基于单分子/单颗粒技术的均相免疫分析新方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
免疫分析是利用抗原与抗体之间的高特异性反应实现对抗体、抗原或相关物质进行检测的分析方法。免疫分析是一种非常重要的生物分析方法,它被广泛地应用于临床诊断、食品和环境分析、生物及医学研究等领域。目前免疫分析主要以微孔板为实验平台的异相分析模式。这种方法需要抗体的包埋,缓慢的异相免疫反应,多次耗时的冲洗,酶放大反应和离线检测分析等步骤。因此,这种方法操作繁琐、分析时间长、不能满足某些快速检测和诊断的要求。均相免疫分析不需要分离,能够直接测定免疫反应混合体系中的待测物(抗体或者抗原)。这种方法通常快速,而且很容易实现微型化和自动化。目前某些检测方法如荧光偏振、荧光共振能量转移、生物发光能量转移被用于均相免疫分析。然而,由于这些检测方法的灵敏度较低,不能满足临床检测的要求。
     本论文旨在基于单分子和单颗粒技术,发展高灵敏的均相免疫新方法,用于肿瘤标志物的分析。主要研究工作包括如下几个方面:
     1)基于荧光自相关光谱和互相关光谱,发展了均相免疫分析方法。为了克服荧光相关光谱在研究分子间相互作用时,需要分子量相差4倍的限制,本文构思了两个策略,即采用荧光交叉相关光谱系统和减小抗原分子的分子量。首先,我们构建了一种新型的单激光激发的荧光交叉相关光谱系统。采用量子点这种新型的荧光纳米材料为探针,以人IgG和羊抗人IgG的免疫反应为研究模型,构建了均相免疫分析检测系统。基于该系统我们测定了免疫复合物的浓度及其特征扩散时间与动力学半径。实验结果表明单激光激发的荧光交叉相关光谱系统克服了现有的荧光交叉相关光谱的仪器结构复杂和操作繁琐的缺点,成功地消除了Cross-talk效应。然后,我们以人工合成的多肽为免疫抗原,基于荧光自相关光谱方法,建立了一种均相竞争免疫分析方法。由于多肽抗原具有和生物抗原一样的生理活性,而且容易制备,使它成为一种理想的抗原。其主要优点是分子量小,能满足荧光自相关光谱对分子量的要求。我们利用这个策略系统地研究了肿瘤标志物CA125抗原与其抗体的免疫反应,对该竞争免疫反应的灵敏度、特异性、可逆性、解离常数、解离速率等进行了研究。研究结果表明该方法灵敏度约为0.1 nM,可以用于某些较高含量的组分测定。
     2)基于金纳米粒子(Gold Nanoparticles,GNPs )在溶液中的布朗运动和共振散射效应,我们提出了一种高灵敏的单个金纳米粒子检测新方法,称之为单个金纳米粒子计数法(Single Gold Nanoparticles Counter,SGNPC)。它的工作原理是在高聚焦的激光束中,GNPs由于布朗运动和共振散射效应在检测的微区内(小于1 fL检测体积)产生强的光子爆发。实验表明光子爆发数与GNPs浓度之间存在非常好的线性关系(R=0.992)。本文系统地研究了某些因素对单个GNPs信号的影响,发现GNPs的光子爆发强度随其粒径和激发光强度增大而显著增强。我们考察了合并时间(Bin-time)和测定时间对检测灵敏度的影响。在优化的条件下,对36 nmGNPs的检测限为17 fM,线性范围为17 fM到170 pM。该方法具有很好的重现性,光子爆发数计数的日内和日间重现性(相对标准偏差,RSDs)分别为4.1% (n=11)和3.6 %(n=7)。进而,我们将SGNPC方法成功地与微流控芯片联用。研究了在一定流速下,GNPs光子爆发数与其浓度和流速的关系。实验结果表明在一定的压力场下,GNPs的光子爆发数与其浓度同样具有很好的线性关系。同时,在相同浓度下,GNPs溶液的流速越大则爆发数越多,其检出限越低。我们相信SGNPC方法以及SGNPC与微流控芯片联用系统在均相生物分析领域中具有重要的应用前景。
     3)基于SGNPC方法和GNPs标记技术,发展一种高灵敏的均相免疫分析新方法。在均相免疫分析中采用夹心免疫模式,分别将两种抗体修饰在GNPs探针上。当这两种抗体-GNPs探针加入含有目标物(抗原)的样品中,它们将与目标物的结合,会导致GNPs形成二聚物(或者低聚体)。随着目标物增加,溶液中的GNPs数目会随之减少。SGNPC可根据光子爆发数的改变来检测GNPs数目上的变化。基于这种单颗粒技术建立了肿瘤标志物如癌胚抗原(CEA)和α-胎蛋白(AFP)的均相免疫分析方法。在优化的条件下,CEA和AFP的检测限分别为130 fM和714 fM,该方法比现行的均相免疫分析方法的检测限低2个数量级。该方法成功地用于健康个体与癌症患者血清中CEA和AFP浓度的测定。测定的结果与ELISA分析结果基本一致。与现行的方法相比,我们方法具有灵敏度高、操作简便、分析时间短等特点。原理上我们的方法适用于各种临床免疫分析和药学上的生物分子识别反应的监测。更重要的是,该方法的检测体积少于1 fL,样品的用量可以缩减到nL水平,可能成为均相免疫分析中高通量检测平台。
     4) GNPs具有非常强的光吸收和散射性质,被成功地应用于生物标记、基因载体和光热治疗等领域。GNPs的粒径对其光学和化学性质有至关重要的影响。然而,在GNPs的生物应用中,我们缺乏一种有效的方法对溶液中GNPs(及其连接物)的粒径和粒径分布进行表征。因此我们提出了一种共振散射相关光谱技术(Resonance Light Scattering Correlation Spectroscopy,RLSCS)表征GNPs粒径分布的新方法。该方法基于共振散射相关光谱技术,将遗传算法(GA)用于散射相关函数曲线解析,从而获得GNPs的粒径和粒径分布。我们首先参照荧光相关光谱的理论,提出了散射相关光谱技术表征GNPs粒径分布模型,然后用计算机进行模拟。在模拟中,首先预设了各种粒径分布模式,通过计算求得其对应的相关曲线,用Matlab程序实现了遗传算法。结果表明遗传算法-共振散射相关光谱(GA-RLSCS)获得的结果与预设的初值基本吻合,从理论上说明了GA-RLSCS能够用于对GNPs的粒径和尺度分布的表征。进而,将该方法用于溶液中GNPs的粒径及其粒径分布的表征。GA-RLSCS方法得到的结果与TEM的结果基本吻合。GA-RLSCS方法测量快速(30 s)、样品需求量少(μL级),将在生物分析如免疫分析、核酸杂交、Aptamer识别等方面有广泛的应用前景。
Immunoassay is based on highly selective immune reaction of antigen with antibody, and can be used to determine antigen or antibody. Currently, immunoassay becomes one of very widely used analytical technologies in clinical diagnosis, food and environmental analyses and biological and biomedical studies. The conventional heterogeneous immunoassays mainly use a microwell plate as an assay platform, and this method is considered to be labour intensive and time-consuming due to the use of tedious separation and washing steps before signal measurement. Compared to heterogeneous assays, homogeneous assay is to directly determine analytes in immune reaction mixture. This method is usually fast and amenable to miniaturization and automation. To date, several analytical methods have been used in homogeneous immunoassays, which mainly include fluorescence polarization, fluorescence resonance energy transfer, bioluminescence resonance energy transfer, surface plasmon resonance, and chemiluminescence. However, most of the homogeneous immunoassays do not have enough sensitivity, and they have currently been not satisfied for certain requirements in clinical diagnosis.
     In this dissertation, on the basis of single molecule/nanoparticle detection techniques, we develop highly sensitive homogeneous immunoassays for cancer biomarkers and biological macromolecules. The main contributions are as follows:
     1) We develop homogeneous immunoassay methods based on fluorescence correlation spectroscopy (FCS) and fluorescence cross correlation spectroscopy (FCCS). To distinguish the two components in FCS analysis, their diffusion coefficients must differ by a factor of at least 1.6, which corresponds to a molecular weight ratio of 4. In order to overcome the limitation, we use two strategies that are using fluorescence cross-correlation spectroscopy (FCCS) model and decreasing the antigen molecular weight. Firstly, we established a FCCS setup with single wavelength laser. Using quantum dots as labeling probes, the homebuilt setup was successfully applied for the study of the homogeneous immunoassay reaction. We used the immune reaction of human immunoglobulin G with goat antihuman immunoglobulin G as a reaction model. The molecule numbers in a highly focused volume, the concentration, and the diffusion time and hydrodynamic radii of the reaction products can be determined by FCCS system. The results demonstrated that the single wavelength FCCS system has simple instrument structure and operation process. The cross-talk effect was almost completely suppressed. This FCCS system was adapted to homogeneous immunoassay. Secondly, we develop a homogeneous competitive immunoassay method based on FCS using synthetic peptides as a tracer antigen. Synthetic peptides were peptide-mimic of the native antigen, and usually are short protein sequences, which can be recognized by corresponding antibodies. Synthetic peptides represent ideal antigenic targets for immunoassays since they can be cheaply and easily produced in large scale and in a reproducible manner. The most important thing is that synthetic peptides antigens have low molecule weight, which satisfied the requirement of FCS for molecule weight. We systematically investigated the immune reaction of CA125 (cancer biomarker) peptide antigen and its antibody, and obtained the dissociation constants and dissociation rates. Furthermore, we evaluated the sensitivity, specificity, reversibility, dissociation constant and dissociation rate of this competitive immunoassay. Our data illustrated that the detection limit of homogeneous immunoassay method based on FCS was about 0.1 nM. This method possesses potential applications.
     2) We present for first time an ultrasensitive method for detection of small gold nanoparticles, call as single gold nanoparticle counter (SGNPC). Its principle is based on the photon burst counting in a highly focused laser beam due to Brownian motion and strong resonance Rayleigh scattering of GNPs. We systematically investigated the effects of certain factors on the photon burst intensity. The photon burst intensity markedly depended on the laser wavelengths and power and GNPs sizes. The results demonstrated that the relationship between the photon burst counts and GNPs concentration showed an excellent linearity (R=0.992). The linear range was over four orders of magnitude, and the detection limit was 17 fM for GNPs (36 nm).The reproducibility of the photon burst counting was quite satisfactory and the relative standard deviations (RSDs) for intra-day and inter-day were 4.1 % (n=11) and 3.6 % (n=7), respectively. Moreover, our method was successfully applied for single gold nanoparticle detection in micro-fluidic chip channel. The results showed that there was the excellent linearity relationship between the photon burst counts and GNPs concentration under a given pressure. In addition, lower detection limit was obtained by increasing the velocity of GNPs flow. We believe the combination of SGNPC with a micro-fluidic chip have great potential applications in homogeneous bioassays.
     3) On the basis of SGNPC technique, we developed an ultrasensitive detection platform for homogeneous immunoassays for cancer biomarkers. A sandwich format is used in homogeneous immunoassays. We conjugated two antibodies to GNPs based on the strong adsorption of GNPs to antibodies. When GNPs-antibody conjugates are mixed in a sample containing antigens, the binding of antigens will cause GNPs to form dimmers (or oligomers). The number of GNPs decreased with an increase of antigens in solution, and SGNPC sensitively detected the change in the number of GNPs according to the photon burst counts. We used this technology to construct homogeneous immunoassays for AFP and CEA. The detection limits were 130 fM for CEA, 714 fM for AFP. Our method was successfully applied for direct determination of CEA and AFP levels in sera from healthy subjects and cancer patients. The results were in good agreement with ELISA assays Compared to current methods, our method can be characterized as extremely high sensitivity, good selectivity, simplicity and short analysis time. Furthermore, SGNPC can be used for real-time monitoring of certain biochemical processes in vitro and vivo due to its high spatial and good time resolutions. More importantly, our detection volume is less than 1 fL, and the sample requirement can be reduced to nano liter level. Therefore, our method has the potential to become a high-throughput detection platform for homogeneous immunoassay.
     4) Gold Nanoparticles (GNPs) possasse very strong absorption and scattering properties and currently, are extensively used in several fields of biological labeling, gene carrier and photothermal therapy sensing. The mean size and the size distribution of GNPs play a paramount important role in these applications. So far, we lack effective methods for characterization of GNPs in aqueous solution. Herein, we presented a novel method to determine the size and size distribution of GNPs in solution at single particle level, called as resonance light scattering correlation spectroscopy (RLSCS). We presented a data-fitting algorithm for RLSCS based on Genetic Algorithms to invert particle-size distribution from RLSCS curves. According to FCS method, we established a theoretical model of GNPs size distribution GNPs using RLSCS technique. We performed computer simulations to verify the validity of the method by using different size distributions modes. In this study, we firstly suppose certain size distributions modes, and then got the correlation curves by calculation, and finally Genetic Algorithms (GA) was used to invert the size distribution from autocorrelation curve of GNPs. GA program was written in Matlab language. The results showed that GA-RLSCS could retrieve initial values exactly. This result demonstrated that theoretically, GA-RLSCS could be used to measure size and size distribution. Variable sizes of GNPs were measured by this method. The results agree reasonably with that obtained by TEM. Compared with current methods, our method is simple, reliable, and may become a useful tool for characterization of GNPs and other nanoparticles. We believe that RLSCS may become an effective method for immunoassay, nucleic acid hybridize and aptamer recognition.
引文
[1] Alexander, P. W.; Rechnitz, G. A., Ion-electrode based immunoassay and antibody-antigen precipitin reaction monitoring. Anal. Chem. 1974, 46 (9), 1253-1255.
    [2] Fujiwara, K.; Matsumoto, N.; Yagisawa, S.; et al., Sandwich enzyme immunoassay of tumor-associated antigen sialosylated Lewisx using beta-D-galactosidase coupled to a monoclonal antibody of IgM isotype. J. Immunol. Methods 1988, 112 (1), 77-83.
    [3] Wolf-Rogers, J.; Weare, J. A.; Rice, K.; et al., A chemiluminescent, microparticle-membrane capture immunoassay for the detection of antibody to hepatitis B core antigen. J. Immunol. Methods 1990, 133 (2), 191-198.
    [4] Hedin, A.; Carlsson, L.; Berglund, A.; et al., A monoclonal antibody-enzyme immunoassay for serum carcinoembryonic antigen with increased specificity for carcinomas. Proc. Natl. Acad. Sci. U.S.A 1983, 80 (11), 3470-3474.
    [5] Leyva, A.; Hernandez, N.; Gonzalez, T.; et al., Standardization and validation of an alkaline phosphatase-linked immunoassay to quantify a plant-derived antibody directed against thehepatitis B virus surface antigen. Biochem. Biophys. Res. Commun. 2004, 325 (4), 1438-1442.
    [6] Kalbe, K.; Nishimura, S.; Ishii, H.; et al., Competitive binding enzyme immunoassay for zonisamide, a new antiepileptic drug, with selected paired-enzyme labeled antigen and antibody. Clin. Chem. 1990, 36 (1), 24-27.
    [7] Price, T.; Beatty, B. G.; Beatty, J. D.; et al., Human anti-murine antibody interference in measurement of carcinoembryonic antigen assessed with a double-antibody enzyme immunoassay. Clin. Chem. 1991, 37 (1), 51-57.
    [8] Holdenrieder, S.; Molina, R.; Gion, M.; et al., Alternative antibody for the detection of CA125 antigen: a European multicenter study for the evaluation of the analytical and clinical performance of the access OV monitor assay on the uniCel Dxl 800 immunoassay system. Clin. Chem. Lab. Med. 2008, 46 (5), 588-599.
    [9] Capper, S. J.; Smith, S. W.; Spensley, C. A.; et al., Specificities compared for a radioreceptor assay and a radioimmunoassay of atrial natriuretic peptide. Clin. Chem. 1990, 36 (4), 656-658.
    [10] Berson, S. A.; Yalow, R. S., General principles of radioimmunoassay. Clin. Chim. Acta. 1968, 22 (1), 51-69.
    [11] Yalow, R. S.; Glick, S. M.; Roth, J.; et al., Radioimmunoassay of human plasma acth. J. Clin. Endocrinol. Metab. 1964, 24, 1219-1225.
    [12] Berson, S. A.; Yalow, R. S., General principles of radioimmunoassay. Clin. Chim. Acta. 2006, 369 (2), 125-143.
    [13] Berson, S. A.; Yalow, R. S., Radioimmunoassay in gastroenterology. Gastroenterology 1972, 62 (5), 1061-1084.
    [14] Palmieri, G. M.; Yalow, R. S.; Berson, S. A., Adsorbent techniques for the separation of antibody-bound from free peptide hormones in radioimmunoassay. Horm. Metab. Res. 1971, 3 (5), 301-305.
    [15] Vollmer, F.; Arnold, S., Whispering-gallery-mode biosensing: label-free detection down to single molecules. Nat. Methods 2008, 5 (7), 591-596.
    [16] Ruckstuhl, T.; Enderlein, J.; Jung, S.; et al., Forbidden light detection from single molecules. Anal. Chem. 2000, 72 (9), 2117-2123.
    [17] Fan, F. R.; Bard, A. J., Electrochemical detection of single molecules. Science 1995, 267 (5199), 871-874.
    [18] Li, H.; Cui, X.; Arnheim, N., Direct electrophoretic detection of the allelic state of single DNA molecules in human sperm by using the polymerase chain reaction. Proc. Natl. Acad. Sci. U.S.A 1990, 87 (12), 4580-4584.
    [19] Moerner, W. E.; Kador, L., Optical detection and spectroscopy of single molecules in a solid. Phys. Rev. Lett. 1989, 62 (21), 2535-2538.
    [20] Erker, W.; Sdorra, S.; Basche, T., Detection of single oxygen molecules with fluorescence-labeled hemocyanins. J. Am. Chem. Soc. 2005, 127 (42), 14532-14533.
    [21] Foldes-Papp, Z.; Demel, U.; Tilz, G. P., Detection of single molecules: solution-phase single-molecule fluorescence correlation spectroscopy as an ultrasensitive, rapid and reliable system for immunological investigation. J. Immunol. Methods 2002, 260 (1-2), 117-124.
    [22] Ribas, G.; Neville, M. J.; Campbell, R. D., Single-nucleotide polymorphism detection by denaturing high-performance liquid chromatography and direct sequencing in genes in the MHC class III region encoding novel cell surface molecules. Immunogenetics 2001, 53 (5), 369-381.
    [23] Han, A.; Creus, M.; Schurmann, G.; et al., Label-free detection of single protein molecules and protein-protein interactions using synthetic nanopores. Anal. Chem. 2008, 80 (12), 4651-4658.
    [24] Zhang, Z. Y.; Meng, X. Q.; Jin, P.; et al., A novel application to quantum dot materials to the active region of superluminescent diodes. J. Cryst. Growth. 2002, 243 (1), 25-29.
    [25] Towe, E.; Pan, D., Semiconductor quantum-dot nanostructures: Their application in a new class of infrared photodetectors. IEEE J. Sel. Top. Quant. 2000, 6 (3), 408-421.
    [26] Tan, C. Y.; Liang, R. Q.; Ruan, K. C., Application of quantum dot to life science. Acta. Bioch. Bioph. Sin. 2002, 34 (1), 1-5.
    [27] Xiang, M. H.; Xu, X.; Liu, F.; et al., Gold nanoparticle based plasmon resonance light-scatteringmethod as a new approach for glycogen-biomacromolecule interactions. J. Phys. Chem. B 2009, 113 (9), 2734-2738.
    [28] Wei, H.; Hao, F.; Huang, Y. Z.; et al., Nordlander, P.; Xu, H. X., Polarization dependence of surface-enhanced Raman scattering in gold nanoparticle-nanowire systems. Nano Lett. 2008, 8 (8), 2497-2502.
    [29] Ye, M.; Zhang, Y. Y.; Li, H. T.; et al., A novel method for the detection of point mutation in DNA using single-base-coded CdS nanoprobes. Biosens. Bioelectron. 2009, 24 (8), 2339-2345.
    [30] Graham, D. L.; Ferreira, H. A.; Feliciano, N.; Freitas, P. P.; Clarke, L. A.; Amaral, M. D., Magnetic field-assisted DNA hybridisation and simultaneous detection using micron-sized spin-valve sensors and magnetic nanoparticles. Sensor. Actuat. Chem. 2005, 107 (2), 936-944.
    [31] Chen, Y.; Chi, Y. M.; Wen, H. M.; et al., Sensitized luminescent terbium nanoparticles: Preparation and time-resolved fluorescence assay for DNA. Anal. Chem. 2007, 79 (3), 960-965.
    [32] Zhao, X. J.; Tapec-Dytioco, R.; Wang, K. M.; et al., Collection of trace amounts of DNA/mRNA molecules using genomagnetic nanocapturers. Anal. Chem. 2003, 75 (14), 3476-3483.
    [33] Kudelski, A., Raman spectroscopy of surfaces. Surf. Sci. 2009, 603 (10-12), 1328-1334.
    [34] Alvarez-Puebla, R. A.; Dos Santos, D. S.; Aroca, R. F., Surface-enhanced Raman scattering for ultrasensitive chemical analysis of 1 and 2-naphthalenethiols. Analyst 2004, 129 (12), 1251-1256.
    [35] Hirota, K.; Kamashima, T.; Hashida, S.; et al., Immune complex transfer enzyme immunoassay for anti-ovalbumin IgA in serum. Ann. Clin. Biochem. 2002, 39 (5), 482-486.
    [36] Bouche, F.; Ammerlaan, W.; Fournier, P.; et al., A simplified immunoassay based on measles virus recombinant hemagglutinin protein for testing the immune status of vaccinees. J. Virol. Methods 1998, 74 (1), 77-87.
    [37] Louzir, H.; Ternynck, T.; Gorgi, Y.; et al., Enzyme immunoassay analysis of antibody specificities present in the circulating immune complexes of selected pathological sera. J. Immunol. Methods 1988, 114 (1-2), 145-153.
    [38] Masseyeff, R.; Maiolini, R.; Roda, L.; et al., Enzyme immunoassay for the demonstration andquantification of immune complexes. Methods Enzymol. 1981, 74, 608-616.
    [39] Yorde, D. E.; Sasse, E. A.; Wang, T. Y.; et al., Competitive enzyme-liked immunoassay with use of soluble enzyme/antibody immune complexes for labeling. I. measurement of human choriogonadotropin. Clin. Chem. 1976, 22 (8), 1372-1377.
    [40] Ishikawa, S.; Hashida, S.; Hashinaka, K.; et al., Ultrasensitive and rapid enzyme immunoassay (thin aqueous layer immune complex transfer enzyme immunoassay) for antibody IgG to HIV-1 p17 antigen. J. Clin. Lab. Anal. 1998, 12 (3), 179-189.
    [41] Hashida, S.; Hashinaka, K.; Nishikata, I.; et al., Ultrasensitive and more specific enzyme immunoassay (immune complex transfer enzyme immunoassay) for p24 antigen of HIV-1 in serum using affinity-purified rabbit anti-p24 Fab' and monoclonal mouse anti-p24 Fab'. J. Clin. Lab. Anal. 1996, 10 (5), 302-307.
    [42] Kohno, H.; Kohno, T.; Sakoda, I.; et al., Sensitive detection of anti-human T-cell leukemia virus type I IgG in human serum by a novel enzyme immunoassay (immune complex transfer enzyme immunoassay) using recombinant gag-env hybrid protein as antigen. J. Virol. Methods 1991, 31 (1), 77-91.
    [43] Araya-Kleinsteuber, B.; Roque, A. C.; Kioupritzi, E.; et al., Magnetic acoustic resonance immunoassay (MARIA): a multifrequency acoustic approach for the non-labelled detection of biomolecular interactions. J. Mol. Recognit. 2006, 19 (4), 379-385.
    [44] Sellrie, F.; Schenk, J. A.; Behrsing, O.; et al., A competitive immunoassay to detect a hapten using an enzyme-labelled peptide mimotope as tracer. J. Immunol. Methods 2002, 261 (1-2), 141-144.
    [45] Patel, N.; Rocks, B. F.; Iversen, S. A., Direct measurement of low density lipoprotein in whole blood by silver-enhanced gold-labelled immunoassay. Ann. Clin. Biochem. 1992, 29 (3), 283-286.
    [46] Miller, S. A.; Morton, M. S.; Turkes, A., Chemiluminescence immunoassay for progesterone in plasma incorporating acridinium ester labelled antigen. Ann. Clin. Biochem. 1988, 25 (1), 27-34.
    [47] Wood, W. G.; Fricke, H.; Haritz, J.; et al., An evaluation of four different luminescence immunoassay systems: CELIA (chemiluminescent immunoassay), SPALT (solid-phase antigenluminescence technique), ILMA (immunoluminometric assay) and ILSA (immunoluminometric labelled second antibody). A critical study of macro solid phases for use in immunoassay systems, Part III. J. Clin. Chem. Clin. Biochem. 1984, 22 (5), 349-356.
    [48] Kilgallon, W.; Stafford, J. E., Application of 125I-labelled second antibody to the solid-phase immunoassay of norethisterone in plasma. Clin. Chim. Acta. 1982, 120 (2), 181-190.
    [49] Taljedal, I. B.; Wold, S., Fit of some analytical functions to insulin radio-immunoassay standard curves. Biochem. J. 1970, 119 (2), 139-143.
    [50] Wellmann, K. F.; Brancato, P.; Lazarus, S. S.; et al., Rabbit beta cell ultrastructure and insulin radio-immunoassay in experimental subdiabetes. Arch. Pathol. 1967, 84 (3), 251-263.
    [51] Elliott, C. T.; Francis, K. S.; Shortt, H. D.; et al., Determination of the concentrations of the steroids estradiol, progesterone and testosterone in bovine sera: comparison of commercial dissociation enhanced lanthanide fluorescence immunoassay kits with conventional radio and enzyme immunoassays. Analyst 1995, 120 (6), 1827-1830.
    [52] Javid, J.; Pettis, P. K.; Miller, J. E., Radio-ligand immunoassay for human hemoglobin variants. J. Immunol. Methods 1981, 41 (2), 247-255.
    [53] Lejeune-Lenain, C.; Wolter, R.; Franckson, J. R., A direct radio-immunoassay for plasma delta 4-androstenedione. Application to children. Clin. Chim. Acta. 1979, 94 (3), 327-329.
    [54] Hauger-Klevene, J. H., Asymptomatic production of ACTH. Radio immunoassay in squamous cell, oat cell and adenocarcinoma of the lung. Cancer 1968, 22 (6), 1262-1267.
    [55] Akman, S.; Karaca, L.; Kutluay, T., An enzymeimmunoassay for total thyroxine using avidin-biotin separation system and thyroxine-peroxidase conjugate. J. Immunoassay 1995, 16 (3), 325-341.
    [56] Akman, S.; Kurt, I.; Gultepe, M.; et al., The development and validation of a competitive, microtiter plate enzymeimmunoassay for human albumin in urine. J. Immunoassay 1995, 16 (3), 279-296.
    [57] Hindawi, R. K.; Gaskell, S. J.; Read, G. F.; et al., A simple direct solid-phaseenzymeimmunoassay for cortisol in plasma. Ann. Clin. Biochem. 1980, 17 (1), 53-59.
    [58] Lee, L. J.; Yang, S. T.; Lai, S.; et al., Microfluidic enzyme-linked immunosorbent assay technology. Adv. Clin. Chem. 2006, 42(1), 255-295.
    [59] Butler, J. E., Solid supports in enzyme-linked immunosorbent assay and other solid-phase immunoassays. Methods 2000, 22 (1), 23-24.
    [60] Butler, J. E., Enzyme-linked immunosorbent assay. J. Immunoassay 2000, 21 (2-3), 165-209.
    [61] Reen, D. J., Enzyme-linked immunosorbent assay (ELISA). Methods Mol. Biol. 1994, 32(1), 461-466.
    [62] Shigematsu, T.; Suda, N.; Okuda, K.; et al., Reliable enzyme-linked immunosorbent assay systems for pathogenic factors of pseudomonas aeruginosa alkaline proteinase, elastase, and exotoxin A: a comparison of methods for labeling detection antibodies with horseradish peroxidase. Microbiol. Immunol. 2007, 51 (12), 1149-1159.
    [63] Tsang, V. C.; Greene, R. M.; Pilcher, J. B., Optimization of the covalent conjugating procedure (NaIO4) of horseradish peroxidase to antibodies for use in enzyme-linked immunosorbent assay. J. Immunoassay 1995, 16 (4), 395-418.
    [64] Coons, A. H.; Snyder, J. C.; et al., Localization of antigen in tissue cells; antigens of rickettsiae and mumps virus. J. Exp. Med. 1950, 91 (1), 31-38.
    [65] Petrou, P. S.; Mastichiadis, C.; Christofidis, I.; et al., Glycerin suppression of fluorescence self-quenching and improvement of heterogeneous fluoroimmunoassay sensitivity. Anal. Chem. 2007, 79 (2), 647-653.
    [66] Eremin, S. A.; Gallacher, G.; Lotey, H.; et al., Single-reagent polarization fluoroimmunoassay of methamphetamine in urine. Clin. Chem. 1987, 33 (10), 1903-1906.
    [67] Colbert, D. L.; Smith, D. S.; Landon, J.; et al., Single-reagent polarization fluoroimmunoassay for barbiturates in urine. Clin. Chem. 1984, 30 (11), 1765-1769.
    [68] Wu, F. B.; Han, S. Q.; Xu, T.; et al., Sensitive time-resolved fluoroimmunoassay for simultaneous detection of serum thyroid-stimulating hormone and total thyroxin with Eu and Sm as labels.Anal. Biochem. 2003, 314 (1), 87-96.
    [69] Hildebrandt, N.; Charbonniere, L. J.; Beck, M.; et al., Quantum dots as efficient energy acceptors in a time-resolved fluoroimmunoassay. Angew. Chem. Int. Edit. 2005, 44 (46), 7612-7615.
    [70] Wu, F. B.; Han, S. Q.; Zhang, C.; et al., Synthesis of a highly fluorescent beta-diketone-europium chelate and its utility in time-resolved fluoroimmunoassay of serum total thyroxine. Anal. Chem. 2002, 74 (22), 5882-5889.
    [71] Andoh, T.; Nagasawa, H., Development of a time-resolved fluoroimmunoassay for insulins and its application to monitoring of insulin secretion induced by feeding in the barfin flounder, Verasper moseri. Gen. Comp. Endocrinol. 2002, 125 (3), 365-374.
    [72] Gutierrez, M. C.; Gomez-Hens, A.; Perez-Bendito, D., Immunoassay methods based on fluorescence polarization. Talanta 1989, 36 (12), 1187-1201.
    [73] Wang, X.; Song, Y.; Song, M.; et al., Fluorescence polarization combined capillary electrophoresis immunoassay for the sensitive detection of genomic DNA methylation. Anal. Chem. 2009, 81 (19), 7885-7891.
    [74] Yalow, R. S.; Berson, S. A., Assay of plasma insulin in human subjects by immunological methods. Nature 1959, 184 (21), 1648-1649.
    [75] Berson, S. A.; Yalow, R. S., Critique of extracellular space measurements with small ions: Na24 and Br82 spaces. Science 1955, 121 (3132), 34-36.
    [76] Yalow, R. S.; Berson, S. A., The use of K42 tagged erythrocytes in blood volume determinations. Science 1951, 114 (2949), 14-15.
    [77] Wehmeyer, K. R.; Halsall, H. B.; Heineman, W. R.; et al., Competitive heterogeneous enzyme immunoassay for digoxin with electrochemical detection. Anal. Chem. 1986, 58 (1), 135-139.
    [78] De Alwis, W. U.; Wilson, G. S., Rapid heterogeneous competitive electrochemical immunoassay for IgG in the picomole range. Anal. Chem. 1987, 59 (23), 2786-2789.
    [79] De Alwis, W. U.; Wilson, G. S., Rapid sub-picomole electrochemical enzyme immunoassay for immunoglobulin G. Anal. Chem. 1985, 57 (14), 2754-2756.
    [80] Athey, D.; Ball, M.; McNeil, C. J., Avidin-biotin based electrochemical immunoassay for thyrotropin. Ann. Clin. Biochem. 1993, 30 (6), 570-577.
    [81] Heineman, W. R.; Halsall, H. B.; Wehmeyer, K. R.; et al., Immunoassay with electrochemical detection. Methods Biochem. Anal. 1987, 32, 345-393.
    [82] Tang, D.; Yuan, R.; Chai, Y.; et al., New amperometric and potentiometric immunosensors based on gold nanoparticles/tris(2,2'-bipyridyl)cobalt(III) multilayer films for hepatitis B surface antigen determinations. Biosens. Bioelectron. 2005, 21 (4), 539-548.
    [83] Wilson, R.; Clavering, C.; Hutchinson, A., Electrochemiluminescence enzyme immunoassay for TNT. Analyst 2003, 128 (5), 480-485.
    [84] Arai, K.; Takahashi, K.; Kusu, F., An electrochemiluminescence flow-through cell and its applications to sensitive immunoassay using N-(aminobutyl)-N-ethylisoluminol. Anal. Chem. 1999, 71 (11), 2237-2240.
    [85] Velan, B.; Halmann, M., Chemiluminescence immunoassay: a new sensitive method for determination of antigens. Immunochemistry 1978, 15 (5), 331-333.
    [86] Masai, J.; Ishiwata, S.; Fujime, S., Dynamic light-scattering study on polymerization process of muscle actin. Biophys. Chem. 1986, 25 (3), 253-269.
    [87] Newman, J.; Carlson, F. D., Dynamic light-scattering evidence for the flexibility of native muscle thin filaments. Biophys. J. 1980, 29 (1), 37-47.
    [88] Gotter, R.; Goldmann, W. H.; Isenberg, G., Internal actin filament dynamics in the presence of vinculin: a dynamic light scattering study. FEBS Lett. 1995, 359 (2-3), 220-222.
    [89] Burchard, W., Combined static and dynamic light scattering approaches to biopolymeric analysis. Biochem. Soc. Trans. 1991, 19 (2), 478-479.
    [90] Newman, J.; Mroczka, N.; Schick, K. L., Dynamic light scattering measurements of the diffusion of probes in filamentous actin solutions. Biopolymers 1989, 28 (2), 655-666.
    [91] Wu, S. S.; Lin, O. S.; Chen, Y. Y.; et al., Ascitic fluid carcinoembryonic antigen and alkaline phosphatase levels for the differentiation of primary from secondary bacterial peritonitis withintestinal perforation. J. Hepatol. 2001, 34 (2), 215-221.
    [92] Tsai, K. S.; Chen, J. S.; Hwang, K. M.; et al.,Age-related changes in vitamin D metabolites, osteocalcin, alkaline phosphatase and parathyrin in normal Chinese women in Taipei. J. Formos. Med. Assoc. 1991, 90 (11), 1033-1037.
    [93] Huang, X. Y.; Li, L.; Qian, H. F.; et al., A resonance energy transfer between chemiluminescent donors and luminescent quantum-dots as acceptors (CRET). Angew. Chem. Int. Edit. 2006, 45 (31), 5140-5143.
    [94] Stchur, P.; Yang, K. X.; Hou, X. D.; et al., Laser excited atomic fluorescence spectrometry - a review. Spectrochim. Acta. B 2001, 56 (9), 1565-1592.
    [95] Schutz, G. J.; Sonnleitner, M.; Hinterdorfer, P.; et al., Single molecule microscopy of biomembranes (review). Mol. Membr. Biol. 2000, 17 (1), 17-29.
    [96] Katranidis, A.; Atta, D.; Schlesinger, R.; et al., Fast biosynthesis of GFP molecules: a single-molecule fluorescence study. Angew. Chem. Int. Edit. 2009, 48 (10), 1758-1761.
    [97] Habuchi, S.; Ando, R.; Dedecker, P.; et al., Reversible single-molecule photoswitching in the GFP-like fluorescent protein Dronpa. Proc. Natl. Acad. Sci. U.S.A 2005, 102 (27), 9511-9516.
    [98] Dietz, H.; Rief, M., Exploring the energy landscape of GFP by single-molecule mechanical experiments. Proc. Natl. Acad. Sci.U.S.A 2004, 101 (46), 16192-16197.
    [99] Li, L.; Li, H.; Chen, D.; et al., Preparation and characterization of quantum dots coated magnetic hollow spheres for magnetic fluorescent multimodal imaging and drug delivery. J. Nanosci. Nanotechnol. 2009, 9 (4), 2540-2545.
    [100] Dong, C. Q.; Bi, R.; Qian, H. F.; et al., Coupling fluorescence correlation spectroscopy with microchip electrophoresis to determine the effective surface charge of water-soluble quantum dots. Small 2006, 2 (4), 534-538.
    [101] Qian, H. F.; Qiu, X. F.; Li, L.; et al., Microwave-assisted aqueous synthesis: a rapid approach to prepare highly luminescent ZnSe(S) alloyed quantum dots. J. Phys. Chem. B 2006, 110 (18), 9034-9040.
    [102] Song, X.; Li, L.; Qian, H.; et al., Highly efficient size separation of CdTe quantum dots by capillary gel electrophoresis using polymer solution as sieving medium. Electrophoresis 2006, 27 (7), 1341-1346.
    [103] Hardman, R., A toxicologic review of quantum dots: Toxicity depends on physicochemical and environmental factors. Environ. Health. Perspect. 2006, 114 (2), 165-172.
    [104] Lang, C.; Liao, X. Z.; Cockayne, D. J. H., Image simulations of quantum dots. Inst. Phys. Conf Ser. 2001, 34(168), 465-468.
    [105] Toprak, E.; Enderlein, J.; Mckinney, S. A.; et al., Simultaneous position and orientation analysis using focused and defocused image analysis: Application to quantum dots and myosin V. Biophys. J. 2005, 88 (1), 664a-664a.
    [106] He, Hua; Qian, H. F.; Dong, C. Q.; et al., Single nonblinking CdTe quantum dots synthesized in aqueous thiopropionic acid. Angew. Chem. Int. Edit. 2006, 45 (45), 7588-7591.
    [107] Weng, J. F.; Ren J. C., Luminescent quantum dots: a very attractive and promising tool in biomedicine. Curr. Med. Chem. 2006, 13 (8), 897-909.
    [108] Nelson, B. P.; Frutos, A. G.; Brockman, J. M.; et al., Near-infrared surface plasmon resonance measurements of ultrathin films. 1. Angle shift and SPR imaging experiments. Anal. Chem. 1999, 71 (18), 3928-3934.
    [109] Grabar, K. C.; Brown, K. R.; Keating, C. D.; et al., Nanoscale characterization of gold colloid monolayers: A comparison of four techniques. Anal. Chem. 1997, 69 (3), 471-477.
    [110] Pandana, H.; Aschenbach, K. H.; Gomez, R. D., Systematic aptamer-gold nanoparticle colorimetry for protein detection: Thrombin. IEEE Sens. J. 2008, 8 (5-6), 661-666.
    [111] Algar, W. R.; Massey, M.; Krull, U. J., The application of quantum dots, gold nanoparticles and molecular switches to optical nucleic-acid diagnostics. Trac-Trend. Anal. Chem. 2009, 28 (3), 292-306.
    [112] Du, D.; Liu, S. L.; Chen, J.; et al., Colloidal gold nanoparticle modified carbon paste interface for studies of tumor cell adhesion and viability. Biomaterials 2005, 26 (33), 6487-6495.
    [113] Wang, C. G.; Chen, J.; Talavage, T.; et al., Gold nanorod/Fe3O4 nanoparticle "nano-pearl-necklaces" for simultaneous targeting, dual-Mode imaging, and photothermal ablation of cancer cells. Angew. Chem. Int. Edit. 2009, 48 (15), 2759-2763.
    [114] Jones, C. D.; Lyon, L. A., Photothermal patterning of microgel/gold nanoparticle composite colloidal crystals. J. Am. Chem. Soc. 2003, 125 (2), 460-465.
    [115] Taylor, J. R.; Fang, M. M.; Nie, S. M., Probing specific sequences on single DNA molecules with bioconjugated fluorescent nanoparticles. Anal. Chem. 2000, 72 (9), 1979-1986.
    [116] Santra, S.; Zhang, P.; Wang, K. M.; et al., Conjugation of biomolecules with luminophore-doped silica nanoparticles for photostable biomarkers. Anal. Chem. 2001, 73 (20), 4988-4993.
    [117] Magde, D.; Elson, E.; Webb, W. W., Thermodynamic fluctuations in a reacting system-measurement by fluorescence correlation spectroscopy. Phys. Rev. Lett. 1972, 29 (11), 705.
    [118] Hess, S. T.; Webb, W. W., Focal volume optics and experimental artifacts in confocal fluorescence correlation spectroscopy. Biophys. J 2002, 83 (4), 2300-2317.
    [119] Kinjo, M.; Rigler, R., Ultrasensitive hybridization analysis using fluorescence correlation spectroscopy. Nucleic Acids Res. 1995, 23 (10), 1795-1799.
    [120] Foldes-Papp, Z.; Rigler, R., Quantitative two-color fluorescence cross-correlation spectroscopy in the analysis of polymerase chain reaction. Biol. Chem. 2001, 382 (3), 473-478.
    [121] Schwille, P.; Meyer-Almes, F. J.; Rigler, R., Dual-color fluorescence cross-correlation spectroscopy for multicomponent diffusional analysis in solution. Biophys. J. 1997, 72 (4), 1878-1886.
    [122] Vamosi, G.; Baudendistel, N.; Von der Lieth, C. W.; et al., Conformation of the c-Fos/c-Jun complex in vivo: A combined FRET, FCCS, and MD-modeling study. Biophys. J. 2008, 94 (7), 2859-2868.
    [123] Wohland, T.; Liu, P.; Thankiah, S.; et al., Single wavelength fluorescence cross-correlation spectroscopy (SW-FCCS) as a tool to determine biomolecular interactions in vivo. Biophys. J.2007, 93(2), 326a-326a.
    [124] Slaughter, B. D.; Schwartz, J.; Li, R., FCS, FCCS and PCH analysis of MAP kinase signaling specificity in live yeast cells. Biophys. J. 2007, 93(2), 370a-370a.
    [125] Bacia, K.; Kim, S. A.; Schwille, P., Fluorescence cross-correlation spectroscopy in living cells. Nat. Methods 2006, 3 (2), 83-89.
    [126] Hwang, L. C.; Gosch, M.; Lasser, T.; et al., Simultaneous multicolor fluorescence cross-correlation spectroscopy to detect higher order molecular interactions using single wavelength laser excitation. Biophys. J. 2006, 91 (2), 715-727.
    [127] Widengren, J.; Schwille, P.; Rigler, R., Photophysical characterization of the dye Cy-5 by fluorescence correlation spectroscopy. Biophys. J. 1997, 72 (2), 419-419.
    [128] Schwille, P.; MeyerAlmes, F. J.; Rigler, R., Dual-color fluorescence cross-correlation spectroscopy for multicomponent diffusional analysis in solution. Biophys. J. 1997, 72 (4), 1878-1886.
    [129] Schwille, P.; Heinze, K. G.; Koltermann, A., Two-photon fluorescence cross-correlation spectroscopy. Biophys. J. 2001, 80 (1), 364a-364a.
    [130] Kim, S. A.; Heinze, K. G.; Bacia, K.; et al., Two-photon cross-correlation analysis of intracellular reactions with variable stoichiometry. Biophys. J. 2005, 88 (6), 4319-4336.
    [131] Bacia, K.; Schwille, P., Practical guidelines for dual-color fluorescence cross-correlation spectroscopy. Nat. Protoc. 2007, 2 (11), 2842-2856.
    [132] Kim, S. A.; Heinze, K. G.; Schwille, P., Fluorescence correlation spectroscopy in living cells. Nat. Methods 2007, 4 (11), 963-973.
    [133] Bacia, K.; Kim, S. A.; Schwille, P., Fluorescence cross-correlation spectroscopy in living cells. Nat. Methods 2006, 3 (2), 83-89.
    [134] Bacia, K.; Schwille, P.; Kurzchalia, T., Sterol structure determines the separation of phases and the curvature of the liquid-ordered phase in model membranes. Proc. Natl. Acad. Sci. U.S.A 2005, 102 (9), 3272-3277.
    [135] Rigler, R.; Foldes-Papp, Z.; Meyer-Alme, F. J.; et al., Fluorescence cross-correlation: A new concept for polymerase chain reaction. J. Biotechnol. 1998, 63 (2), 97-109.
    [136] Borsch, M.; Turina, P.; Eggeling, C.; et al., Conformational changes of the H+-ATPase from Escherichia coli upon nucleotide binding detected by single molecule fluorescence. FEBS Lett. 1998, 437 (3), 251-254.
    [137] Rudiger, M.; Haupts, U.; Moore, K. J.; et al., Single-molecule detection technologies in miniaturized high throughput screening: Binding assays for G protein-coupled receptors using fluorescence intensity distribution analysis and fluorescence anisotropy. J. Biomol. Screen. 2001, 6 (1), 29-37.
    [138] Maiti, S.; Haupts, U.; Schwille, P.; et al., Kinetics of chromophore protonation in EGFP determined by fluorescence correlation spectroscopy (FCS). Biophys. J. 1998, 74 (2), A274-A274.
    [139] Kohl, T.; Schwille, P., Fluorescence correlation spectroscopy with autofluorescent proteins. Adv. Biochem. Eng. Biot. 2005, 95, 107-142.
    [140] Haupts, U.; Maiti, S.; Schwille, P.; et al., Dynamics of fluorescence fluctuations in green fluorescent protein observed by fluorescence correlation spectroscopy. Proc. Natl. Acad. Sci. U.S.A 1998, 95 (23), 13573-13578.
    [141] Goddard, N.; Bonnet, G.; Krichevsky, O.; et al., Misfolded loops decrease the effective rate of DNA hairpin formation - Reply. Phys. Rev. Lett. 2002, 88 (6), 2400-2403.
    [142] Goddard, N. L.; Bonnet, G.; Krichevsky, O.; et al., Sequence dependent rigidity of single stranded DNA. Phys. Rev. Lett. 2000, 85 (11), 2400-2403.
    [143] Pramanik, A.; Olsson, M.; Langel, U.; et al., Fluorescence correlation spectroscopy detects galanin receptor diversity on insulinoma cells. Biochemistry 2001, 40 (36), 10839-10845.
    [144] Tjernberg, L. O.; Pramanik, A.; Bjorling, S.; et al., Amyloid beta-peptide polymerization studied using fluorescence correlation spectroscopy. Chem. Biol. 1999, 6 (1), 53-62.
    [145] Politz, J. C.; Browne, E. S.; Wolf, D. E.; et al., Intranuclear diffusion and hybridization state ofoligonucleotides measured by fluorescence correlation spectroscopy in living cells. Proc. Natl. Acad. Sci. U.S.A 1998, 95 (11), 6043-6048.
    [146] Wachsmuth, M.; Waldeck, W.; Langowski, J., Anomalous diffusion of fluorescent probes inside living cell nuclei investigated by spatially-resolved fluorescence correlation spectroscopy. J. Mol. Biol. 2000, 298 (4), 677-689.
    [147] Dittrich, P.; Malvezzi-Campeggi, F.; Jahnz, M.; et al., Accessing molecular dynamics in cells by fluorescence correlation spectroscopy. Biol. Chem. 2001, 382 (3), 491-494.
    [148] Kim, S. A.; Schwille, P., Intracellular applications of fluorescence correlation spectroscopy: prospects for neuroscience. Curr. Opin. Neurobiol. 2003, 13 (5), 583-590.
    [149] Bieschke, J.; Giese, A.; Schulz-Schaeffer, W.; et al., Ultrasensitive detection of pathological prion protein aggregates by dual-color scanning for intensely fluorescent targets. Proc. Natl. Acad. Sci. U.S.A 2000, 97 (10), 5468-5473.
    [150] Schwille, P.; Oehlenschlager, F.; Walter, N. G., Quantitative hybridization kinetics of DNA probes to RNA in solution followed by diffusional fluorescence correlation analysis. Biochemistry 1996, 35 (31), 10182-10193.
    [151] Oehlenschlager, F.; Schwille, P.; Eigen, M., Detection of HIV-1 RNA by nucleic acid sequence-based amplification combined with fluorescence correlation spectroscopy. Proc. Natl. Acad. Sci. U.S.A 1996, 93 (23), 12811-12816.
    [152] Schwille, P.; Bieschke, J.; Oehlenschlager, F., Kinetic investigations by fluorescence correlation spectroscopy: the analytical and diagnostic potential of diffusion studies. Biophys. Chem. 1997, 66 (2), 211-228.
    [153] Rigler, R., Fluorescence correlations, single molecule detection and large number screening. Applications in biotechnology. J. Biotechnol. 1995, 41 (2), 177-186.
    [1] Dishinger, J. F.; Kennedy, R. T., Serial immunoassays in parallel on a microfluidic chip for monitoring hormone secretion from living cells. Anal. Chem. 2007, 79 (3), 947-954.
    [2] Perez-Cerda, C.; Quelhas, D.; Vega, A. I.; et al., Screening using serum percentage ofcarbohydrate-deficient transferrin for congenital disorders of glycosylation in children with suspected metabolic disease. Clin. Chem. 2008, 54 (1), 93-100.
    [3] Nartova, Y. V.; Ermolaeva, T. N.; Fleisher, M. R.; et al., Determination of alachlor in food products by a fluorescence polarization immunoassay. J. Anal. Chem. 2008, 63 (5), 499-505.
    [4] Fillmann, G.; Watson, G. M.; Francioni, E.; et al., A non-destructive assessment of the exposure of crabs to PAH using ELISA analyses of their urine and haemolymph. Mar. Envir. Res. 2002, 54 (3-5), 823-828.
    [5] Gonzalez-Martinez, M. A.; Puchades, R.; Maquieira, A., Comparison of multianalyte immunosensor formats for on-line determination of organic compounds. Anal. Chem. 2001, 73 (17), 4326-4332.
    [6] Niemeyer, C. M.; Adler, M.; Wacker, R., Detecting antigens by quantitative immuno-PCR. Nat. Protoc. 2007, 2 (8), 1918-1930.
    [7] Wang, J.; Huang, W.; Liu, Y.; et al., Capillary electrophoresis immunoassay chemiluminescence detection of zeptomoles of bone morphogenic protein-2 in rat vascular smooth muscle cells. Anal. Chem. 2004, 76 (18), 5393-5398.
    [8] Fu, Z.; Liu, H.; Ju, H., Flow-through multianalyte chemiluminescent immunosensing system with designed substrate zone-resolved technique for sequential detection of tumor markers. Anal. Chem. 2006, 78 (19), 6999-7005.
    [9] Roper, M. G.; Shackman, J. G.; Dahlgren, G. M.; et al., Microfluidic chip for continuous monitoring of hormone secretion from live cells using an electrophoresis-based immunoassay. Anal. Chem. 2003, 75 (18), 4711-4717.
    [10] Aurich, K.; Nagel, S.; Glockl, G.; et al., Determination of the magneto-optical relaxation of magnetic nanoparticles as a homogeneous immunoassay. Anal. Chem. 2007, 79 (2), 580-586.
    [11] Liu, X. J.; Liu, X.; Liang, A. Y.; et al., Studying protein-drug interaction by microfluidic chip affinity capillary electrophoresis with indirect laser-induced fluorescence detection. Electrophoresis 2006, 27 (15), 3125-3128.
    [12] Liu, X.; Dai, Q.; Austin, L.; et al., A one-step homogeneous immunoassay for cancer biomarkerdetection using gold nanoparticle probes coupled with dynamic light scattering. J. Am. Chem. Soc. 2008, 130 (9), 2780-2782.
    [13] Smith, D. S.; Eremin, S. A., Fluorescence polarization immunoassays and related methods for simple, high-throughput screening of small molecules. Anal. Bioanal. Chem. 2008, 391 (5), 1499-1507.
    [14] Hatzidakis, G. I.; Tsatsakis, A. M.; Krambovitis, E. K.; et al., Use of L-lysine fluorescence derivatives as tracers to enhance the performance of polarization fluoroimmunoassays. A study using two herbicides as model antigens. Anal. Chem. 2002, 74 (11), 2513-2521.
    [15] Kuningas, K.; Ukonaho, T.; Pakkila, H.; et al., Upconversion fluorescence resonance energy transfer in a homogeneous immunoassay for estradiol. Anal. Chem. 2006, 78 (13), 4690-4696.
    [16] Kokko, T.; Kokko, L.; Lovgren, T.; Soukka, T., Homogeneous noncompetitive immunoassay for 17 ss-Estradiol based on fluorescence resonance energy transfer. Anal. Chem. 2007, 79 (15), 5935-5940.
    [17] Arai, R.; Nakagawa, H.; Tsumoto, K.; et al., Demonstration of a homogeneous noncompetitive immunoassay based on bioluminescence resonance energy transfer. Anal. Biochem. 2001, 289 (1), 77-81.
    [18] Yamakawa, Y.; Ueda, H.; Kitayama, A.; et al., Rapid homogeneous immunoassay of peptides based on bioluminescence resonance energy transfer from firefly luciferase. J Biosci. Bioeng. 2002, 93 (6), 537-542.
    [19] Coille, I.; Gauglitz, G.; Hoebeke, J., Characterisation of antibodies and analytes by surface plasmon resonance for the optimisation of a competitive immunoassay based on energy transfer. Anal. Bioanal. Chem. 2002, 372 (2), 293-300.
    [20] El-Sayed, I. H.; Huang, X.; El-Sayed, M. A., Surface plasmon resonance scattering and absorption of anti-EGFR antibody conjugated gold nanoparticles in cancer diagnostics: applications in oral cancer. Nano Lett. 2005, 5 (5), 829-834.
    [21] Kuningas, K.; Ukonaho, T.; Pakkila, H.; et al., Upconversion fluorescence resonance energy transfer in a homogeneous immunoassay for estradiol. Anal. Chem. 2006, 78 (13), 4690-4696.
    [22] Zhou, Y.; Zhang, Y.; Lau, C.; et al., Sequential determination of two proteins by temperature-triggered homogeneous chemiluminescent immunoassay. Anal. Chem. 2006, 78 (16), 5920-4.
    [23] Bacia, K.; Schwille, P., Practical guidelines for dual-color fluorescence cross-correlation spectroscopy. Nat. Protoc. 2007, 2 (11), 2842-2856.
    [24] Haustein, E.; Schwille, P., Fluorescence correlation spectroscopy: Novel variations of an established technique. Annu. Rev. Biophys. Biomol. Struct. 2007, 36, 151-169.
    [25] Tetin, S. Y.; Swift, K. M.; Matayoshi, E. D., Measuring antibody affinity and performing immunoassay at the single molecule level. Anal. Biochem. 2002, 307 (1), 84-91.
    [26] Sengupta, P.; Balaji, J.; Maiti, S., Measuring diffusion in cell membranes by fluorescence correlation spectroscopy. Methods 2002, 27 (4), 374-87.
    [27] Sengupta, P.; Garai, K.; Balaji, J.; et al., Measuring size distribution in highly heterogeneous systems with fluorescence correlation spectroscopy. Biophys. J. 2003, 84 (3), 1977-84.
    [28] Fujii, F.; Horiuchi, M.; Ueno, M.; et al., Detection of prion protein immune complex for bovine spongiform encephalopathy diagnosis using fluorescence correlation spectroscopy and fluorescence cross-correlation spectroscopy. Anal. Biochem. 2007, 370 (2), 131-41.
    [29] Mayboroda, O. A.; van Remoortere, A.; et al., A new approach for fluorescence correlation spectroscopy (FCS) based immunoassays. J. Biotechnol. 2004, 107 (2), 185-92.
    [30] Foldes-Papp, Z.; Demel, U.; Tilz, G. P., Detection of single molecules: solution-phase single-molecule fluorescence correlation spectroscopy as an ultrasensitive, rapid and reliable system for immunological investigation. J. Immunol. Methods 2002, 260 (1-2), 117-24.
    [31] Heinze, K. G.; Koltermann, A.; Schwille, P., Simultaneous two-photon excitation of distinct labels for dual-color fluorescence crosscorrelation analysis. Proc. Natl. Acad. Sci. U.S.A 2000, 97 (19), 10377-10382.
    [32] Kettling, U.; Koltermann, A.; Schwille, P.; et al., Real-time enzyme kinetics monitored by dual-color fluorescence cross-correlation spectroscopy. Proc. Natl. Acad. Sci. U.S.A 1998, 95 (4), 1416-1420.
    [33] Kohl, T.; Heinze, K. G.; Kuhlemann, R.; et al., A protease assay for two-photon crosscorrelation and FRET analysis based solely on fluorescent proteins. Proc. Natl. Acad. Sci. U.S.A 2002, 99 (19), 12161-12166.
    [34] Ruan, Q.; Tetin, S. Y., Applications of dual-color fluorescence cross-correlation spectroscopy in antibody binding studies. Anal. Biochem. 2008, 374 (1), 182-95.
    [35] Varriale, A.; Rossi, M.; Staiano, M.; et al., Fluorescence correlation spectroscopy assay for gliadin in food. Anal. Chem. 2007, 79 (12), 4687-9.
    [36] Eigen, M. R., Sorting single molecules: application to diagnostics and evolutionary biotechnology. Proc. Natl. Acad. Sci. U.S.A 1994, 91 (13), 5740-5747.
    [37] Schwille, P.; Meyer-Almes, F. J.; Rigler, R., Dual-color fluorescence cross-correlation spectroscopy for multicomponent diffusional analysis in solution. Biophys. J. 1997, 72 (4), 1878-1886.
    [38] Jian W., Z.; Nan, W., Electricity characterization of metalloprotein at molecular level by conducting atomic force microscopy. Chem. Res. Chin. Univ. 2005, 26 (04), 751-753.
    [39] Chen, S.; Dong H. H.; Haiz, S.; et al., Structure exploration and function prediction of SARS coronavirus E protein. Chem. Res. Chin. Univ. 2008, 26 (8), 1512-1516.
    [40] Song, N.; Ping, C.; Song P. L., Identification of interacting molecules by biomolecular interaction analysis combined with surface plasmon resonance-mass spectrometry at 10 -15 mol level. Chem. Res. Chin. Univ. 2005, 26 (1), 68-71.
    [41] Heikal, S. T.; Baird, G. S.; Tsien, R. Y.; et al., Molecular spectroscopy and dynamics of intrinsically fluorescent proteins: coral red (dsRed) and yellow (Citrine). Proc. Natl. Acad. Sci. U.S.A 2000, 97 (22), 11996-12001.
    [42] Larson, J. A.; Holowka, D. A.; Baird, B. A.; et al., Temporally resolved interactions between antigen-stimulated IgE receptors and Lyn kinase on living cells. J. Cell Biol. 2005, 171 (3), 527-536.
    [43] Oyama, R. T. H.; Yonezawa, M.; Doi, N.; et al., Protein-protein interaction analysis by C-terminally specific fluorescence labeling and fluorescence cross-correlation spectroscopy.Nucleic Acids Res. 2006, 34 (14), e102.
    [44] Kettling, U. K. A.; Schwille, P.; Eigen, M., Real-time enzyme kinetics monitored by dual-color fluorescence cross-correlation spectroscopy. Proc. Natl. Acad. Sci. U.S.A 1998, 95 (4), 1416-1420.
    [45] Rarbach, M. K. U.; Koltermann, A.; Eigen, M., Dual-color fluorescence cross-correlation spectroscopy for monitoring the kinetics of enzyme-catalyzed reactions. Methods 2001, 24 (2), 104-116.
    [46] Bacia, K. S. P., A dynamic view of cellular processes by in vivo fluorescence auto- and cross-correlation spectroscopy. Methods 2003, 29 (1), 74-85.
    [47] Bacia, K. K.; Schwille, P., Fluorescence cross-correlation spectroscopy in living cells. Nat. Methods 2006, 3 (2), 83-89.
    [48] Kim, K. G.; Waxham, M. N.; Schwille, P., Intracellular calmodulin availability accessed with two-photon cross-correlation. Proc. Natl. Acad. Sci. U.S.A 2004, 101 (1), 105-110.
    [49] Wohland, T., Recent advances in fluorescence cross-correlation spectroscopy. Cell Biochem. Biophys. 2007, 13(49), 1-13.
    [50] Kessenbrock, K.; Raijmakers, R.; Fritzler, M. J.; et al., Synthetic peptides: the future of patient management in systemic rheumatic diseases? Curr. Med. Chem. 2007, 14 (26), 2831-2838.
    [51] Gimenez, E.; De Bolos, C.; Belalcazar, V.; et al., Anti-EPO and anti-NESP antibodies raised against synthetic peptides that reproduce the minimal amino acid sequence differences between EPO and NESP. Anal. Bioanal. Chem. 2007, 388 (7), 1531-1538.
    [52] Dardari, R.; Menezes, J.; Drouet, E.; et al., Analyses of the prognostic significance of the Epstein-Barr virus transactivator ZEBRA protein and diagnostic value of its two synthetic peptides in nasopharyngeal carcinoma. J. Clin. Virol. 2008, 41 (2), 96-103.
    [53] Tomar, D.; Biswas, S.; Tripathi, V.; et al., Development of diagnostic reagents: raising antibodies against synthetic peptides of PfHRP-2 and LDH using microsphere delivery. Immunobiology 2006, 211 (10), 797-805.
    [54] Lu, W.; Wu, X. D.; De Shi, M.; et al., Synthetic peptides derived from SARS coronavirus Sprotein with diagnostic and therapeutic potential. FEBS Lett. 2005, 579 (10), 2130-2136.
    [55] Sundaram, R.; Dakappagari, N. K.; Kaumaya, P. T. P., Synthetic peptides as cancer vaccines. Biopolymers 2002, 66 (3), 200-216.
    [56] Brimble, M. A.; Kowalczyk, R.; Harris, P. W. R.; et al., Synthesis of fluorescein-labelled O-mannosylated peptides as components for synthetic vaccines: comparison of two synthetic strategies. Org. Biomol. Chem. 2008, 6 (1), 112-121.
    [57] Jiang, S.; Song, R.; Popov, S.; et al., Overlapping synthetic peptides as vaccines. Vaccine 2006, 24 (37-39), 6356-6365.
    [58] Wei, A. P.; Herron, J. N., Use of synthetic peptides as tracer antigens in fluorescence polarization immunoassays of high molecular weight analytes. Anal. Chem. 1993, 65 (23), 3372-3377.
    [59] Fu, Z.; Liu, H.; Ju, H., Flow-through multianalyte chemiluminescent immunosensing system with designed substrate zone-resolved technique for sequential detection of tumor markers. Anal. Chem. 2006, 78 (19), 6999-7005.
    [60] Luo, L. Y.; Katsaros, D.; Scorilas, A.; et al., The serum concentration of human kallikrein 10 represents a novel biomarker for ovarian cancer diagnosis and prognosis. Cancer Res. 2003, 63 (4), 807-811.
    [61] Hosono, M. N.; Endo, K.; Sakahara, H.; et al., Different antigenic nature in apparently healthy women with high serum CA 125 levels compared with typical patients with ovarian cancer. Cancer 1992, 70 (12), 2851-2856.
    [62] Bacia, K.; Kim, S. A.; Schwille, P., Fluorescence cross-correlation spectroscopy in living cells. Nat. Methods 2006, 3 (2), 83-89.
    [63] Schwille, P.; Heinze, K. G.; Koltermann, A., Two-photon fluorescence cross-correlation spectroscopy. Biophys. J. 2001, 80 (1), 364a..
    [64] Schwille, P.; MeyerAlmes, F. J.; Rigler, R., Dual-color fluorescence cross-correlation spectroscopy for multicomponent diffusional analysis in solution. Biophys. J. 1997, 72 (4), 1878-1886.
    [65] Zhang, P. D.; Ren, J. C., Advances in fluorescence correlation spectroscopy and its applications insingle molecule detection. Chin. Anal. Chem. 2005, 33 (6), 875-880.
    [66] Dong, C. Q.; Bi, R.; Qian, H. F.; et al., Coupling fluorescence correlation spectroscopy with microchip electrophoresis to determine the effective surface charge of water-soluble quantum dots. Small 2006, 2 (4), 534-538.
    [67] Dong, C. Q.; Qian, H. F.; Fang N. F.; et al., Study of fluorescence quenching and dialysis process of CdTe quantum dots, using ensemble techniques and fluorescence correlation spectroscopy. J. Phys. Chem. B 2006, 110 (23), 11069-11075.
    [68] Schwille, P.; M-A, F. J.; Rigler, R., Dual-color fluorescence cross-correlation spectroscopy for multicomponent diffusional analysis in solution. Biophys. J. 1997, 72 (4), 1878-1886.
    [69] Tetin, S. Y.; Hazlett, T. L., Optical spectroscopy in studies of antibody-hapten interactions. Methods 2000, 20 (3), 341-61.
    [70] Dong, C. Q.; Ren J. C., On-line investigation of laser-induced aggregation and photo-activation of CdTe quantum dots by fluorescence correlation spectroscopy. J. Phys. Chem. C 2007, 111 (22), 7918-7923.
    [71] Qian, H. F.; Dong, C. Q.; Qiu X.; et al., High-quality and water-soluble near-infrared photoluminescent CdHgTe/CdS quantum dots prepared by adjusting size and composition. J. Phys. Chem. C 2007, 111 (45) 16852—16857.
    [72] Rarbach, M.; Kettling, U.; Koltermann, A.; et al., Dual-color fluorescence cross-correlation spectroscopy for monitoring the kinetics of enzyme-catalyzed reactions. Methods 2001, 24 (2), 104-116.
    [73] Schuler, J.; Frank, J.; Trier, U.; et al., Interaction kinetics of tetramethylrhodamine transferrin with human transferrin receptor studied by fluorescence correlation spectroscopy. Biochemistry 1999, 38 (26), 8402-808.
    [1] Huang, C. C.; Yang, Z.; Lee, K. H.; et al., Synthesis of highly fluorescent gold nanoparticles for sensing Mercury(II). Angew. Chem. Int. Edit. 2007, 46 (36), 6824-6828.
    [2] Yobas, L.; Feng Cheow, L.; Tang, K. C.; et al., A self-contained fully-enclosed microfluidic cartridge for lab on a chip. Biomed. Microdevices. 2009. ahead of print.
    [3] Zhang, K.; Yang, H., Photon-by-photon determination of emission bursts from diffusing single chromophores. J. Phys. Chem. B 2005, 109 (46), 21930-21937.
    [4] Xiang, M. H.; Xu, X.; Liu, F.; et al., Gold nanoparticle based plasmon resonance light-scattering method as a new approach for glycogen-biomacromolecule interactions. J. Phys. Chem. B 2009, 113 (9), 2734-2738.
    [5] Kokko, T.; Liljenback, T.; Peltola, M. T.; et al., Homogeneous dual-parameter assay for prostate-specific antigen based on fluorescence resonance energy transfer. Anal. Chem. 2008, 80 (24), 9763-9768.
    [6] Cao, Y. C.; Jin, R.; Mirkin, C. A., Nanoparticles with raman spectroscopic fingerprints for DNA and RNA detection. Science 2002, 297 (5586), 1536-1540.
    [7] Storhoff, J. J.; Lucas, A. D.; Garimella, V.; et al., Homogeneous detection of unamplified genomic DNA sequences based on colorimetric scatter of gold nanoparticle probes. Nat. Biotech. 2004, 22 (7), 883-887.
    [8] Liu, X.; Dai, Q.; Austin, L.; et al., A one-step homogeneous immunoassay for cancer biomarker detection using gold nanoparticle probes coupled with dynamic light scattering. J. Am. Chem. Soc.2008, 130 (9), 2780-2782.
    [9] Jin, R. C., Super robust nanoparticles for biology and biomedicine. Angew. Chem. Int. Edit. 2008, 47 (36), 6750-6753.
    [10] Xu, C. S.; Cang, H.; Montiel, D.; et al., Rapid and quantitative sizing of nanoparticles using three-dimensional single-particle tracking. J. Phys. Chem. C 2007, 111 (1), 32-35.
    [11] Cang, H.; Xu, C. S.; Yang, H., Progress in single-molecule tracking spectroscopy. Chem. Phys. Lett.2008, 457 (4-6), 285-291.
    [12] He, H.; Ren, J. C., A novel evanescent wave scattering imaging method for single gold particle tracking in solution and on cell membrane. Talanta 2008, 77 (1), 166-171.
    [13] He, H.; Xie, C.; Ren, J. C., Nonbleaching fluorescence of gold nanoparticles and its applications in cancer cell imaging. Anal. Chem. 2008, 80 (15), 5951-5957.
    [14] Shi, X. G.; Wang, S. H.; Meshinchi, S.; et al., Dendrimer-entrapped gold nanoparticles as a platform for cancer-cell targeting and Imaging. Small 2007, 3 (7), 1245-1252.
    [15] Murphy, C. J.; Gole, A. M.; Stone, J. W.; et al., Gold nanoparticles in biology: beyond toxicity to cellular imaging. Acc. Chem. Res. 2008, 41 (12), 1721-1730.
    [16] Jiang, W.; Kim, B. Y.; Rutka, J. T.; et al., Nanoparticle-mediated cellular response is size-dependent. Nat. Nanotech. 2008, 3 (3), 145-150.
    [17] Li, J. L.; Wang, L.; Liu, X. Y.; et al., In vitro cancer cell imaging and therapy using transferrin-conjugated gold nanoparticles. Cancer Lett. 2009, 274 (2), 319-326.
    [18] Elghanian, R.; Storhoff, J. J.; Mucic, R. C.; et al., Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles. Science 1997, 277 (5329), 1078-1081.
    [19] Shen, Q. P.; Nie, Z.; Guo, M. L.; et al., Simple and rapid colorimetric sensing of enzymatic cleavage and oxidative damage of single-stranded DNA with unmodified gold nanoparticles as indicator. Chem. Commun. 2009, (8), 929-931.
    [20] Liu, J. W.; Lu, Y., Accelerated color change of gold nanoparticles assembled by DNAzymes forsimple and fast colorimetric Pb2+ detection. J. Am. Chem. Soc. 2004, 126 (39), 12298-12305.
    [21] Jiang, Y.; Zhao, H.; Zhu, N. N.; et al., A simple assay for direct colorimetric visualization of trinitrotoluene at picomolar levels using gold nanoparticles. Angew. Chem. Int. Edit. 2008, 47 (45), 8601-8604.
    [22] Jiang, T. T.; Liu, R. R.; Huang, X. F.; et al., Colorimetric screening of bacterial enzyme activity and inhibition based on the aggregation of gold nanoparticles. Chem. Commun. 2009, (15), 1972-1974.
    [23] Liu, R.; Liew, R.; Zhou, J.; et al., A simple and specific assay for real-time colorimetric visualization of beta-lactamase activity by using gold nanoparticles. Angew. Chem. Int. Edit. 2008, 47 (17), 3081-3081.
    [24] Beebe, D.; Verpoorte, S., Lab on a chip launches a new methods section. Lab. Chip 2009, 9 (21), 3035.
    [25] Quang, L. X.; Lim, C.; Seong, G. H.; et al., A portable surface-enhanced Raman scattering sensor integrated with a lab-on-a-chip for field analysis. Lab. Chip 2008, 8 (12), 2214-2219.
    [26] Craighead, H., Future lab-on-a-chip technologies for interrogating individual molecules. Nature 2006, 442 (7101), 387-393.
    [27] Hogan, J., Lab on a chip: a little goes a long way. Nature 2006, 442 (7101), 351-352.
    [28] Lee, M.; Baik, K. Y.; Noah, M.; et al., Nanowire and nanotube transistors for lab-on-a-chip applications. Lab. Chip 2009, 9 (16), 2267-2280.
    [29] Suarez, G.; Jin, Y. H.; Auerswald, J.; et al., Lab-on-a-chip for multiplexed biosensing of residual antibiotics in milk. Lab. Chip 2009, 9 (11), 1625-1630.
    [30] Monaghan, P. B.; McCarney, K. M.; Ricketts, A.; et al., Bead-based DNA diagnostic assay for chlamydia using nanoparticle-mediated surface-enhanced resonance Raman scattering detection within a lab-on-a-chip format. Anal. Chem. 2007, 79 (7), 2844-2849.
    [31] Weigl, B. H.; Bardell, R. L.; Cabrera, C. R., Lab-on-a-chip for drug development. Adv. Drug. Deliv. Rev. 2003, 55 (3), 349-377.
    [32] Gambari, R.; Borgatti, M.; Altomare, L.; et al., Applications to cancer research of "lab-on-a-chip" devices based on dielectrophoresis (DEP). Technol. Cancer Res. Treat. 2003, 2 (1), 31-40.
    [33] Figeys, D.; Pinto, D., Lab-on-a-chip: a revolution in biological and medical sciences. Anal. Chem. 2000, 72 (9), 330A-335A.
    [34] Freeman, R. G.; Hommer, M. B.; Grabar, K. C.; et al., Ag-clad Au nanoparticles: novel aggregation, optical, and surface-enhanced Raman scattering properties. J. Phys. Chem. 1996, 100 (2), 718-724.
    [35] Sia, S. K.; Whitesides, G. M., Microfluidic devices fabricated in poly(dimethylsiloxane) for biological studies. Electrophoresis 2003, 24 (21), 3563-3576.
    [36] McDonald, J. C.; Whitesides, G. M., Poly(dimethylsiloxane) as a material for fabricating microfluidic devices. Acc. Chem. Res. 2002, 35 (7), 491-499.
    [37] McDonald, J. C.; Chabinyc, M. L.; Metallo, S. J.; et al., Prototyping of microfluidic devices in poly(dimethylsiloxane) using solid-object printing. Anal. Chem. 2002, 74 (7), 1537-1545.
    [38] McDonald, J. C.; Duffy, D. C.; Anderson, J. R.; et al., Fabrication of microfluidic systems in poly(dimethylsiloxane). Electrophoresis 2000, 21 (1), 27-40.
    [39] Kim, S. A.; Heinze, K. G.; Schwille, P., Fluorescence correlation spectroscopy in living cells. Nat. Methods 2007, 4 (11), 963-973.
    [40] Dong, C. Q.; Qian, H. F.; Fang, N. H.; et al., Study of fluorescence quenching and dialysis process of CdTe quantum dots, using ensemble techniques and fluorescence correlation spectroscopy. J. Phys. Chem. B 2006, 110 (23), 11069-11075.
    [41] Uyeda, H. T.; Medintz, I. L.; Jaiswal, J. K.; et al., Synthesis of compact multidentate ligands to prepare stable hydrophilic quantum dot fluorophores. J. Am. Chem. Soc. 2005, 127 (11), 3870-3878.
    [42] Daniel, D. C.; Thompson, M.; Woodbury, N. W., DNA-binding interactions and conformational fluctuations of Tc3 transposase DNA binding domain examined with single molecule fluorescence spectroscopy. Biophys. J. 2002, 82 (3), 1654-1666.
    [43] Foldes-Papp, Z.; Demel, U.; Tilz, G. P., Detection of single molecules: solution-phase single-molecule fluorescence correlation spectroscopy as an ultrasensitive, rapid and reliable system for immunological investigation. J. Immunol. Methods 2002, 260 (1-2), 117-124.
    [44] Wang, K. L.; Qiu, X. F.; Dong, C. Q; et al., Single-molecule technology for rapid detection of DNA hybridization based on resonance light scattering of gold nanoparticles. ChemBioChem 2007, 8 (10), 1126-1129.
    [45] Magde, D.; Elson, E. L.; Webb, W. W., Fluorescence correlation spectroscopy. II. An experimental realization. Biopolymers 1974, 13 (1), 29-61.
    [1] Bekci, T. T.; Senol, T.; Maden, E., The efficacy of serum carcinoembryonic antigen (CEA),cancer antigen 125 (CA125), carbohydrate antigen 19-9 (CA19-9), carbohydrate antigen 15-3 (CA15-3), alpha-fetoprotein (AFP) and human chorionic gonadotropin (hCG) levels in determining the malignancy of solitary pulmonary nodules. J. Int. Med. Res. 2009, 37 (2), 438-445.
    [2] Marchesi, M. C.; Conti, M. B.; Pieramati, C.; et al., Assessment and behavior of alphafetoprotein (AFP), antigen cancer 15/3 (CA 15/3), carcinembryonal antigen (CEA) in clinical oncology of the dog: preliminary study. Vet. Res. Commun. 2007, 31(1), 301-304.
    [3] Chester, S. J.; Maimonis, P.; Vanzuiden, P.; et al., A new radioimmunoassay detecting early stages of colon cancer: a comparison with CEA, AFP, and Ca 19-9. Dis. Markers 1991, 9 (5), 265-271.
    [4] Focan, C.; Focan-Henrard, D.; Collette, J.; et al., Cancer-associated alteration of circadian rhythms in carcinoembryonic antigen (CEA) and alpha-fetoprotein (AFP) in humans. Anticancer Res. 1986, 6 (5), 1137-1144.
    [5] Ucar, E.; Semerci, E.; Ustun, H.;et al., Prognostic value of preoperative CEA, CA 19-9, CA 72-4, and AFP levels in gastric cancer. Adv. Ther. 2008, 25 (10), 1075-1084.
    [6] Webb, A.; Scott-Mackie, P.; Cunningham, D.; et al., The prognostic value of CEA, beta HCG, AFP, CA125, CA19-9 and C-erb B-2, beta HCG immunohistochemistry in advanced colorectal cancer. Ann. Oncol. 1995, 6 (6), 581-587.
    [7] Brummel, K. E.; Paradis, S. G.; Butenas, S.; et al., Thrombin functions during tissue factor-induced blood coagulation. Blood 2002, 100 (1), 148-152.
    [8] Griffin, J. H., Blood coagulation. The thrombin paradox. Nature 1995, 378 (6555), 337-338.
    [9] Meyer-Siegler, K. L.; Cox, J.; Leng, L.; et al., Macrophage migration inhibitory factor anti-thrombin III complexes are decreased in bladder cancer patient serum: Complex formation as a mechanism of inactivation. Cancer Lett. 2009. ahead of print.
    [10] Mi, Z.; Oliver, T.; Guo, H.; et al., Thrombin-cleaved COOH(-) terminal osteopontin peptide binds with cyclophilin C to CD147 in murine breast cancer cells. Cancer Res. 2007, 67 (9), 4088-4097.
    [11] Maruyama, I.; Majerus, P. W., Protein C inhibits endocytosis of thrombin-thrombomodulin complexes in A549 lung cancer cells and human umbilical vein endothelial cells. Blood 1987, 69(5), 1481-1484.
    [12] Xu, Y.; Phillips, J. A.; Yan, J.; et al., Aptamer-based microfluidic device for enrichment, sorting, and detection of multiple cancer cells. Anal. Chem. 2009, 81 (17), 7436-7442.
    [13] Koltai, H.; Weingarten-Baror, C., Specificity of DNA microarray hybridization: characterization, effectors and approaches for data correction. Nucleic Acids Res. 2008, 36 (7), 2395-405.
    [14] Michels, E.; De Preter, K.; Van Roy, N.; et al., Detection of DNA copy number alterations in cancer by array comparative genomic hybridization. Genet. Med. 2007, 9 (9), 574-84.
    [15] Fletcher, J. A., DNA in situ hybridization as an adjunct in tumor diagnosis. Am. J. Clin. Pathol. 1999, 112 (1), S11-8.
    [16] Yan, A. C.; Levy, M., Aptamers and aptamer targeted delivery. RNA Biol. 2009, 6 (3), 316-20.
    [17] Lee, J. F.; Stovall, G. M.; Ellington, A. D., Aptamer therapeutics advance. Curr. Opin. Chem. Biol. 2006, 10 (3), 282-9.
    [18] Collett, J. R.; Cho, E. J.; Ellington, A. D., Production and processing of aptamer microarrays. Methods 2005, 37 (1), 4-15.
    [19] Balamurugan, S.; Obubuafo, A.; Soper, S. A.; et al., Surface immobilization methods for aptamer diagnostic applications. Anal. Bioanal. Chem. 2008, 390 (4), 1009-21.
    [20] Wilchek, M.; Bayer, E. A., Avidin-biotin mediated immunoassays: overview. Methods Enzymol. 1990, 184, 467-9.
    [21] Wilchek, M.; Bayer, E. A.; Livnah, O., Essentials of biorecognition: the (strept)avidin-biotin system as a model for protein-protein and protein-ligand interaction. Immunol. Lett. 2006, 103 (1), 27-32.
    [22] Wayment, J. R.; Harris, J. M., Biotin-avidin binding kinetics measured by single-molecule imaging. Anal. Chem. 2009, 81 (1), 336-342.
    [23] Schlossbauer, A.; Kecht, J.; Bein, T., Biotin-avidin as a protease-responsive cap system for controlled guest release from colloidal mesoporous silica. Angew. Chem. Int. Edit. 2009, 48 (17), 3092-3095.
    [1] Wang, L. H.; Liu, X. F.; Hu, X. F.; et al., Unmodified gold nanoparticles as a colorimetric probe for potassium DNA aptamers. Chem. Commun. 2006, (36), 3780-3782.
    [2] Li, L.; Li, B. X.; Qi, Y. Y.; et al., Label-free aptamer-based colorimetric detection of mercury ions in aqueous media using unmodified gold nanoparticles as colorimetric probe. Anal. BioAnal. Chem. 2009, 393 (8), 2051-2057.
    [3] Selvaraj, V.; Alagar, M., Analytical detection and biological assay of antileukernic drug 5-fluorouracil using gold nanoparticles as probe. Int. J. Pharm. 2007, 337 (1-2), 275-281.
    [4] Zhao, W.; Chiuman, W.; Lam, J. C.; et al., DNA aptamer folding on gold nanoparticles: from colloid chemistry to biosensors. J. Am. Chem. Soc. 2008, 130 (11), 3610-8.
    [5] Blab, G. A.; Cognet, L.; Berciaud, S.; et al., Optical readout of gold nanoparticle-based DNAmicroarrays without silver enhancement. Biophys.J 2006, 90 (1), L13-5.
    [6] Tessier, P. M.; Jinkoji, J.; Cheng, Y. C.; et al., Self-interaction nanoparticle spectroscopy: a nanoparticle-based protein interaction assay. J. Am. Chem. Soc. 2008, 130 (10), 3106-3112.
    [7] Service, R. F., Nanotechnology. Color-changing nanoparticles offer a golden ruler for molecules. Science 2005, 308 (5725), 1099.
    [8] El-Sayed, I. H.; Huang, X.; El-Sayed, M. A., Surface plasmon resonance scattering and absorption of anti-EGFR antibody conjugated gold nanoparticles in cancer diagnostics: applications in oral cancer. Nano Lett. 2005, 5 (5), 829-834.
    [9] Nykypanchuk, D.; Maye, M. M.; Van der Lelie, D.; et al., DNA-guided crystallization of colloidal nanoparticles. Nature 2008, 451 (7178), 549-52.
    [10] Mangeney, C.; Ferrage, F.; Aujard, I.; et al., Synthesis and properties of water-soluble gold colloids covalently derivatized with neutral polymer monolayers. J. Am. Chem. Soc. 2002, 124 (20), 5811-5821.
    [11] Liu, X.; Dai, Q.; Austin, L.; et al., A one-step homogeneous immunoassay for cancer biomarker detection using gold nanoparticle probes coupled with dynamic light scattering. J. Am. Chem. Soc. 2008, 130 (9), 2780-2782.
    [12] Driskell, J. D.; Uhlenkamp, J. M.; Lipert, R. J.; et al., Surface-enhanced Raman scattering immunoassays using a rotated capture substrate. Anal. Chem. 2007, 79 (11), 4141-4148.
    [13] Cao, Y. C.; Jin, R.; Mirkin, C. A., Nanoparticles with Raman spectroscopic fingerprints for DNA and RNA detection. Science 2002, 297 (5586), 1536-1540.
    [14] Ringler, M.; Klar, T. A.; Schwemer, A.; et al., Moving nanoparticles with Raman scattering. Nano. Lett. 2007, 7 (9), 2753-2757.
    [15] Cognet, L.; Tardin, C.; Boyer, D.; et al., Single metallic nanoparticle imaging for protein detection in cells. Proc. Natl. Acad. Sci. U.S.A 2003, 100 (20), 11350-11355.
    [16] Benz, E. B.; Federman, M.; Godleski, J. J.; et al., Transmission electron microscopy of intracellular particles of polyethylene from joint replacement prostheses: size distribution andcellular response. Biomaterials 2001, 22 (21), 2835-2842.
    [17] Dur, J. C.; Elsass, F.; Chaplain, V.; et al., The relationship between particle-size distribution by laser granulometry and image analysis by transmission electron microscopy in a soil clay fraction. Eur. J. Soil. Sci. 2004, 55 (2), 265-270.
    [18] Li, Z. M.; Yang, J. H.; Wang, L., Determination of latex particle size distribution by transmission electron microscopy (TEM) and image analysis: Standardized procedures and key factors. Int. J. Polym. Anal. 2006, 11 (5), 337-351.
    [19] Pieri, L.; Bittelli, M.; Pisa, P. R., Laser diffraction, transmission electron microscopy and image analysis to evaluate a bimodal Gaussian model for particle size distribution in soils. Geoderma. 2006, 135, 118-132.
    [20] Rieker, T.; Hanprasopwattana, A.; Datye, A.; et al., Particle size distribution inferred from small-angle X-ray scattering and transmission electron microscopy. Langmuir 1999, 15 (2), 638-641.
    [21] Carrot, G.; Valmalette, J. C.; Plummer, C. J. G.; et al., Gold nanoparticle synthesis in graft copolymer micelles. Colloid. Polym. Sci. 1998, 276 (10), 853-859.
    [22] Liang, S.; Wang, Y.; Yu, J.; Zhang, C.; et al., Surface modified superparamagnetic iron oxide nanoparticles: as a new carrier for bio-magnetically targeted therapy. J. Mater. Sci. Mater. Med. 2007, 18(12), 2297-2302.
    [23] Xu, C. S.; Cang, H.; Montiel, D.; et al., Rapid and quantitative sizing of nanoparticles using three-dimensional single-particle tracking. J. Phys. Chem. C 2007, 111 (1), 32-35.
    [24] Tsai, D. S.; Chen, C. H.; Chou, C. C., Preparation and characterization of gold-coated silver triangular platelets in nanometer scale. Mater. Chem. Phys. 2005, 90 (2-3), 361-366.
    [25] Robertson, D.; Tiersch, B.; Kosmella, S.; et al., Preparation of crystalline gold nanoparticles at the surface of mixed phosphatidylcholine-ionic surfactant vesicles. J. Colloid. Interf. Sci. 2007, 305 (2), 345-351.
    [26] Jans, H.; Liu, X.; Austin, L.; et al., Dynamic light scattering as a powerful tool for goldnanoparticle bioconjugation and biomolecular binding studies. Anal. Chem. 2009. ahead of print.
    [27] Lee, B. H.; Kwon, K. W.; Shim, M., Semiconductor-polymer hybrid colloidal nanoparticles. J. Mater. Chem. 2007, 17 (13), 1284-1291.
    [28] Lee, P. W.; Peng, S. F.; Su, C. J.; et al., The use of biodegradable polymeric nanoparticles in combination with a low-pressure gene gun for transdermal DNA delivery. Biomaterials 2008, 29 (6), 742-751.
    [29] Lee, B.; Podsiadlo, P.; Rupich, S.; et al., Comparison of structural behavior of nanocrystals in randomly packed films and long-range ordered superlattices by time-resolved small angle X-ray scattering. J. Am. Chem. Soc. 2009. ahead of print.
    [30] Pena, O.; Rodriguez-Fernandez, L.; Rodriguez-Iglesias, V.; et al., Determination of the size distribution of metallic nanoparticles by optical extinction spectroscopy. Appl. Optics. 2009, 48 (3), 566-572.
    [31] Muller, T.; Muller, D.; Dubois, R., Particle extinction measured at ambient conditions with differential optical absorption spectroscopy. 1. system setup and characterization. Appl. Opt. 2005, 44 (9), 1657-1666.
    [32] Kuyper, C. L.; Fujimoto, B. S.; Zhao, Y.; et al., Accurate sizing of nanoparticles using confocal correlation spectroscopy. J. Phys. Chem. B 2006, 110 (48), 24433-24441.
    [33] Kuyper, C. L.; Budzinski, K. L.; Lorenz, R. M.; et al., Real-time sizing of nanoparticles in microfluidic channels using confocal correlation spectroscopy. J Am. Chem. Soc.2006, 128 (3), 730-731.
    [34] Wang, K. L.; Qiu, X.; Dong, C. Q.; et al., Single-molecule technology for rapid detection of DNA hybridization based on resonance light scattering of gold nanoparticles. ChemBioChem 2007, 8 (10), 1126-1129.
    [35] Ye, M.; Wang, S. M.; Lu, Y.; et al., Inversion of particle-size distribution from angular light-scattering data with genetic algorithms. Appl. Optics. 1999, 38 (12), 2677-2685.
    [36] Schmitt, L. M., Theory of genetic algorithms. Theor. Comput. Sci. 2001, 259 (1-2), 1-61.
    [37] Ross, J., From the determination of complex reaction mechanisms to systems biology. Annu. Rev. Biochem. 2008, 77, 479-494.
    [38] Maulik, U., Medical image segmentation using genetic algorithms. Ieee T. Inf. Technol. B 2009, 13 (2), 166-173.
    [39] Gosselin, L.; Tye-Gingras, M.; Mathieu-Potvin, F., Review of utilization of genetic algorithms in heat transfer problems. Int. J. Heat. Mass. Tran. 2009, 52 (9-10), 2169-2188.
    [40] Moore, J. H., Artificial intelligence programming with LabVIEW: genetic algorithms for instrumentation control and optimization. Comput. Methods Programs. Biomed. 1995, 47 (1), 73-79.
    [41] Freeman, R. G.; Hommer, M. B.; Grabar, K. C.; et al., Ag-clad Au nanoparticles: Novel aggregation, optical, and surface-enhanced Raman scattering properties. J. Phys. Chem. 1996, 100 (2), 718-724.
    [42] Ruan, Q. Q.; Tetin, S. Y., Applications of dual-color fluorescence cross-correlation spectroscopy in antibody binding studies. Anal. Biochem.2008, 374 (1), 182-195.
    [43] Modos, K.; Galaantai, R.; Baardos-Nagy, I.; et al., Maximum-entropy decomposition of fluorescence correlation spectroscopy data: application to liposome-human serum albumin association. Eur. Biophys. Biophy. Lett. 2004, 33 (1), 59-67.
    [44] Starchev, K.; Buffle, J.; Perez, E., Applications of fluorescence correlation spectroscopy: Polydispersity measurements. J. Colloid. Interf. Sci. 1999, 213 (2), 479-487.
    [45] Leardi, R., Genetic algorithms in chemistry. J. Chromatogr. A 2007, 1158 (1-2), 226-233.
    [46] Pedersen, J. T.; Moult, J., Genetic algorithms for protein structure prediction. Curr. Opin. Struct. Biol. 1996, 6 (2), 227-231.
    [47] Willett, P., Genetic algorithms in molecular recognition and design. Trends. Biotechnol. 1995, 13 (12), 516-521.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700