formation and growth of DWNTs. The successful synthesis of high quality DWNTs in large quantity made it possible for further studying the properties of DWNTs and for exploring their potential applications.
     2. Some novel properties of DWNTs are revealed for the first time. Raw soot consisting of thread-like DWNTs exhibits very high mechanical strength, and the DWNTs in random orientation would gradually become to be arranged in order under the effect of foreign force. Intramolecular nanotube junctions are found in the DWNTs bundles, which can be regarded as a kind of heterojunctions with unique electron transportation property, and may be of potential in the next generation electronic devices based on carbon nanotubes.
     3. Fullerene-filled SWNTs and DWNTs (so-called nanopeapods) with a purity of over 80% have been synthesized in high yield, in which the C60 molecules are introduced into the hollow cavities of nanotubes by a vapor phase diffusion method. HRTEM examination has revealed that C60 molecules are aligned with a distance of about 1.0 nm in the central cavity of SWNTs and DWNTs with a small diameter, the stacking phases of C60 inside DWNTs with a larger diameter are totally different. Depending on the inner diameter of DWNTs, the stacking phase of C60 varies, which can be the zigzag phase, double-helix phase, and phase of two molecule layers. This new observation provides direct solid experimental evidence to the previous theoretical prediction that the stacking phases would be sensitively dependent on the inner-tube diameters of the nanotubes.
     4. Raman measurements on DWNTs peapods have revealed for the first time that there are obvious differences between the spectrum of DWNTs peapods and SWNTs peapods in terms of the shifts, and the strengthened or weakened intensity of certain characteristic peaks. The difference is believed to be due to the special double-layer structure of DWNTs. C60 fullerenes would polymerize via a dipolymerization scheme under the laser irradiation, and C60 fullerenes would interact with the inner walls of DWNTs via weak force of van der Waals, during which charge transfers may take place between C60 molecules and carbon nanotubes.
     5. Ferrocene, a small metallorganic molecule with very good redox activity, has been successfully filled into the central cavity of DWNTs, resulting in a novel nanohybrid material Fc@DWNTs that is of potential as air-stable n-type transistors, building blocks and biosensors for various devices based on the redox activities of ferrocene and electronic properties of nanotubes. FT-IR study reveals that there exists a strong interaction between the ferrocene molecules inside the cavity of DWNTs and the nanotubes, and n-doped DWNTs are formed because of the electrons transfer from ferrocene molecules. The electrochemical properties of as-synthesized Fc@DWNTs have been evaluated using the cyclic voltammetry, showing the Fc@DWNTs are different from the Fc@SWNTs in terms of the electrochemical property. For the Fc@DWNTs materials, surface-confined thin-layer electrochemical behavior is observed at low scan rate, while a diffusion-confined electrochemical behavior would dominate at high scanning rate.
     6. The thermochemical behaviors of ferrocene molecules inside the confined nano-space of the DWNTs have been studied for the first time using the thermogravimetric analysis-mass spectrum (TG-MS) technique. The results show that the decomposion temperature of ferrocene molecules in the confined nano-space is 540℃, which is 40℃higher than the decomposion temperature of 500℃under normal conditions. The variation in thermochemical properties of ferrocene molecules is believed to be due to the confinement effect and protection of carbon layers.
     7. Triple-walled carbon nanotubes (TWNTs) have been prepared for the first time by annealing of Fc@DWNTs nanohybrid materials at high temperature, in which the filled-ferrocene molecules decompose, resulting in a new carbon nanotube inside the central cavity of DWNTs that function as template at nanoscale. The detailed HRTEM examination confirms that the formation of the new nanotubes inside DWNTs follows a root-growth mechanism that has been predicted in previous theoretical studies but lacs solid evidence before the present work. This opens a new approach to the controllable synthesis of TWNTs, and may give a new impetus to the study of TWNTs.
引文
[1] Iijima S, Helical Microtubules of Graphitic Carbon. Nature 1991, 354, (6348):56-58.
    
    [2] Iijima S, Ichihashi, T., Single-Shell Carbon Nanotubes of 1-Nm Diameter. Nature 1993, 363, (6430): 603-605.
    [3] Dillon AC, Jones KM, Bekkedahl TA et al. Storage of hydrogen in single-walled carbon nanotubes. Nature 1997, 386, (6623): 377-379.
    [4] Hutchison JL, Kiselev NA, Krinichnaya EP et al. Double-walled carbon nanotubes fabricated by a hydrogen arc discharge method. Carbon 2001, 39, (5):761-70.
    [5] Baughman RH, Zakhidov AA, de Heer WA. Carbon nanotubes-the route toward applications. Science 2002,297, (5582): 787-792.
    [6] Endo M, Muramatsu H, Hayashi T et al. 'Buckypaper' from coaxial nanotubes. Nature 2005, 433: 476.
    [7] Saito R, Fujita M, Dresselhaus G et al. Electronic-Structure of Chiral Graphene Tubules. Applied Physics Letters 1992, 60, (18): 2204-2206.
    [8] Robertson DH, Brenner DW, Mintmire JW. Energetics of Nanoscale Graphitic Tubules. Physical Review B 1992, 45, (21): 12592-12595.
    [9] Hamada N, Sawada S, Oshiyama A. New One-Dimensional Conductors - Graphitic Microtubules. Physical Review Letters 1992, 68, (10): 1579-1581.
    [10] Mintmire JW, Robertson DH, White CT. Properties of Fullerene Nanotubules. Journal of Physics and Chemistry of Solids 1993, 54, (12): 1835-1840.
    
    [11] Saito R, Fujita M, Dresselhaus G et al. Electronic-Structure of Graphene Tubules Based on C-60. Physical Review B 1992, 46, (3):1804-1811.
    
    [12] Wildoer JWG., Venema LC, Rinzler AG et al. Electronic structure of atomically resolved carbon nanotubes. Nature 1998, 391, (6662): 59-62.
    [13] Odom TW, Huang JL, Kim P et al. Atomic structure and electronic properties of single-walled carbon nanotubes. Nature 1998, 391, (6662): 62-64.
    [14] Dresselhaus MS, Dresselhaus G., Jorio A et al. Raman spectroscopy on isolated single wall carbon nanotubes. Carbon 2002,40, (12): 2043-2061.
    [15] Ajayan PM, Lambert JM, Bernier P et al. Growth Morphologies During Cobalt-Catalyzed Single-Shell Carbon Nanotube Synthesis. Chemical Physics Letters 1993, 215, (5): 509-517.
    [16] Journet C, Maser WK, Bernier P et al. Large-scale production of single-walled carbon nanotubes by the electric-arc technique. Nature 1997, 388, (6644):756-758.
    [17] Shi ZJ, Lian YF, Zhou XH et al. Mass-production of single-wall carbon nanotubes by arc discharge method. Carbon 1999, 37, (9): 1449-1453.
    [18] Saito Y, Nakahira T, Uemura S. Growth conditions of Double-walled carbon annotubes in arc discharge. J Phys Chem B 2003, 107:931-934.
    [19] Huang H, Kajiura H, Tsutsui S et al. High-quality Double-walled carbon nanotubes super bundles grown in a hydrogen-free atmosphere. J Phys Chem B 2003, 107: 8794-8798.
    [20] Qiu HX, Shi ZJ, Guan LH et al. High-efficient synthesis of double-walled carbon nanotubes by arc discharge method using chloride as a promoter. Carbon 2006, 44: 516-521.
    [21] Kong J, Soh HT, Cassell AM et al. Synthesis of individual single-walled carbon nanotubes on patterned silicon wafers. Nature 1998, 395, (6705): 878-881.
    [22] Nikolaev P, Bronikowski MJ, Bradley RK et al. Gas-phase catalytic growth of single-walled carbon nanotubes from carbon monoxide. Chemical Physics Letters 1999, 313, (1-2): 91-97.
    [23] Hanfer J, Bronikowski M, Azamian B et al. Catalytic growth of single-wall carbon nanotubes from metal particles. Chemical Physics Letters 1998, 296 (1-2): 195-202.
    [24] Zhou Z, Ci L, Chen X et al. Controllable growth of double wall carbon nanotubes in a floating catalytic system. Carbon 2003, 41:337-342.
    [25] Liu C, Fan YY, Liu M et al. Hydrogen storage in single-walled carbon nanotubes at room temperature. Science 1999, 286, (5442): 1127-1129.
    [26] Lyu S, Liu B, Lee C. High-quality double-walled carbon nanotubes produced by catalytic decomposition of benzene. Chemistry of Materials 2003, 15: 3951-3954.
    [27] Wei J, Jiang B, Wu D et al. Large-scale synthesis of long double-walled carbon nanotubes. J. Phys. Chem.B 2004, 108: 8844-8847.
    [28] Ren WC, Li F, Chen J et al. Morphology, diameter distribution and Raman scattering measurements of double-walled carbon nanotubes synthesized by catalytic decomposition of methane. Chemical Physics Letters 2002, 359:196-202.
    [29] Li W, Wen J, Sennett M, Ren Z. Clean double-walled carbon nanotubes synthesized by CVD. Chemical Physics Letters 2003, 368: 299-306.
    [30] Lyu S, Lee T, Yang C et al. Synthesis and characterization of high-quality double carbon nanotubes by catalysic decomposition of alcohol. Chemical Communications 2003, 12:1404-1405.
    [31] Flahaut E, Bacsa R, Peigney A et al. Gram-scale CCVD synthesis of double-walled carbon nanotubes. Chemical Communications 2003, 12: 1442-1443.
    [32] Hiraoka T, Kawakubo T, Kimura J et al. Selective synthesis of double-wall carbon nanotubes by CCVD of acetylene using zeolite supports. Chemical Physics Letters 2003, 382:679-685.
    [33] Ci L, Rao Z, Zhou Z et al. Double walle carbon nanotubes promoted by sulfur in a floating iron catalyst CVD system. Chemical Physics Letters 2002, 359(1-2):63-67.
    [34] Wei J, Ci L, Jiang B, Li Y et al. Preparation of highly pure double-walled carbon nanotubes. Journal of Material Chemistry 2003, 13:1340-1344.
    [35] Yamada T, Namai T, Hata K et al. Size-selective growth of double-walled carbon nanotube forests from engineered iron catalysts. Nature Nanotechnology 2006, 1: 131-136.
    [36] Guo T, Nikolaev P, Rinzler AG et al. Self-Assembly of Tubular Fullerenes. Journal of Physical Chemistry 1995, 99, (27): 10694-10697.
    [37] Thess A, Lee R, Nikolaev P et al. Crystalline ropes of metallic carbon nanotubes. Science 1996, 273, (5274): 483-487.
    [38] Liu Z, Cai WB, He LN et al. In vivo biodistribution and highly efficient tumour targeting of carbon nanotubes in mice. Nature Nanotechnology 2007, 2(1): 47-52.
    [39] Lu JP. Elastic properties of carbon nanotubes and nanoropes. Physical Review Letters 1997, 79, (7): 1297-1300.
    [40] Bachtold A, Strunk C, Salvetat JP et al. Aharonov-Bohm oscillations in carbon nanotubes. Nature 1999,397, (6721): 673-675.
    [41] Huang J, Chen S, Wang Z et al. Superplastic carbon nanotubes - Conditions have been discovered that allow extensive deformation of rigid single-walled nanotubes. Nature 2006,439, (7074): 281-281.
    [42] Park TJ, Banerjee S, Hemraj-Benny T et al. Purification strategies and purity visualization techniques for single-walled carbon nanotubes. Journal of Materials Chemistry 2006, 16, (2): 141-154.
    [43] Zhu HW, Xu CL, Wu DH et al. Direct synthesis of long single-walled carbon nanotube strands. Science 2002, 296, (5569): 884-886.
    [44] Li Y, Wang K, Wei J et al. Tensile properties of long aligned double-walled carbon nanotube strands. Carbon 2005,43:31-35.
    [45] Li YL, Kinloch IA, Windle AH. Direct spinning of carbon nanotube fibers from chemical vapor deposition synthesis. Science 2004, 304, (5668): 276-278.
    [46] Zhang M, Atkinson KR, Baughman RH. Multifunctional carbon nanotube yarns by downsizing an ancient technology. Science 2004, 306, (5700): 1358-1361.
    [47] Ericson LM, Fan H, Peng HQ et al. Macroscopic, neat, single-walled carbon nanotube fibers. Science 2004,305,(5689): 1447-1450.
    [48] Vigolo B, Penicaud A, Coulon C et al. Macroscopic fibers and ribbons of oriented carbon nanotubes. Science 2000, 290, (5495): 1331-1334.
    
    [49] Dalton A, Collins S, Munoz E et al. Super-tough carbon nanotube fibres. Nature 2003,423: 703.
    [50] Ouyang M, Huang JL, Cheung CL et al. Energy gaps in "metallic" single-walled carbon nanotubes. Science 2001, 292, (5517): 702-705.
    [51] White CT, Todorov TN. Carbon nanotubes as long ballistic conductors. Nature 1998, 393, (6682): 240-242.
    [52] White CT, Todorov TN. Quantum electronics - Nanotubes go ballistic. Nature 2001, 411, (6838): 649-651.
    [53] Liang WZ, Yang JL, Sun J. Controllable p and n doping of single-walled carbon nanotubes by encapsulation of organic molecules and fullerene: A theoretical investigation. Applied Physics Letters 2005, 86, (22): 223113.
    [54] Tans SJ, Verschueren ARM, Dekker C. Room-temperature transistor based on a single carbon nanotube. Nature 1998, 393, (6680), 49-52.
    [55] Bachtold A, Hadley P, Nakanishi T et al. Logic circuits with carbon nanotube transistors. Science 2001,294,(5545), 1317-1320.
    [56] Wang S, Liang XL, Chen Q et al. Field-effect characteristics and screening in double-walled carbon nanotube field-effect transistors. Journal of Physical Chemistry B 2005,109 (37): 17361-17365.
    [57] Chen JW, Yang LF, Yang HT et al. Electron transport properties of incommensurate. double-walled carbon nanotubes. Chemical Physics Letters 2004, 400 (4-6): 384-388.
    [58] Liang YX, Wang TH. A double-walled carbon nanotube field-effect transistor using the inner shell as its gate. Physica E-Low-Dimentional Systems & Nanostructure 2004, 23 (1-2): 232-236.
    [59] Wei JQ, Zhu HW, Jiang B et al. Electronic properties of double-walled carbon nanotube films. Carbon 2003,41 (13): 2495-2500.
    [60] Chen Z, Appenzeller J, Lin Y et al. An Integrated Logic Circuit Assembled on a Single Carbon Nanotube. Science 2006, 311, (5768), 1735.
    [61] Jarillo-Herrero P, van Dam JA, Kouwenhoven LP. Quantum supercurrent transistors in carbon nanotubes. Nature 2006, 439, (7079), 953-956.
    [62] Kong J, Franklin NR, Zhou CW et al. Nanotube molecular wires as chemical sensors. Science 2000, 287, (5453), 622-625.
    [63] Cohen-karni T, Segev L, Srur-lavi O et al. Torsional electromechanical quantum oscillations in carbon nanotubes. Nature Nanotechnology 2006,1(1): 36-41.
    [64] Subramanian A, Dong L, Tharian J et al. Batch fabrication of carbon nanotube bearings. Nanotechnology 2007, 7: 075703-075712.
    [65] Deshpande V, Chiu H, Postma H et al. Carbon nanotubes lieaner bearing nanoswitches. Nano Lett. 2006,6(6): 1092-1095.
    [66] Lee NS, Chung DS, Han IT et al. Application of carbon nanotubes to field emission displays. Diamond and Related Materials 2001, 10, (2): 265-270.
    [67] Saito Y, Uemura S. Field emission from carbon nanotubes and its application to electron sources. Carbon 2000, 38, (2), 169-182.
    [68] Sugie H, Tanemura M, Filip V et al. Carbon nanotubes as electron source in an x-ray tube. Applied Physics Letters 2001, 78, (17), 2578-2580.
    [69] Kurachi H, Uemura S, Yotani J et al. Proceedings of 21~(st) International Display Rearch Conference / 8~(th) International Display Workshops. Society for Information Display: San Jose, 2001:1245-1248.
    [70] Kociak M, Suenaga K, Hirahara K et al. Linking chiral indices and transport properties of double-walled carbon nanotubes. Physical Review Letters 2002, 89: 155501.
    [71] Rinzler AG, Hafner JH, Nikolaev P et al. Unraveling Nanotubes - Field-Emission from an Atomic Wire. Science 1995, 269, (5230): 1550-1553.
    [72] Zhu W, Bower C, Zhou O et al. Large current density from carbon nanotube field emitters. Applied Physics Letters 1999, 75, (6): 873-875.
    [73] Huang YH, Okada M, Tanaka K et al. Estimation of superconducting transition temperature in metallic carbon nanotubes. Physical Review B 1996, 53, (9): 5129-5132.
    [74] Morpurgo AF, Kong J, Marcus CM et al. Gate-controlled superconducting proximity effect in carbon nanotubes. Science 1999, 286, (5438): 263-265.
    [75] Tang K, Sun H, Wang J et al. Mono-sized single-wall carbon nanotubes formed in channels of AIPO4-5 single crystal. Applied physics letters 1998, 73(16): 2287-2289.
    [76] Rao AM, Richter E, Bandow S et al. Diameter-selective Raman scattering from vibrational modes in carbon nanotubes. Science 1997, 275, (5297): 187-191.
    [77] Chen J, Hamon MA, Hu H et al. Solution properties of single-walled carbon nanotubes. Science 1998, 282, (5386): 95-98.
    [78] O'Connell MJ, Bachilo SM, Huffman CB et al. Band gap fluorescence from individual single-walled carbon nanotubes. Science 2002, 297, (5581): 593-596.
    [79] Chen J, Perebeinos V, Freitag M et al. Bright infrared emission from electrically induced excitons in carbon nanotubes. Science 2005, 310, (5751): 1171-1174.
    [80] Barone PW, Baik S, Heller DA et al. Near-infrared optical sensors based on single-walled carbon nanotubes. Nature Materials 2005, 4, (1): 86-U16.
    [81] Pantarotto D, Briand JP, Prato M et al. Translocation of bioactive peptides across cell membranes by carbon nanotubes. Chemical Communications 2004, (1): 16-17.
    [82] Kostarelos K, Lacerda L, Partidos CD, et al. Carbon nanotube-mediated delivery of peptides and genes to cells: translating nanobiotechnology to therapeutics. Journal of Drug Delivery Science and Technology 2005, 15 (1): 41-47.
    
    [83] Liu YF, Wang HF. Nanotechnology tackles tumours. Nature Nanotechnology 2007, 2: 20-2.
    [84] Liu J, Rinzler AG, Dai HJ et al. Fullerene pipes. Science 1998, 280, (5367): 1253-1256.
    [85] Odom TW, Huang JL, Cheung CL et al. Magnetic clusters on single-walled carbon nanotubes: The Kondo effect in a one-dimensional host. Science 2000, 290, (5496): 1549-1552.
    [86] Chen Y, Haddon RC, Fang S et al. Chemical attachment of organic functional groups to single-walled carbon nanotube material. Journal of Materials Research 1998, 13, (9): 2423-2431.
    [87] Kuzmany H, Kukovecz A, Kramberger C et al. Exohedral and endohedral function alization of single wall carbon nanotubes. Synthetic Metals 2003, 135, (1-3), 791-793.
    [88] Tasis D, Tagmatarchis N, Georgakilas V et al. Soluble carbon nanotubes. Chemistry-a European Journal 2003, 9, (17): 4001-4008.
    [89] Bahr JL, Yang JP, Kosynkin DV et al. Functionalization of carbon nanotubes by electrochemical reduction of aryl diazonium salts: A bucky paper electrode. Journal of the American Chemical Society 2001, 123,(27), 6536-6542.
    [90] Bahr JL, Tour JM. Highly functionalized carbon nanotubes using in situ generated diazonium compounds. Chemistry of Materials 2001, 13, (11): 3823.
    [91] Chen J, Rao AM, Lyuksyutov S et al. Dissolution of full-length single-walled carbon nanotubes. Journal of Physical Chemistry B 2001, 105, (13): 2525-2528.
    [92] Kahn MGC, Banerjee S, Wong SS. Solubilization of oxidized single-walled carbon nanotubes in organic and aqueous solvents through organic derivatization. Nano Letters 2002, 2: (11): 1215-1218.
    [93] Chen RJ, Zhan YG, Wang DW et al. Noncovalent sidewall functionalization of single-walled carbon nanotubes for protein immobilization. Journal of the American Chemical Society 2001, 123, (16): 3838-3839.
    [94] Zheng M, Jagota A, Semke ED et al. DNA-assisted dispersion and separation of carbon nanotubes. Nature Materials 2003, 2, (5): 338-342.
    [95] Zheng M, Jagota A, Strano MS et al. Structure-based carbon nanotube sorting by sequence-dependent DNA assembly. Science 2003, 302, (5650): 1545-1548.
    [96] Heller DA, Jeng ES, Yeung TK et al. Optical detection of DNA conformational polymorphism on single-walled carbon nanotubes. Science 2006, 311, (5760): 508-511.
    [97] Guo DJ, Li HL. High dispersion and electrocatalytic properties of palladium nanoparticles on single-walled carbon nanotubes. Journal of Colloid and Interface Science 2005, 286, (1): 274-279.
    [98] Quinn BM, Dekker C, Lemay SG. Electrodeposition of noble metal nanoparticles on carbon nanotubes. Journal of the American Chemical Society 2005, 127, (17): 6146-6147.
    [99] Huang JE, Guo DJ, Yao YG et al. High dispersion and electrocatalytic properties of platinum nanoparticles on surface-oxidized single-walled carbon nanotubes. Journal of Electroanalytical Chemistry 2005, 577, (1): 93-97.
    [100] Guo DJ, Li HL. Highly dispersed Ag nanoparticles on functional MWNT surfaces for methanol oxidation in alkaline solution. Carbon 2005, 43, (6): 1259-1264.
    [101] Kim K, Lee SH, Yi W et al. Efficient field emission from highly aligned, graphitic nanotubes embedded with gold nanoparticles. Advanced Materials 2003, 15, (19): 1618-+.
    [102] Chen W, Loh KP, Xu H et al. Nanoparticle dispersion on reconstructed carbon nanomeshes. Langmuir 2004, 20, (25): 10779-10784.
    [103] Pham-Huu C, Keller N, Roddatis VV et al. Large scale synthesis of carbon nanofibers by catalytic decomposition of ethane on nickel nanoclusters decorating carbon nanotubes. Physical Chemistry Chemical Physics 2002, 4, (3): 514-521.
    [104] Zhou CW, Kong J, Yenilmez E et al. Modulated chemical doping of individual carbon nanotubes. SCIENCE 2000, 290 (5496): 1552-1555.
    [105] Pederson MR, Broughton JQ. Nanocapillarity in Fullerene Tubules. Physical Review Letters 1992, 69, (18): 2689-2692.
    [106] Ajayan PM, Iijima S, Capillarity-Induced Filling of Carbon Nanotubes. Nature 1993, 361, (6410): 333-334.
    [107] Ajayan PM, Ebbesen TW, Ichihashi T et al. Opening Carbon Nanotubes with Oxygen and Implications for Filling. Nature 1993, 362, (6420): 522-525.
    [108] Ajayan PM, Stephan O, Redlich P et al. Carbon Nanotubes as Removable Templates for Metal-Oxide Nanocomposites and Nanostructures. Nature 1995,375, (6532): 564-567.
    [109] Tsang SC, Chen YK, Harris PJF et al. A Simple Chemical Method of Opening and Filling Carbon Nanotubes. Nature 1994, 372, (6502): 159-162.
    [110] Chu A, Cook J, Heesom RJR et al. Sloan J. Filling of carbon nanotubes with silver, gold, and gold chloride. Chemistry of Materials 1996, 8, (12): 2751-2754.
    [111] Pham-Huu C, Keller N, Estournes C et al. Synthesis of CoFe204 nanowire in carbon nanotubes. A new use of the confinement effect. Chemical Communications 2002, (17): 1882-1883.
    [112] Ajayan PM, Colliex C, Lambert JM et al. Growth of Manganese Filled Carbon Nanofibers in the Vapor-Phase. Physical Review Letters 1994, 72, (11): 1722-1725.
    [113] Demoncy N, Stephan O, Brun N et al. Filling carbon nanotubes with metals by the arc-discharge method: the key role of sulfur. European Physical Journal B 1998, 4, (2): 147-157.
    [114] Guerretpiecourt C, Lebouar Y, Loiseau A et al. Relation between Metal Electronic-Structure and Morphology of Metal-Compounds inside Carbon Nanotubes. Nature 1994, 372, (6508): 761-765.
    [115] Loiseau A. Nanotubes: Structure, growth and characterization. Vide-Science Technique Et Applications 2001, 56, (300): 209-+.
    [116] Liu MG, Cowley JM. Encapsulation of Manganese Carbides within Carbon Nanotubes and Nanoparticles. Carbon 1995, 33, (6): 749-756.
    [117] Liu M Q, Cowley JM. Encapsulation of Lanthanum Carbide in Carbon Nanotubes and Carbon Nanoparticies. Carbon 1995, 33, (2): 225-232.
    [118] Hu CG, Zhang YY, Bao G et al. DNA functionalized single-walled carbon nanotubes for electrochemical detection. Journal of Physical Chemistry B 2005, 109, (43): 20072-20076.
    [119] Banhart F, Grobert N, Terrenes M et al. Metal atoms in carbon nanotubes and related nanoparticles. International Journal of Modem Physics B 2001, 15, (31): 4037-4069.
    [120] Han WQ, Fan SS, Li QQ et al. Synthesis of gallium nitride nanorods through a carbon nanotube-confmed reaction. SCIENCE 1997, 277 (5330): 1287-1289.
    [121] Sloan J, Hammer J, Zwiefka-Sibley M et al. The opening and filling of single walled carbon nanotubes (SWTs). Chemical Communications 1998, (3): 347-348.
    [122] Smith BW, Monthioux M, Luzzi DE. Encapsulated C-60 in carbon nanotubes. Nature 1998, 396, (6709): 323-324.
    [123] Thamavaranukup N, Hoppe HA, Ruiz-Gonzalez L et al. Single-walled carbon nanotubes filled with M OH (M = K, Cs) and then washed and refilled with clusters and molecules. Chemical Communications 2004, (15): 1686-1687.
    [124] Coleman K.S, Sloan J, Hanson NA et al. The formation of ReS2 inorganic fullerene-like structures containing Re-4 parallelogram units and metal-metal bonds. Journal of the American Chemical Society 2002, 124,(39): 11580-11581.
    [125] Govindaraj A, Satishkumar BC, Nath M et al. Metal nanowires and intercalated metal layers in single-walled carbon nanotube bundles. Chemistry of Materials 2000, 12, (1): 202-205.
    [126] Hulman M, Kuzmany H, Costa P et al. Light-induced instability of PbO-filled single-wall carbon nanotubes. Applied Physics Letters 2004, 85, (11): 2068-2070.
    [127] S mith BW, Monthioux M, Luzzi DE et al. Carbon nanotube encapsulated fullerenes: a unique class of hybrid materials. Chemical Physics Letters 1999, 315, (1-2): 31-36.
    [128] Kataura H, Maniwa Y, Kodama T et al. High-yield fullerene encapsulation in single-wall carbon nanotubes. Synthetic Metals 2001, 121, (1-3): 1195-1196.
    [129] Hirahara K, Bandow S, Suenaga K et al. Electron diffraction study of one-dimensional crystals of fullerenes. Physical Review B 2001, 64, (11): 115420.
    [130] Urita K, Sato Y, Suenaga K et al. Defect-induced atomic migration in carbon nanopeapod: Tracking the single-atom dynamic behavior. Nano Letters 2004, 4, (12): 2451-2454.
    [131] Liu Z, Koshino M, Suenaga K et al. Transmission electron microscopy imaging of individual functional groups of fullerene derivatives. Physical Review Letters 2006, 96, (8): 088304.
    [132] Suenaga K, Tence T, Mory C et al. Element-selective single atom imaging. Science 2000, 290, (5500): 2280-2282.
    [133] Chiu PW, Gu G, Kim GT et al. Temperature-induced change from p to n conduction in metallofullerene nanotube peapods. Applied Physics Letters 2001, 79, (23): 3845-3847.
    [134] Suenaga K, Okazaki T, Hirahara K et al. High-resolution electron microscopy of individual metallofullerene molecules on the dipole orientations in peapods. Applied Physics a-Materials Science & Processing 2003, 76, (4): 445-447.
    [135] Okazaki T, Suenaga K, Hirahara K. et al. Real time reaction dynamics in carbon nanotubes. Journal of the American Chemical Society 2001, 123, (39): 9673-9674.
    [136] Smith BW, Luzzi DE, Achiba Y. Tumbling atoms and evidence for charge transfer in La-2@C-80@SWNT. Chemical Physics Letters 2000, 331, (2-4): 137-142.
    [137] Debarre A, Jaffiol R, Mien C et al. Antenna effect in dimetallofullerene peapods. Chemical Physics Letters 2003, 380, (1-2): 6-11.
    [138] Khlobystov AN, Porfyrakis K, Kanai M et al. Molecular motion of endohedral fullerenes in single-walled carbon nanotubes. Angewandte Chemie-International Edition 2004, 43, (11): 1386-1389.
    [139] Suenaga K, Taniguchi R, Shimada T et al. Evidence for the intramolecular motion of Gd atoms in a Gd-2@C-92 nanopeapod. Nano Letters 2003, 3, (10): 1395-1398.
    [140] Sun BY, Sato Y, Suenaga K et al. Entrapping of exohedral metallofullerenes in carbon nanotubes: (CsC60)(n)@SWNT nano-peapods. Journal of the American Chemical Society 2005, 127, (51): 17972-17973.
    [141] Li LJ, Khlobystov AN, Wiltshire JG et al. Diameter-selective encapsulation of metallocenes in single-walled carbon nanotubes. Nature Materials 2005, 4, (6): 481-485.
    [142] Guan LH, Li HJ, Shi ZJ et al. Standing or Lying C70s Encapsulated in Carbon Nanotubes with Different Diameters, Solid State Communications 2005, 133, (5): 333-336.
    [143] Guan LH, Shi ZJ, Li MX et al. Ferrocene-filled single-walled carbon nanotubes. Carbon 2005, 43, (13): 2780-2785.
    [144] Guan LH, Suenaga K, Shi ZJ et al. Direct imaging of alkali metal site in K-doped fullerene-peapod. Physical Review Letters 2005, 94, (4): 045502.
    [145] Jeong GH, Hatakeyama R, Hirata T et al. Structural deformation of single-walled carbon nanotubes and fullerene encapsulation due to magnetized-plasma ion irradiation. Applied Physics Letters 2001, 79, (25): 4213-4215.
    [146] Sloan J, Cook J, Chu A et al. Selective deposition of UC14 and (KCl)(x)(UC14)(y) inside carbon nanotubes using eutectic and noneutectic mixtures of UC14 with KC1 (vol 140, pg 83, 1998). Journal of Solid State Chemistry 1999, 142, (2): 470-470.
    [147] Sloan J, Terrones M, Nufer S et al. Metastable one-dimensional AgCll-xIx solid-solution wurzite "tunnel" crystals formed within single-walled carbon nanotubes. Journal of the American Chemical Society 2002, 124, (10): 2116-2117.
    [148] Sloan J, Kirkland Al, Hutchison JL et al. Structural characterization of atomically regulated nanocrystals formed within single-walled carbon nanotubes using electron microscopy. Accounts of Chemical Research 2002, 35, (12): 1054-1062.
    [149] Xu CG, Sloan J, Brown G et al. ID lanthanide halide crystals inserted into single-walled carbon nanotubes. Chemical Communications 2000, (24): 2427-2428.
    [150] Meyer RR, Sloan J, Dunin-Borkowski RE et al. Discrete atom imaging of one-dimensional crystals formed within single-walled carbon nanotubes. Science 2000, 289, (5483): 1324-1326.
    [151] Philp E, Sloan J, Kirkland Al et al. An encapsulated helical one-dimensional cobalt iodide nanostructure. Nature Materials 2003, 2, (12): 788-791.
    [152] Sloan J, Grosvenor SJ, Friedrichs S et al. A one-dimensional Bal_2 chain with five- and six-coordination, formed within a single-walled carbon nanotube. Angewandte Chemie-International Edition 2002, 41,(1), 1156-+.
    [153] Brown G, Bailey SR, Sloan J et al. Electron beam induced in situ clusterisation of ID ZrC14 chains within single-walled carbon nanotubes. Chemical Communications 2001, (9): 845-846.
    [154] Zhang ZL, Li B, Shi ZJ et al. Filling of single-walled carbon nanotubes with silver. Journal of Materials Research 2000, 15, (12): 2658-2661.
    [155] Mittal J, Monthioux M, Allouche H et al. Room temperature filling of single-wall carbon nanotubes with chromium oxide in open air. Chemical Physics Letters 2001, 339, (5-6): 311-318.
    [156] Friedrichs S, Meyer RR, Sloan J et al. Complete characterisation of a Sb2O3/(21,-8)SWNT inclusion composite. Chemical Communications 2001, (10): 929-930.
    [157] Fan X, Dickey EC, Eklund PC et al. Atomic arrangement of iodine atoms inside single-walled carbon nanotubes. Physical Review Letters 2000, 84, (20): 4621-4624.
    [158] Costa P, Sloan J, Rutherford T et al. Encapsulation of RexOy clusters within single-walled carbon nanotubes and their in tubulo reduction and sintering to Re metal. Chemistry of Materials 2005, 17, (26): 6579-6582.
    [159] Kiang CH. Electron irradiation induced dimensional change in bismuth filled carbon nanotubes. Carbon 2000, 38(11-12): 1699-1701.
    [160] Zhang ZL, Li B, Shi ZJ et al. Filling of single-walled carbon nanotubes with silver. Journal of Materials Research 2000,15 (12): 2658-2661.
    [161] Corio P, Santos AP, Santos PS et al. Characterization of single wall carbon nanotubes filled with silver and with chromium compounds. Chemical Physics Letters 2004, 383 (5-6): 475-480.
    [162] Borowiak-Palen E, Ruemmeli MH, Gemming T et al. Silver filled single-wall carbon nanotubes - synthesis, structural and electronic properties. Nanotechnology 2006, 17 (9): 2415-2419.
    [163] Yudasaka M, Ajima K, Suenaga K et al. Nano-extraction and nano-condensation for C-60 incorporation into single-wall carbon nanotubes in liquid phases. Chemical Physics Letters 2003, 380, (1-2): 42-46.
    [164] Suenaga K, Okazaki T, Wang CR et al. Direct imaging of Sc-2@C-84 molecules encapsulated inside single-wall carbon nanotubes by high resolution electron microscopy with atomic sensitivity. Physical Review Letters 2003, 90 (5): 055506.
    [165] Gloter A, Suenaga K, Kataura H et al. Structural evolutions of carbon nano-peapods under electron microscopic observation. Chemical Physics Letters 2004, 390, (4-6): 462-466.
    [166] Jeong GH, Hatakeyama R, Hirata T et al. Structural deformation of single-walled carbon nanotubes and fullerene encapsulation due to magnetized-plasma ion irradiation. Applied Physics Letters 2001, 79, (25): 4213-4215.
    
    [167] Guan LH. Dissertation for PhD degree from Peking University. 2006.
    [168] Khlobystov AN, Britz DA, Briggs GAD. Molecules in carbon nanotubes. Accounts of Chemical Research 2005, 38, (12): 901-909.
    [169] Kataura H, Maniw Y, Abe M et al. Optical properties of fullerene and non-fullerene peapods. Applied Physics a-Materials Science & Processing 2002, 74, (3): 349-354.
    [170] Britz DA, Khlobystov AN, Porfyrakis K et al. Chemical reactions inside single-walled carbon nano test-tubes. Chemical Communications 2005, (1): 37-39.
    [171] Britz DA, Khlobystov AN, Wang JW et al. Selective host-guest interaction of single-walled carbon nanotubes with functionalised fullerenes. Chemical Communications 2004, (2): 176-177.
    [172] Takenobu T, Takano T, Shiraishi M et al. Stable and controlled amphoteric doping by encapsulation of organic molecules inside carbon nanotubes. Nature Materials 2003, 2, (10): 683-688.
    [173] Fujita Y, Bandow S, Iijima S. Formation of small-diameter carbon nanotubes from PTCDA arranged inside the single-wall carbon nanotubes. Chemical Physics Letters 2005, 413, (4-6): 410-414.
    [174] Sloan J, Novotny MC, Bailey SR et al. Two layer 4 : 4 co-ordinated KI crystals grown within single walled carbon nanotubes. Chemical Physics Letters 2000, 329, (1-2): 61-65.
    [175] Koga K, Gao GT, Tanaka H et al. Formation of ordered ice nanotubes inside carbon nanotubes. Nature 2001, 412, (6849): 802-805.
    [176] Lu J, Nagase S, Zhang S et al. Strongly size-dependent electronic properties in C-60-encapsulated zigzag nanotubes and lower size limit of carbon nanopeapods. Physical Review B 2003, 68, (12): 121402.
    [177] Hornbaker DJ, Kahng SJ, Misra S et al. Mapping the one-dimensional electronic states of nanotube peapod structures. Science 2002, 295, (5556): 828-831.
    [178] Lee J, Kim H, Kahng SJ et al. Bandgap modulation of carbon nanotubes by encapsulated metallofullerenes. Nature 2002, 415, (6875): 1005-1008.
    [179] Shimada T, Okazaki T, Taniguchi R et al. Ambipolar field-effect transistor behavior of Gd@C-82 metallofullerene peapods. Applied Physics Letters 2002, 81, (21): 4067-4069.
    [180] Bandow S, Takizawa M, Hirahara M et al. Raman scattering study of double-wall carbon nanotubes derived from the chains of fullerenes in single-wall carbon nanotubes. Chemical Physics letters 2001, 337: 48-54.
    [181] Okada S, Saito S, Oshiyama A. Energetics and electronic structures of encapsulated C-60 in a carbon nanotube. Physical Review Letters 2601, 86 (17): 3835-3838.
    [182] Okada S, Otani M, Oshiyama A. Electron-state control of carbon nanotubes by space and encapsulated fullerenes. Physical Review B 2003, 67 (20): 2054111 -2054115.
    [183] Song W, Ni M, Lu J et al. Electronic structures of semiconducting double-walled carbon nanotubes: Important effect of interlay interaction. Chemical Physics Letters 2005, 414 (4-6): 429-433.
    [184] Hodak M, Girifalco LA. Ordered phases of fullerene molecules formed inside carbon nanotubes. Physical Review B 2003, 67, (7): 075419.
    [185] Sendova M, Flahaut E, DeBono B. Raman spectroscopy of PbI_2-filled double-walled carbon nanotubes. Journal of applied physics 2005, 98: 104304.
    [186] Costa PMFJ, Friedrichs S, Sloan J et al. Imaging lattice defects and distortions in alkali-metal iodides encapsulated within double-walled carbon nanotubes. Chemistry of Materials 2005, 17 (12): 3122-3129.
    [187] Li Y, Hatakeyama R, Kaneko T et al. Electronic transport properties of Cs-encapsulated double-walled carbon nanotubes. Applied Physical Letters 2006, 89 (9): Art. No. 093110.
    [188] Li Y, Hatakeyama R, Kaneko T et al. Synthesis and electronic properties of ferrocene-filled double-walled carbon nanotubes. Nanotechnology 2006, 17 (16): 4143-4147.
    [1] Iijima S. Helical Microtubules of Graphitic Carbon. Nature, 1991, 354 (6348): 56-58.
    
    [2] Yakobson BI, Brabec CJ, Bernholc J. Nanomechanics of carbon tubes: Instabilities beyond linear response. Physical Review Letters, 1996, 76 (14):2511-2514.
    [3] Hamada N, Sawada S, Oshiyama A. New One-Dimensional Conductors-Graphitic Microtubules. Physical Review Letters 1992, 68 (10): 1579-1581.
    [4] Saito R, Fujita M, Dresselhaus G et al. Electronic-Structure of Chiral Graphene Tubules. Applied Physics Letters 1992, 60 (18): 2204-2206.
    [5] Kurachi H, Uemura S, Yotani J et al. Proceedings of 21~(st) International Display Rearch Conference / 8~(th) International Display Workshops. Society for Information Display: San Jose, 2001:1245-1248.
    [6] Kodak M, Suenaga K, Hirahara K et al. Linking chiral indices and transport properties of double-walled carbon nanotubes. Physical Review Letters 2002, 89: 155501.
    [7] Liang YX, Wang TH. A double-walled carbon nanotube field-effect transistor using the inner shell as its gate. Physica E-Low-Dimentional Systems & Nanostructure 2004, 23 (1-2): 232-236.
    [8] Shimada T, Sugai T, Ohno Y et al. Double-wall carbon nanotube field-effect transistors: Ambipolar transport characteristics Applied Physics Letters 2004, 84 (13): 2412-2414.
    [9] Tu ZC, Ou-Yang ZC. A molecular motor constructed from a double-walled carbon nanotube driven by temperature variation. Journal of Physics-Condensed Matter 2004, 16 (8): 1287-1292.
    [10] W ang S, Liang XL, Chen Q et al. Field-effect characteristics and screening in double-walled carbon nanotube field-effect transistors. Journal of Physical Chemistry B 2005, 109 (37): 17361-17365.
    
    [11] Hutchison JL, Kiselev NA, Krinichnaya EP et al. Double-walled carbon nanotubes fabricated by a hydrogen arc discharge method. Carbon 2001,39 (5):761-70.
    
    [12] Saito Y, Nakahira T, Uemura S. Growth conditions of Double-walled carbon annotubes in arc discharge. J Phys Chem B 2003, 107:931-934.
    [13] Huang H, Kajiura H, Tsutsui S et al. High-quality Double-walled carbon nanotubes super bundles grown in a hydrogen-free atmosphere. J Phys Chem B 2003, 107: 8794-8798.
    [14] Ren W, Li F, Chen J et al. Morphology, diameter distribution and Raman scattering measurements of double-walled carbon nanotubes synthesized by catalytic decomposition of methane. Chem Phys Lett 2002,359:196-202.
    [15] Li W, Wen J, Sennett M et al. Clean double-walled carbon nanotubes synthesized by CVD. Chemical Physics Letters 2003, 368: 299-306.
    [16] Lyu S, Lee T, Yang C et al. Synthesis and characterization of high-quality double carbon nanotubes by catalysic decomposition of alcohol. Chem Commun 2003, 12:1404-1405; Flahaut E, Bacsa R, Peigney A, Laurent C. Gram-scale CCVD synthesis of double-walled carbon nanotubes. Chemical Communications 2003, 12: 1442-1443.
    [17] Hiraoka T, Kawakubo T, Kimura J et al. Selective synthesis of double-wall carbon nanotubes by CCVD of acetylene using zeolite supports. Chemical Physics Letters 2003, 382:679-685.
    [18] Ci L, Rao Z, Zhou Z et al. Double walle carbon nanotubes promoted by sulfur in a floating iron catalyst CVD system. Chemical Physics Letters 2002, 359(1-2):63-67.
    [19] Wei J, Ci L, Jiang B et al. Preparation of highly pure double-walled carbon nanotubes. J Mater Chem 2003, 13:1340-1344.
    [20] Zhou Z, Ci L, Chen X et al. Controllable growth of double wall carbon nanotubes in a floating catalytic system. Carbon 2003, 41:337-342.
    [21] Bandow S, Hirahara K, Hiraoka T et al. Turning peapods into double-walled carbon nanotubes. Mrs. Bulletin 2004, 29 (4): 260-264.
    [22] Bandow S, Takizawa M, Hirahara K et al. Raman scattering study of double-wall carbon nanotubes derived from the chains of fullerenes in single-wall carbon nanotubes. Chem Phys Lett 2001, 337(1-3): 48-54.
    [23] Tohji K, Goto T, Takahashi H et al. Purifying single-walled nanotubes. Nature 1996, 383, (6602): 679-679.
    [24] Shi Z, Lian Y, Liao F et al. Purification of single-wall carbon nanotubes. Solid State Communications 1999, 112(1): 35-37.
    [25] Dujardin E, Ebbesen T, Krishnan A et al. Purification of single-shell nanotubes. Advanced Materials 1998, 10 (8): 611-614.
    [26] Dillon A, Gennett T, Jones K et al. A simple and complete purification of single-walled carbon nanotube materials. Advanced Materials 1999, 11 (16): 1354-1358.
    [27] Vazquez E, Georgakilas V, Prato M. Microwave-assisted purification of HIPCO carbon nanotubes. Chemical Communications 2002, 20: 2308-2309.
    [28] Bandow S, Rao A, Williams K et al. Purification of single-wall carbon nanotubes by microfiltration. Journal of Physical Chemistry B 1997, 101 (44): 8839-8842.
    [29] Shelimov K, Esenaliev R, Rinzler A et al. Purification of single-wall carbon nanotubes by ultrasonically assisted filtration. Chemical Physics Letters 1998, 282 (5-6): 429-434.
    [30] Qiu H, Shi Z, Guan L et al. High-efficient synthesis of double-walled carbon nanotubes by arc discharge method using chloride as a promoter. Carbon 2006, 44: 516-521.
    [31] Chico L, Crespi V, Benedict L et al. Pure carbon nanoscale devices: Nanotube heterojunctions Physical Review Letters 1996, 76 (6): 971-974.
    [32] Lambin P, Fonseca A, Vigneron J et al. Structure and electronic-properties of bent carbon nanotubes. ChemicalPhysics Letters 1995, 245 (1): 85-89.
    [33] Saito R, Dresselhaus G, Dresselhaus M. Tunneling conductance of connected carbon nanotubes. Physical Review B 1996, 53 (4): 2044-2050.
    [34] Yao Z, Postma W, Balents L et al. Carbon nanotube intramolecular junctions. Nature 1999, 402 (6759): 273-276.
    [35] Yang XP, Dong JM. Electronic and transport properties of radially deformed double-walled carbon nanotube intramolecular junction. Physics Letters A 2004, 330 (3-4): 238-244.
    [36] Zolyomi V, Rusznyak A, Kurti J et al. Semiconductor-to-metal transition of double walled carbon nanotubes induced by inter-shell interaction. Physica Status Solidi B-Basic Solid State Physics 2006, 243 (13): 3476-3479.
    [37] Mason N, Biercuk MJ, Marcus CM. Local gate control of a carbon nanotube double quantum dot. Science 2004, 303 (5658): 655-658.
    [38] Jorio A, Saito R, Dresselhaus G et al. Determination of nanotubes properties by Raman spectroscopy. Philosophical Transactions of the Royal Society a-Mathematical Physical and Engineering Sciences 2004, 362 (1824): 2311-2336.
    [39] Wei JQ, Jiang B, Zhang XF et al. Raman study on double-walled carbon nanotubes. Chemical Physical Letters 2003, 376: 753-757.
    [40] Rao AM, Richter E, Bandow S et al. Dresselhaus G, Dresselhaus MS. Diameter-selective Raman scattering from vibrational modes in carbon nanotubes. Science 1997, 275 (5297): 187-191.
    [41] Kuzmany H, Plank W, Hulman M et al. Determination of SWCNT diameters from the Raman response of the radial breathing mode. European Physical Joumal B 2001, 22 (3):307-320.
    [42] Bandow S, Asaka S. Effect of the growth temperature on the diameter distribution and chirality of single-wall carbon nanotubes. Physical Review Letters 1998, 80 (17) :3779-3782.
    [43] Lyu S, Liu B, Lee T et al. Synthesis of high-quality single-walled carbon nanotubes by catalytic decomposition of C_2H_2. Chemical Communication 2003,6:734-735.
    [44] Fang S, Rao A, Eklund et al. Raman scattering study of coalesced single-walled carbon nanotubes. J. Mater. Res. 1998, 13: 2405-2411.
    [45] Thess A, Lee R, Nikolaey P et al. Crystalline ropes of metallic carbon nanotubes. Science 1996, 273 (5274): 483-487.
    [46] Maiti A, Brabec CJ, Bernholc J. Kinetics of metal-catalyzed growth of single-walled carbon nanotubes. Physical Review B 1997, 55 (10) : 6097-6100.
    [47] Xie S, Huang R, Deng S et al. Synthesis, separation, and characterization of fullerenes and their chlorinated fragments in the glow discharge reaction of chloroform. J Phys Chem B 2001, 105:1734-1738.
    [48] Gao F, Xie S, Ma Z et al. The graphite arc-discharge in the presence of CC1_4: chlorinated carbon clusters in the relation with fullerenes formation. Carbon 2004, 42:1959-1963.
    [1] Thess A, Lee R, Nikolaev P et al. Crystalline ropes of metallic carbon nanotubes. Science 1996, 273 (5274): 483-487.
    
    [2] Laasonen K., Andreoni W, Parrinello M. Structural and Electronic Properties of La@C82. Science 1992, 258(5090): 1916-1918.
    [3] Tsang S, Chen Y, Harris P et al. A simple chemical method of opening and filling carbon nanotubes. Nature 1994, 372 :159-162.
    [4] Smith BW, Monthioux M, Luzzi DE. Encapsulated C-60 in carbon nanotubes. Nature 1998, 396 (6709):323-324.
    [5] Zhang Y, Iijima S, Shi Z et al. Defects in arc-discharge-produced single-walled carbon nanotubes. Philosophical Magazine Letters 1999, 79 (7): 473-479.
    [6] Burteaux B, Claye A, Smith B et al. Abundance of encapsulated C-60 in single-wall carbon nanotubes. Chemical Physics Letters 1999, 310 (1-2): 21-24.
    [7] Service RF. Solid-state physics - Nanotube 'peapods' show electrifying promise. Science 2001, 292 (5514): 45-45.
    
    [8] Monthioux M. Filling single-wall carbon nanotubes. Carbon 2002, 40 (10): 1809-1823.
    [9] Okada S, Saito S, Oshiyama A. Energetics and electronic structures of encapsulated C-60 in a carbon nanotube. Physical Review Letters 2001, 86 (17): 3835-3838.
    
    [10] Okada S, Otani M, Oshiyama A. Electron-state control of carbon nanotubes by space and encapsulated fullerenes. Physical Review B 2003, 67 (20): 2054111-2054115.
    
    [11] Song W, Ni M, Lu J et al. Electronic structures of semiconducting double-walled carbon nanotubes: Important effect of interlay interaction. Chemical Physics Letters 2005, 414 (4-6): 429-433.
    
    [12] Hodak M, Girifalco LA. Orderd phases of fullerene molecules formed inside carbon nanotubes. Phys. Rev. B 2003, 67 (7) 0754191 -0754194.
    [13] Tersoff J, Ruoff RS. Structural properties of a carbon nanotube crystal. Physical Review Letters 1994, 73 (5): 676-679.
    [14] Wei J, Jiang B, Zhang X et al. Raman study on double-walled carbon nanotubes. Chemical Physics Letters 2003, (376):753-757.
    [15] Lyu SC, Liu B, Lee Ch. High-quality double-walled carbon nanotubes produced by catalytic decomposition of benzene. Chemistry of Materials 2003, 15 (20): 3951-3954.
    [16] Khlobystov A, Britz D, Ardavan A. Observation of ordered phases of fullerenes in carbon nanotubes. Physical Review Letters 2004, 92 (24) 2455071-2455073.
    [17] Qiu HX, Shi ZJ, Qiu JS et al. Synthesis and Raman scattering study of double-walled carbon nanotube peapods. Solid State Communications 2006, (137): 654-657.
    [18] Qiu HX, Shi ZJ, Qiu JS et al. High efficient synthesis of double-walled carbon nanotubes by arc discharge method using chloride as a promoter. Carbon 2006 (44):516-521.
    [19] Zhou XH, Gu ZN, Wu YQ et al. Separation of C-60 and C-70 fullerenes in gram quantities by fractional crystallization. Carbon 1994, 32 (5): 935-937.
    [20] Smith B, Russo R, Chikkannanavar Set al. High-yield synthesis and one-dimensional structure of C-60 encapsulated in single-wall carbon nanotubes. Journal of Applied Physics 2002, 91(11): 9333-9340.
    [21] Bandow S, Takizawa M, Hirahara K et al. Raman scattering study of double-wall carbon nanotubes derived from the chains of fullerenes in single-wall carbon nanotubes. Chemical Physics Letters 21101. 337 (1-3): 48-54.
    [22] Dresselhaus M, Dresselhaus G, Eklund P. Science of fullerenes and carbon nanotubes. Academic Press, San Diego, 1996: 334.
    [23] Pokhodnia K, Demsar J, Omerzu A et al. Low temperature raman spectra on tdae-c60 single crystals. Synthetic Metals 1997, 85 (1-3): 1749-1750.
    [24] Kataura H, Maniwa Y, Abe Met al. Optical properties of fullerene and non-fullerene peapods. Applied Physics a-Materials Science & Processing 2002, 74 (3): 349-354.
    [25] Dresselhaus MS, Dresselhaus G, Eklund PC. Raman scattering in fullerenes. Journal OF Raman Specstrocopy 1996, 27 (3-4): 351-371.
    [26] Eklund PC, Rao AM, Zhou P et al. PHOTOCHEMICAL TRANSFORMATION OF C-60 AND C-70 FILMS. Thin Solid Films 1995, 257 (2): 185-203.
    [27] Lebedkin S, Gromov A, Giesa S et al. Raman scattering study of C-120, a C-60 dimer. Chemical Physics Letters 1998, 285 (3-4): 210-215.
    [28] Rao AM, Eklund PC, Hodeau JL et al. Infrared and Raman studies of pressure-polymerized C60s. Phys. Rev. B 1997, 55 (7): 4766-4773.
    [29] Pichler T, Kuzmany H, Kataura H et al. Metallic Polymers of C60 Inside Single-Walled Carbon Nanotubes. Physical Review Letters 2001, 87 (26): 2674011-2674014.
    [30] Rao AM, Eklund PC, Bandow S et al. Evidence for charge transfer in doped carbon nanotube bundles from Raman scattering. Nature 1997, 388 (6639): 257-259.
    [31] Kataura H, Maniwa Y, Abe Met al. Optical properties of fullerene and non-fullerene peapods. Appliea Physics A: Materials Science & Processing 2002, 74 (3): 349-354.
    [1] Thess A, Lee R, Nikolaev P et al. Crystalline ropes of metallic carbon nanotubes. Science 1996, 273 (5274): 483-487.
    
    [2] Laasonen K, Andreoni W, Parrinello M. Structural and Electronic Properties of La@C82. Science 1992, 258(5090): 1916-1918.
    [3] Tsang S, Chen Y, Harris P et al. A simple chemical method of opening and filling carbon nanotubes. Nature 1994, 372 :159-162.
    [4] Smith BW, Monthioux M, Luzzi DE. Encapsulated C-60 in carbon nanotubes. Nature 1998, 396, (6709), 323-324.
    [5] Sloan, J.; Hammer, J.; Zwiefka-Sibley, M.; Green, M. L. H., The opening and filling of single walled carbon nanotubes (SWTs). Chemical Communications 1998, (3), 347-348.
    [6] Saito, R.; Fujita, M; Dresselhaus, G.; Dresselhaus, M. S., Electronic-Structure of Chiral Graphene Tubules. Applied Physics Letters 1992, 60, (18), 2204-2206.
    [7] Lee, J.; Kim, H.; Kahng, S. J.; Kim, G.; Son, Y. W.; Ihm, J.; Kato, H.; Wang, Z. W.; Okazaki, T.; Shinohara, H.; Kuk, Y., Bandgap modulation of carbon nanotubes by encapsulated metallofullerenes. Nature 2002, 415, (6875), 1005-1008.
    [8] Lu, J.; Nagase, S.; Yu, D. P.; Ye, H. Q.; Han, R. S.; Gao, Z. X.; Zhang, S.; Peng, L. M., Amphoteric and controllable doping of carbon nanotubes by encapsulation of organic and organometallic molecules. Physical Review Letters 2004, 93, (11).
    [9] Hutchison JL, Kiselev NA, Krinichnaya EP, Krestinin AV, Loutfy RO, Morawsky AP et al. Double-walled carbon nanotubes fabricated by a hydrogen arc discharge method. Carbon 2001,39 (5):761-70.
    [10] Wei J, Ci L, Jiang B, Li Y, Zhang X, Zhu H, et al. Preparation of highly pure double-walled carbon nanotubes. J Mater Chem 2003, 13:1340-1344.
    
    [11] Zhou Z, Ci L, Chen X, Tang D, Yan X, Liu D et al. Controllable growth of double wall carbon nanotubes in a floating catalytic system. Carbon 2003, 41:337-342.
    
    [12] Bandow S, Takizawa M, Hirahara K, Yudasaka M, Iijima S. Raman scattering study of double-wall carbon nanotubes derived from the chains of fullerenes in single-wall carbon nanotubes. Chem Phys Lett 2001, 337(1-3): 48-54.
    [13] Saito Y, Nakahira T, Uemura S. Growth conditions of Double-walled carbon annotubes in arc discharge. J Phys Chem B 2003, 107:931-934.
    [14] Huang H, Kajiura H, Tsutsui S, Murakami Y, Ata M. High-quality Double-walled carbon nanotubes super bundles grown in a hydrogen-free atmosphere. J Phys Chem B 2003, 107: 8794-8798.
    [15] Ren W, Li F, Chen J, Bai S, Cheng H. Morphology, diameter distribution and Raman scattering measurements of double-walled carbon nanotubes synthesized by catalytic decomposition of methane. Chem Phys Lett 2002, 359:196-202.
    [16] Li W, Wen J, Sennett M, Ren Z. Clean double-walled carbon nanotubes synthesized by CVD. Chemical Physics Letters 2003, 368: 299-306.
    [17] Lyu S, Lee T, Yang C, Lee C. Synthesis and characterization of high-quality double carbon nanotubes by catalysic decomposition of alcohol. Chem Commun 2003, 12:1404-1405; Flahaut E, Bacsa R, Peigney A, Laurent C. Gram-scale CCVD synthesis of double-walled carbon nanotubes. Chemical Communications 2003, 12:1442-1443.
    [18] Hiraoka T, Kawakubo T, Kimura Jet al. Selective synthesis of double-wall carbon nanotubes by CCVD of acetylene using zeolite supports. Chemical Physics Letters 2003, 382:679-685.
    [19] Ci L, Rao Z, Zhou Z et al. Double walle carbon nanotubes promoted by sulfur in a floating iron catalyst CVD system. Chemical Physics Letters 2002, 359(1-2):63-67.
    [20] Queipo P, Nasibulin AG, Gonzalez D et al. Novel catalyst particle production method for CVD growth of single- and double-walled carbon nanotubes. CARBON2006, 44 (8): 1604-1608.
    [21] Cambedouzou J, Cambedouzou J, Sauvajol JL et al. Raman spectroscopy of iodine-doped double-walled carbon nanotubes. PHYSICAL REVIEWB 2004, 69 (23): 235422.
    [22] Muramatsu H, Kim YA, Hayashi T et al. Fluorination of double-walled carbon nanotubes. CHEMICAL COMMUNICATIONS 2005, (15): 2002-2004.
    [23] Kim SY, Lee J, Na CW et al. N-doped double-walled carbon nanotubes synthesized by chemical vapor deposition. CHEMICAL PHYSICS LETTERS 2005, 413 (4-6): 300-305.
    [24] Wei JQ, Ding J, Zhang XF et al. Coated double-walled carbon nanotubes with ceria nanoparticles. MATERIALS LETTERS 2005, 59 (2-3): 322-325.
    [25] Bulusheva LG, Gevko PN, Okotrub AV. Thermal behavior of fluorinated double-walled carbon nanotubes. CHEMISTRY OF MATERIALS 2006, 18 (20): 4967-4971.
    [26] Qiu HX, Shi Z J, Qiu JS et al. Synthesis and Raman scattering study of double-walled carbon nanotubes peapods. Solid State Communications 2006 (137):654-657.
    [27] Sendova M, Flahaut E, DeBono B. Raman spectroscopy of PbI2-filled double-walled carbon nan otubes. JOURNAL OF APPLIED PHYSICS 2005, 98 (10): 104304.
    [28] Costa PMFJ, Friedrichs S, Sloan Jet al. Imaging lattice defects and distortions in alkali-metal iodides encapsulated within double-walled carbon nanotubes. CHEMISTRY OF MATERIALS 2005, I7 (12): 3122-3129.
    [29] Li YF, Hatakeyama R, Kaneko T et al. Electronic transport properties of Cs-encapsulated double-walled carbon nanotubes. APPLIED PHYSICS LETTERS 2006,89 (9): 093110.
    [30] Qiu HX, Shi Z J, Qiu JS et al. Controllable Preparation of Triple-Walled Carbon Nanotubes and Their Growth Mechanism. ChemComm. 2007, (10): 1092-1094.
    [31] Li YF, Hatakeyama R, Kaneko T et al. Synthesis and electronic properties of ferrocene-filled double-walled carbon nanotubes. NANOTECHNOLOGY2006, 17 (16): 4143-4147.
    [32] Luo HX, Shi Z J, Li NQ et al. Investigation of the electrochemical and electrocatalytic behavior of single-wall carbon nanotube film on a glassy carbon electrode. Analytical Chemistry 2001, 73, (5), 915-920.
    [33] Wang J, Musameh M, Lin YH. Solubilization of carbon nanotubes by Nation toward the preparation of amperometric biosensors. Journal of the American Chemical Society 2003, 125, (9), 2408-2409.
    [34] Guldi DM, Marcaccio M, Paolucci D et al. P Single-wall carbon nanotube-ferrocene nanohybrids: Observing intramolecular electron transfer in ~ functionalized SWNTs. Angewandte Chemic-International Edition 2003, 42, (35), 4206-4209.
    [35] Monthioux M. Filling single-wall carbon nanotubes. CARBON 2002, 40 (10): 1809-1823.
    [36] Guan L, Shi Z, Li M etal. Ferrocene filled single-walled carbon nanotubes. Carbon 2005, 43: 2780-2785.
    [37] Qiu HX, Shi ZJ, Qiu JS et al. High efficient synthesis of double-walled carbon nanotubes by arc discharge method using chloride as a promoter. Carbon 2006 (44):516-521.
    [38] Hager JS, Zahardis J, Pagni RM et al. Raman under nitrogen. The high-resolution Raman spectroscopy of crystalline uranocene, thorocene, and ferrocene. Journal of Chemical Physics 2004, 120, (6): 2708-2718.
    [39] Zhang J, Zou HL, Qing Q et al. Effect of chemical oxidation on the structure of single-walled carbon nanotubes. Journal of Physical Chemistry B 2003, 107, (16): 3712-3718.
    [40] Kamat PV, Thomas KG, Barazzouk S et al. Self-assembled linear bundles of single wall carbon nanotubes and their alignment and deposition as a film in a dc field. Journal of the American Chemical Society 2004, 126,(34): 10757-10762.
    [1] Smith BW, Monthioux M, Luzzi DE. Encapsulated C-60 in carbon nanotubes. Nature 1998, 396, (6709): 323-324.
    
    [2] Sloan J, Hammer J, Zwiefka-Sibley M et al. The opening and filling of single walled carbon nanotubes (SWTs). Chemical Communications 1998: 347-348.
    
    [3] Sloan J, Wright DM, Woo HG et al. Chemical Communications 1999: 699-700.
    [4] Hutchison JL, Doole RC, Dunin-Borkowski RE et al. Jeol News 1999, (34): 10-15.
    [5] Sloan J, Friedrichs S, Flahaut E et al. In: Kuzmany H, Fink J, Mehring M, Roth S, editors. Electronic properties of molecular nanostructures. American Institute of Physics Conference Proceedings Series, vol. 591,2001:277-282.
    [6] Flahaut E, Sloan J, Coleman KS et al. Electronic properties of molecular nanostructures. American Institute of Physics Conference Proceedings Series, vol. 591, 2001: 283-286.
    [7] Xu C, Sloan J, Brown G, Bailey S, Clifford Williams V etal. 1D lanthanide halide crystals inserted into single-walled carbon nanotubes. Chemical Communications 2000:2427-2428.
    [8] Meyer RR, Sloan J, Dunin-Borkowski RE et al. Discrete atom imaging of one-dimensional crystals formed within single-walled carbon nanotubes. Science 2000, 289 (5483): 1324-1326.
    [9] Sloan J, Novotny MC, Bailey SR, Brown G, Xu C et al. Two layer 4 : 4 co-ordinated KI crystals grown within single walled carbon nanotubes. Chem Phys Lett 2000, 329:61-65.
    [10] Brown G, Bailey S, Sloan J et al. Electron beam induced in situ clusterisation of 1D ZrC14 chains within single-walled carbon nanotubes. Chemical Communications 2001:845-846.
    
    [11] Sloan J, Kirkland Al, Hutchison JL et al. Integral atomic layer architectures of 1D crystals inserted into single walled carbon nanotubes. Chemical Communications 2002: 1319-1332.
    
    [12] Hutchison JL, Kiselev NA, Krinichnaya EP et al. Double-walled carbon nanotubes fabricated by a hydrogen arc discharge method. Carbon 2001,39 (5):761-70.
    [13] Saito Y, Nakahira T, Uemura S. Growth conditions of Double-walled carbon annotubes in arc discharge. J Phys Chem B 2003, 107:931-934.
    [14] Huang H, Kajiura H, Tsutsui S et al. High-quality Double-walled carbon nanotubes super bundles grown in a hydrogen-free atmosphere. J Phys Chem B 2003, 107: 8794-8798.
    [15] Sendova M, Flahaut E, DeBono B. Raman spectroscopy of PbI2-filled double-walled carbon nanotubes. Journal OF Applied Physics 2005, 98 (10): 104304.
    [16] a) Li YF, Hatakeyama R, Okada T et al. Synthesis of Cs-filled double-walled carbon nanotubes by a plasma process. Carbon 2006, 44 (8): 1586-1589; b) Li YF, Hatakeyama R, Kaneko T et al. Synthesis and electronic properties of ferrocene-filled double-walled carbon nanotubes. Nanotechnology 2006, 17 (16): 4143-4147.
    [17] Chen GG, Bandow S, Margine ER et al. Chemically doped double-walled carbon nanotubes: Cylindrical molecular capacitors. Physical Review Letters2003, 90 (25): 257403.
    [18] Cambedouzou J, Sauvajol JL, Rahmani A et al. Raman spectroscopy of iodine-doped double-walled carbon nanotubes. Physical Review B 2004, 69 (23): 235422.
    [19] Kim SY, Lee J, Na CW et al. N-doped double-walled carbon nanotubes synthesized by chemical vapor deposition. Chemical physics Letters 2005, 413 (4-6): 300-305.
    [20] Iijima S. Helical Microtubules of Graphitic Carbon. Nature 1991,354 (6348): 56-58.
    
    [21] Hu ZD, Hu YF, Chen Q et al. Synthesis and characterizations of amorphous carbon nanotubes by pyrolysis of ferrocene confined within AAM templates. J. Phys. Chem. B 2006, 110: 8263-8267.
    [22] Tang ZK, Sun HD, Wang J et al. Mono-sized single-wall carbon nanotubes formed in channeles of AIPO4-5 single crystal. Appl. Phys. Lett. 1998, 73 (16): 2287-2289.
    [23] Elihn K, Larsson K. A theoretical study of the thermal fragmentation of ferrocene. Thin Solid Films 2004,458:325-329.
    [24] Fischer E, Grubert H. Chem. Ber., 1959, 22, 2302; Porterfield W, Inorganic Chemistry, Acdemic Press, San Diego, 2nd edn, 1993, Chapter 13.
    [25] Qiu H, Shi Z, Guan L et al. High-efficient synthesis of double-walled carbon nanotubes by arc discharge method using chloride as a promoter. Carbon 2006, 44: 516-521.
    [26] Fang S, Rao A, Eklund P et al. Raman scattering study of coalesced single-walled carbon nanotubes. J. Mater. Res. 1998, 13: 2405-2411.
    [27] Kuzmany H, Plank W, Hulman M et al. Determination of SWCNT diameters from the Raman response of the radial breathing mode. European PhysicalJournal B 2001, 22 (3):307-320.
    [28] Gavillet J, Loiseau A, Journet C et al. Root-growth mechanism for single-wall carbon nanotubes. Phys. Rev. Lett., 2001, 87, 275504.
    [29] Lin M, Tan JPY, Boothroyd C et al. Direct observation of single-walled carbon nanotube growth at the atomistic scale. Nano Lett. 2006, 6 (3): 449-452.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700