铜基纳米材料的液相合成与表征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纳米材料的设计合成是纳米科学技术发展的热点领域,也是纳米科技得到进步研究并推广应用的基础。目前合成纳米材料的方法虽然很多,但是获得尺寸可控、颗粒均匀的纳米材料仍然存在一定的困难。探索发展纳米材料设计与合成的新途径、新方法,实现对纳米材料的尺寸大小、粒径分布以及形貌和表面修饰的控制仍然是纳米材料研究领域的一个重要课题。
     本论文以铜基无机材料为研究对象,发挥液相合成技术在控制材料的结构、形貌和尺寸方面的优势,对单质铜、氧化亚铜及铜基核壳结构纳米材料进行控制合成,探讨其控制机理及内在规律。论文的主要内容总结如下:
     1.水热法选择性合成铜纳米线和纳米片
     采用水热合成方法,在表面活性剂辅助下,通过控制Cu+离子的释放速率,调节溶液中有效单体的浓度,选择性合成了Cu纳米线和纳米片。当CTAC作为表面活性剂时,溶液中自由Cu+离子的释放速率和Cu+离子的还原速率由体系中的CuCl来决定,生成的产物为Cu纳米线。反应条件保持不变,当CTAB取代CTAC作为表面活性剂时,CTAB中的Br-与Cu+离子结合生成更难溶于水的CuBr。CuBr的生成使溶液中自由Cu+离子的浓度和Cu+的还原反应速率明显降低,为Cu纳米片的生成提供了有利的条件。
     2.水热合成多种形貌的氧化亚铜微米材料
     在水热条件下,次亚磷酸钠作为还原剂,柠檬酸三钠为配位剂,成功制备出多种形貌的Cu2O微米材料。次亚磷酸钠的还原性受溶液的酸碱性的影响,通过调节体系的pH值,可以控制还原反应的速率。对于面心立方晶系的Cu2O来说,立方体形貌的获得是由于六个<100>面生长较慢,而<111>生长较快所致。化学动力学实验表明,碱性条件下,次亚磷酸钠处于不活泼型,还原反应速率非常慢。因此,提高体系的pH值,使次亚磷酸钠的还原速率降低。在比较慢的还原反应速率下,Cu20晶体六个<100>面没有生长完全造成了立方体到八角花状过渡。
     3.溶剂热法合成氧化亚铜空心立方体
     利用溶剂热合成技术,不借助于任何模板和表面活性剂,成功制备了Cu2O空心立方体。通过对不同时间所得产物的TEM图像观察,我们认为Cu2O空心立方体的形成是定向聚集和奥氏熟化共同作用的结果。在反应的初期,溶剂热条件下,生成的小粒子聚集成大的颗粒以减少体系的表面能。随着反应的进行,小粒子的浓度逐渐降低,定向聚集变为次要因素。由于小粒子的起始聚集迅速,导致立方体内部结构疏松。在反应的后期,小的粒子或疏松的颗粒不断溶解,生成更大的、结晶性和致密性更好的颗粒。因为立方体内部的小粒子曲率更大,更容易溶解继而再结晶生长,所以最终所得产物为空心立方体。实验发现,反应温度、反应时间和体系中的含水量都对空心结构有影响。
     4.液相法合成氧化亚铜-金核壳纳米球和银-铜核壳纳米材料
     (a)室温条件下合成CuO2-Au核壳纳米球,该方法具有简单易行,反应时间短的特点。首先通过N2H2和Cu(NO3)2的反应得到CuO2纳米球,然后加入HAuCl4水溶液,HAuCl4与体系中过量的N2H2反应,Au3+还原为Au单质,以CuO2纳米球为“种子”,在其表面生成出一层Au单质壳层结构。同时HAuCl4带入的H+可以与作为“种子”的CuO2反应,CuO2的表面逐渐被消耗,核与壳之间的空隙逐渐生成,最终生成核与壳分离的CuO2-Au核壳纳米球。(b)在PVP作为表面活性剂的溶剂热反应体系中,DMF既做溶剂又做还原剂,合成了Ag-Cu核壳结构纳米材料。通过对不同反应阶段所得产物的TEM和XRD分析,可以推测在溶剂热反应体系中,单质Ag先被还原出来作为成核中心,使新生成的Cu2O附着在其上面生长,形成核壳结构。随着反应时间的延长,Cu2O逐渐被还原为单质Cu,同时伴随着奥氏熟化过程,逐渐生成Ag-Cu核壳结构纳米材料。
The design and synthesis of nanometerials is hot research fields for nanoscience, and is also the base of the application and future development of nanotechnology. Although there are many methods reported for preparing nanomaterials, it is still difficult to obtain materials with controllable morphologies and sizes. Therefore, it is an important task in the field of material that how to develop new methods to design and synthesis of nanomaterials and realize the control of nanoparticles size, distribution, morphology and surface modification.
     This paper is focused on the controlled synthesis of copper-based inorganic nanoparticles, such as Cu, Cu2O and copper-based core-shell nanostructures. Growth mechanism and primary characterizations of nanoparticles are conducted. The advantages of liquid chemical synthesis technology in controlling the materials microstructures, morphologies and size are used. The detailed information of the dissertation is listed as follows.
     1. Selective synthesis of copper nanowires and nanroplates via a hydrothermal process
     Cu nanowires and nanoplates have been selectively synthesized by controlling the release rate and the concentration of the free Cu+ via a surfactant-assisted hydrothermal process. The experiments show that when CTAC was used as surfactant, the release rate of the free Cu+ and the reduction process were controlled by CuCl, and Cu nanowires were obtained. When CTAB was used as surfactant, while other conditions were kept constant, When CTAB was used as surfactant, CuBr formed via the combination of Cu+ ions and Br- ions from CTAB. The free Cu+ concentration in the solution was decreased duo to the less solubility of CuBr than CuCl in the aqueous solution, and the formation of Cu atoms becomes slower, under such a condition may favor the growth of Cu plate-like structures.
     2 Hydrothermal synthesis of Cu2O microcrystals with various morphologies
     A hydrothermal process has been developed to prepare Cu2O particles by reducing the Cu(II)-citrate complex with NaH2PO2. It has been known that the reducing power and reaction rate of NaH2PO2 change with varying of pH in aqueous solution, so reduction kinetically of system could be controlled by adjusting pH. As a face-centered cubic structure, the formation of Cu2O cubic might result from the{111} facets of Cu2O were eliminated because of their higher growth rate and the{100} facets remained because they have the lower growth rate. So the cubes of CU2O enclosed with six{100} facets were obtained. The results of chemical kinetic tests indicate that under acidic condition NaH2PO2 in inactivated state and the reduction rate becomes slow. The formation of Cu2O eight-pod particles can attribute to the fact that the reduction rate becomes slower as the pH is increased and the growth of six {100} facets are incomplete.
     3 Synthesis of Cu2O hollow nanocubes under solvothermal condition
     We synthesized Cu2O hollow nanocubes through a simple hydrothermal method without templates and surfactant. It is believed that both oriented attachment and Ostwald ripening should be the main formation mechanisms for the hollow nanocubes through TEM images at different time. In the first stage, initial nanoparticles are assumed in order to reduce their high surface energy. As the reaction proceeds, the concentration of the nanoparticles is decreased and the factor of oriented attachment is dominant in the reaction system. The loose structure is formed due to the oriented attachment process finishes so fast. In the later stage, crystallites located in the outermost surface of aggregates are larger and would grow at the expense of smaller ones inside, so the solid evacuation occurred, and hollow nanocubes were obtained. The experiment results indicate that the reaction time, temperature and the amount of water in the reaction system have some effect on the final morphology of Cu2O hollow nanocubes.
     4. Synthesis of Cu2O-Au core-shell nanospheres and Ag-Cu core-shell nanoparticles through solution method.
     (a) Cu2O-Au core-shell nanospheres were successfully prepared on a large scale through simple solution methods at room temperature in a very short time. Cu2O-Au nanospheres with core-shell structure were prepared by coating Au shell over Cu2O core. Cu2O cores were first prepared via the reaction between Cu(NO3)2 and N2H4.Then addition and subsequent reduction of HAuCl4 with excess N2H4 resulted in the formation of Au nanoparticles, which deposited on the Cu2O surface to form core-shell structure. At the same time, the evolution of the gap between core and shell could be attributed to the gradual consumption of the outmost surface of Cu2O core by H+ from HAuCl4. (b) A simple method has been developed for the synthesis of Ag-Cu core-shell nanoparticles, based on the use of DMF as both reductant and solvent, in the presence of PVP. At the early reaction stage, Ag+ ions are reduced first forming the core of the core-shell structure. The Ag core is acting as the nucleic center for the growth of the Cu2O layer. With the further reaction, Cu2+ ions are reduced subsequently and the shell of Cu2O nanoparticles are formed surrounding the Ag core. With a longer process time, the void space between core and shell could be observed, we presume that the formation of the void space between core and shell could attribute to the Ostwald ripening mechanism, accompanying with the reductive conversion of Cu2O to Cu. At the same time, Cu2O nanoparticles were transformed to Cu nanoparticles gradually, and Ag-Cu core-shell nanoparticles were obtained.
引文
[1]巩雄,张桂兰,汤国庆,陈文驹,杨宏秀,纳米晶体材料研究进展[J],化学进展1997,9,349-360.
    [2]H. W. Kroto, J. R. Heath, S. C. Obrien, R. F. Curl, R. E. Smalley, C60: Buckminsterfullerene [J], Nature 1985,318,162-163.
    [3]张立德,牟季美,纳米材料和纳米结构[M],科学出版社,2001.
    [4]R. F. Service, Atom-Scale Research Gets Real [J], Science 2000,290,1524-1531.
    [5]A. Henglein, Small-Particle Research:Physicochemicai Properties of Extremely Small Colloidal Metal and Semiconductor Particles [J], Chem. Rev,1989,89, 1861-1873.
    [6]C. M. Lieber, Nanoscale Science and Technology:Building a Big Future from Small Things [J], MRS Bull.2003,28,486-491.
    [7]L. E. Brus, Electronic wave functions in semiconductor clusters:experiment and theory [J], J. Phys. Chem.1986,90,2555-2560.
    [8]A. Hagfeidt, M. Gratzel, Light-Induced Redox Reactions in Nanocrystalline Systems [J], Chem. Rev.1995,95,49-53.
    [9]T. Nakanishi, B. Ohtani, K. Uosaki, Fabrication and Characterization of CdS-Nanoparticle Mono-and Multilayers on a Self-Assembled Monolayer of Alkanedithiols on Gold [J], J. Phys. Chem. B 1998,102,1571-1577.
    [10]P. Ball, L.Garwin, Development, Application and Industrialization of Nano-Materials, Nano-Science&Technology [J], Nature 1992,355,761-765.
    [11]P. E. Cavicchi, R.H. Silsbee, Coulomb Suppression of Tuneling Rate from Small Metal Partlcles[J], Phys. Rev. Lett.,1984,52,1453-1456.
    [12]Q. Li, G. Zeng, S. Xi,纳米粒子[J],Chinese Chemical Bulletin 1985,6, 129-134.
    [13]杨柏,黄金满,郝恩才,沈家骢,半导体纳米微粒在聚合物基体中的复合与组装[J],高等学校化学学报,1997,7,1219—1226.
    [14]D. D. Awschalom, M. A. Mccord, G. Grinstein, Observation of Macroscopic Spin Phenomena in Nanometer-Scale Magnets[J], Phys. Rev. Let.1990,65,
    783-786.
    [15]T. Takagahara, Effects of dielectric confinement and electron-hole exchange interaction on excitonic states in semiconductor quantum dots [J], Phys. Rev. B 1993,47,4569-4584.
    [16]吴锦雷,纳米材料的电学、光学和光电性能及应用前景[J],真空电子技术,2002,27,4-9.
    [17]D. Jezequel, Submicrometer zinc oxide particles:elaboration in polyol medium and morphological characteristics [J], J. Mater. Res.1995,10,77-83.
    [18]S. C. Tsang, Y. K. Chen, P, J. Harris, A simple chemical method of opening and filling carbon nanotubes [J], Nature 1994,372,159-162.
    [19]翟庆洲,纳米技术[M],兵器工业出版社,2006.
    [20]J. A. Nelson, E. L. Brant, M. J. Wagner., Nanocrystalline Y2O3:Eu Phosphors Prepared by Alkalide Reduction [J], Chem. Mater.2003,15,688-693.
    [21]R. F. Service, Materials Science:Small Clusters Hit the Big Time [J], Science 1996,271,920-922.
    [22]S. Yurdakal, G. Palmisano, V. Loddo, V, Augugliaro, L. Palmisano, Nanostructured Rutile TiO2 for Selective Photocatalytic Oxidation of Aromatic Alcohols to Aldehydes in Water, J. Am. Chem.Soc.2008,130,1568-1569.
    [23]W. Tang, H. An, UV/T1O2 photocatalytic oxidation of commercial dyes in aqueous solutions, Chemosphere 1995,31,4157-4170.
    [24]C. Xu, J. Su, X. Xu, P. Liu, H. Zhao, F. Tian, Y. Ding, Low Temperature CO Oxidation over Unsupported Nanoporous Gold, J. Am. Chem. Soc.2007,129, 42-43.
    [25]M. Anpo, T. Shima, S. Kodama, Photocatalytic hydrogenation of propyne with water on small-particle titania:size quantization effects and reaction intermediates [J], J. Phys. Chem.1987,91,4305-4310.
    [26]J. J. Pietron, R. M. Stroud, D. R. Rolison, Using Three Dimensions in Catalytic Mesoporous Nanoarchitectures [J], Nano Lett.2002,2,545-549.
    [27]张立德,纳米材料与纳米体系物理——面向21世纪的新领域[J],中国科
    学基金,1994,7,198-201.
    [28]C. S. Ju, M. G. Lee and S. S. Honn, The Effect of Precipitation Conditions on the Shapes and Size Distribution of Zinc Oxide Particles [J], Hwahak Konahak, 1997,35,655-659.
    [29]S. Yurdakal, G. Palmisano, V. Loddo, V. Augugliaro, L. Palmisano, Nanostructured Rutile TiO2 for Selective Photocatalytic Oxidation of AromaticAlcohols to Aldehydes in Water [J], J. Am. Chem. Soc.2008,130, 1568-1569.
    [30]W. Tang, H. An, UV/ TiO2 photocatalytic oxidation of commercial dyes inaqueous solutions [J], Chemosphere 1995,31,4157-4170.
    [31]Y.Huang, H. Chang, W. Tan, Cancer Cell Targeting Using Multiple Aptamers Conjugated on Nanorods [J],Anal. Chem.2008,80,567-572.
    [32]S. E. Skrabalak, J. Chen, L. Au, X. Lu, X. Li, Y. Xia, Gold Nanocages for Biomedical Applications [J], Adv.Mater.2007,19,3177-3184.
    [33]J. Chen, D. Wang, J. Xi, L. Au, A. Siekkinen, A. Warsen, Z. Y. Li, H. Zhang, Y. Xia, X. Li. Immuno Gold Nanocages with Tailored Optical Properties for Targeted Photothermal Destruction of Cancer Cells [J], Nano Lett.2007,7, 1318-1322.
    [34]E. Matijevic, Preparation and Properties of Uniform Size Colloids, Chem. Mater.1993,5,412-426.
    [35]E. Matijevic, Monodispersed Colloids:Art and Science? Langmuir 1986,2, 12-20.
    [36]E. Matijevic, Monodispersed Metal (Hydrous) Oxides-A Fascinating Field of Colloid Science, Acc. Chem. Res.1981,14,22-29.
    [37]H. Wennerstrom, O. Soderman, U, Olsson, B. Lindman, Macroemulsions versus microemulsions [J], Colloids Surf. A 1997,123-124,13-26..
    [38]T. Hiral, S. Hariguchi, I. Komasawa, R. J. Davey, Biomimetic Synthesis of Calcium Carbonate Particles in a Pseudovesicular Double Emulsion [J], Langmuir 1997,13,6650-6653.
    [39]M. Maillard, S. Giorgio, M. P. Pileni, Silver Nanodisks [J], Adv. Mater.2002,14, 1084-1086.
    [40]N. Pinna. M, Willinger, K. Weiss, J. Urban, R. Schlogl, Local Structure of Nanoscopic Materials:V2O5 Nanorods and Nanowires [J], Nano Lett.2003,3, 1131-1134.
    [41]M. Maillard, S. Giorgio, M. P. Pileni, Silver Nanodisks [J],Adv. Mater.2002,14, 1084-1086.
    [42]S. Jeon and P. V. Braun, Hydrothermal Synthesis of Er-Doped Luminescent TiO2 Nanoparticles [J], Chem. Mater.,2003,15,1256-1263.
    [43]H. Cheng, J. Ma, Z. Zhao and L. Qi, Hydrothermal Preparation of Uniform Nanosize Rutile and Anatase Particles [J], Chem. Mater.,1995,7,663-671.
    [44]G. Demazeau, Solvothermal Processes:A Route to the stabilization of New Materials [J], J. Mater.Chem.1999,9,15-19.
    [45]W.S. Sheldrick, M. Wachhold, Solventothermal Synthesis of Solid-State Chalcogenidometalates[J], Angew. Chem. Int. Ed. Engl.1997,36,206-224.
    [46]H. Wang, M. Simmonds, Y. Huang, J. Rodenburg, Synthesis of Nanosize Powders and Thin Films of Yb-Doped YAG by Sol-Gel Methods [J], Chem. Mater.2003,15,3474-3480.
    [47]G. Wu, L. Zhang, B. Cheng, T. Xie, X. Yuan, Synthesis of Eu2O3 Nanotube Arrays through a Facile Sol-Gel Template Approach [J], J. Am. Chem. Soc.2004, 126,5976-5977.
    [1]A. Sinha, B.P. Sharma, Preparation of copper powder by glycerol process [J], Mater, Res.Bull. 2002.37,407-416.
    [2]A. Ermoline, M. Schoenitz, E. Drizin, N. Yao, Production of carbon-coated aluminium nanopowders in pulsed microarc discharge [J], Nanotechnology 2002, 13.638-643.
    [3]G. D. Dice, S. Mujumdar, A, Y. Elezzabi, Plasmonicaly enhanced difusive and subdifusive metal nanoparticle-dye random laser [J], Appl. Phys. Lett.2005,86, 13 1105-1311057.
    [4]M. P. Pileni, Magnetic Fluids:Fabrication, Magnetic Properties, and Organization of Nanocrystals [J], Adv. Funct. Mater.2001,11,323-336.
    [5]A. P. Alivisatos, Semiconductor Clusters, Nanocrystals, and Quantum Dots [J], Science 1996,271,933-937.
    [6]张志梅,韩喜江,孙淼鑫,纳米铜粉的制备[J],精细化工2000,17,69-71.
    [7]杜多林,徐盛明,李林艳,陈崧哲,徐刚,化学还原法制备超细铜粉的研究进展[J],金属矿山2007,373,13-17.
    [8]楚光,唐永健,刘伟,罗江山,黎军,杨天足,纳米铜粉的制备及其应用[J],金属功能材料2005,12,18-21.
    [9]刘成雁,李在元,翟玉春,张靖,纳米铜粉研制的新进展[J],中国有色冶金2005,6,21-24.
    [10]朱屯,王福明,王习东等.国外纳米材料技术进展与应用[M],化学工业出版社2002.
    [11]Y. Chang, M. L. Lye, H. C. Zeng, Large-scale synthesis of sigh-quality ultralong copper nanowires [J], Langmuir 2005,21,3746-3748.
    [12]Z. P. Liu, Y.Yang, J. B. Liang, Z. K. Hu, S. Li, S. Peng, Y. Qian, Synthesis of copper nanowires via a complex-surfactant-assisted hydrothermal reduction process [J], J, Phys, Chem.B 2003,107,12658-12661.
    [13]N. Fan, L. Xu, J. Li, X. Ma, Y. Qian, Selective synthesis of plate-like and shrub-like micro-scale copper crystallites [J], J. Cryst, Growth 2007,299, 212-217.
    [14]Y. Liu, Y. Chu, Y Zhou, L. Dong, L. Li, M. Li, Controlled Synthesis of Various Hollow Cu Nano/MicroStructures via a Novel Reduction Route [J], Adv. Funct. Mater.2007,17,933-938.
    [15]C. F. Monson, A. T. Woolley, DNA-Templated Construction of Copper Nanowires [J], Nano Lett,2003,3,359-363
    [16]X. Su, J. Zhao, H. Bala, Y. Zhu, Y. Gao, S. Ma, Z. Wang, Fast Synthesis of Stable Cubic Copper Nanocages in the Aqueous Phase [J], J. Phys. Chem. C 2007,111,14689-14693.
    [17]M. P. Pileni, T. G. Krzywicki, J. Tanori, A. Filankembo, J. C. Dedieu, Template Design of Microreactors with Colloidal Assemblies:Control the Growth of Copper Metal Rods [J], Langmuir 1998,14,7359-7363.
    [18]C. Jiang, W. Zhang, Y. Liu Y. Qian, Self-Assembled Copper Nanowalls into Microstructures with Different Shapes:A Facile Aqueous Approach [J], Cryst.Growth Des.2006,6,2603-2606.
    [19]T. Y. Chen, S. F. Chen, H.S. Sheu, C. S. Yeh, Reactivity of Laser-Prepared Copper Nanoparticles:Oxidation of Thiols to Disulfides [J], J. Phys. Chem. B 2002,106,9717-9722.
    [20]H. Choi, Sung. H. Park, Seedless Growth of Free-Standing Copper Nanowires by Chemical Vapor Deposition [J], J. Am. Chem. Soc.2004,126,6248-6249.
    [21]Y. W. Jun, J. S. Choi, J. Cheon, Shape control of semiconductor and metal oxide nanocrystals through nonhydrolytic colloidal routes [J], Angew. Chem. Int. Ed. 2006,45,2-28.
    [22]Z. A. Peng, X. Peng, Mechanisms of the shape evolution of CdSe nanocrystals [J], J. Am. Chem. Soc.2002,123,1389-1395.
    [23]Y. Cui, C. M. Liber, Functional Nanoscale Electronic Devices Assembled Using Silicon Nanowire Building Blocks [J], Science 2001,291,851-853.
    [24]A. P. Alivisatos, Semiconductor Clusters, Nanocrystals, and Quantum Dots [J], Science 1996,271,933-937.
    [25]M. Charles, Lieber, One-dimensional nanostructures:Chemistry, physics & applications [J], Solid State Communications 1998,107,607-616.
    [26]S. Sun, C. B. Murray, D. Weller, L. Folks, A. Moser, Monodisperse FePt Nanoparticles and Ferromagnetic FePt Nanocrystal Superlattices [J], Science 2000,287,1989-1992.
    [27]P. Chen, X. Wu, J.Lin, K. L. Tan, Synthesis of Cu Nanoparticles and Microsized Fibers by Using Carbon Nanotubes as a Template [J], J. Phys. Chem. B 1999, 103,4559-4561.
    [28]M. E. Toimil Molares, E. M. Hohberger, Ch. Schaeflein, R. H. Blick, R. Neumann, C. Trautmann; Electrical characterization of electrochemically grown single copper nanowires [J], Appl. Phys.Lett.2003,82,2139-2141.
    [29]M. E. Toimil Molares, V. Buschmann, D. Dobrev, R. Neumann, R. Scholz,I. U. Schuchert, J. Vetter, Single-Crystalline Copper Nanowires Produced by Electrochemical Deposition in Polymeric Ion Track Membranes [J], Adv. Mater. 2001,13,62-65.
    [30]Z. Tian, J. Voigt, J. Liu, B. Mckenzie, M. J. Mcdermott, M. A. Rodriguez, H. Konishi, H. Xu, Complex and oriented ZnO nanostructures [J], Nat. Mater.2003, 2,821-826.
    [31]W. Z. Wang, B. Poudel, J. Yang, D. Z. Wang, Z. F. Ren, High-Yield Synthesis of Single-Crystalline Antimony Telluride Hexagonal Nanoplates Using a Solvothermal Approach [J], J. Am. Chem, Soc.2005,127,13792-13793.
    [32]S. H. Chen, D. L. Carroll, Synthesis and Characterization of Truncated Triangular Silver Nanoplates [J], Nano Lett.2002,2,1003-1007.
    [33]M. S. Mo,J. C. Yu, L. Z. Zhang, S. K. Li, Self-Assembly of ZnO Nanorods and Nanosheets into Hollow Microhemispheres and Microspheres [J], Adv. Mater. 2005,17,756-760.
    [34]Y. G. Sun, Y. N. Xia, Shape-Controlled Synthesis of Gold and Silver Nanoparticles [J], Science 2002,298,2176-2179.
    [35]J. U. Kim, S. H. Cha, K. Shin, J. Y. Jho, J. C.Lee, Preparation of Gold Nanowires and Nanosheets in Bulk Block Copolymer Phases under Mild Conditions [J], Adv. Mater.2004,16,459-464.
    [36]Y. Song, Y. Yang, C.J. Medforth, E. Pereira, A. K. Singh, H. Xu, Y. Jiang, C. J. Brinker, F. Swol, J. A. Shelnutt, Controlled Synthesis of 2-D and 3-D Dendritic Platinum Nanostructures [J], J. Am. Chem. Soc.2004,126,635-645.
    [37]C. X. Kan, X. G. Zhu, G. G. Wang, Single-Crystalline Gold Microplates: Synthesis, Characterization, and Thermal Stability [J], J. Phys. Chem. B 2006, 110,4651-4654.
    [38]I. Pastoriza-Santos, L. M. Liz-Marza'n, Synthesis of Silver Nanoprisms in DMF [J], Nano Lett.2002,2,903-905.
    [39)]S. J. Chen, Y. C. Liu, C. G. Shao, R. Mu, Y. M. Lu, J. Y. Zhang, D. Z. Shen, X. W. Fan, Structural and Optical Properties of Uniform ZnO Nanosheets [J], Adv. Mater.2005,17,586-590.
    [40]X. S. Fang, C. H. Ye, L. D. Zhang, Y. H. Wang, Y. C. Wu, Temperature-Controlled Catalytic Growth of ZnS Nanostructures by the Evaporation of ZnS Nanopowders [J],Adv. Funct. Mater.2005,15,63-68.
    [41]S. M. Lee, Y. Jun, S. N. Cho, J. Cheon, Single-Crystalline Star-Shaped Nanocrystals and Their Evolution:Programming the Geometry of Nano-Building Blocks [J], J. Am. Chem. Soc.2002,127,11244-11245.
    [42]N. R. Jana, L. Gearheart, C. J. Murphy, Seed-Mediated Growth Approach for Shape-Controlled Synthesis of Spheroidal and Rod-like Gold Nanoparticles Using a Surfactant Template [J],Adv. Mater.2001,13,1389-1393.
    [1]Y. Chang, J. J. Teo, H. C. Zeng, Formation of colloidal CuO nano crystallites and their spherical aggregation and reductive transformation to hollow Cu2O nanospheres [J], Langmuir 2005,21,1074-1079.
    [2]R. Liu, E. Kulp, F. Oba, E. Bohannan, F. Ernst, J. Switzer, Epitaxial Electrodeposition of High-Aspect-Ratio Cu2O(110) Nanostructures on InP(111) [J], Chem. Mater.2005,17,725-729.
    [3]C. Lu, L. Qi, J. Yang, X. Wang, D. Zhang, J. Xie, J. Ma, One-Pot Synthesis of Octahedral Cu2O Nanocages via a Catalytic Solution Route [J], Adv. Mater.2005, 17,2562-2567.
    [4]付玉斌,氧化亚铜防污漆表面附着的异养细菌的研究[J],材料开发应用,2000,15,13-16.
    [5]倪余伟,王贵森,无毒防污涂料的进展[J],涂料工业,1999,7,32-33.
    [6]曾德芳,海洋污损生物与船体防污涂料[J],交通环保,1996,17,37-39.
    [7]M. Hara, T. Kondo, M. Komoda, S. Ikeda, J. N. Kondo, K. Domen, K. Shinohara, A. Tanaka, Cu2O as a photocatalyst for overall water splitting under visible light irradiation [J], Chem. Commun.1998,3,357-358.
    [8]X. Wang, T. Lou, Photodegradation of Dissolved Organic Matter and Its Impact on the Biologic Processes [J], Photographic Science and Photochemistry,2004, 22,298-305.
    [9]盂楠,张爱茜,吴海锁,TiO2与Cu2O光催化降解对硝基苯酚比较研究[J],第二届全国环境化学学术报告会论文集,上海,2004,66-40.
    [10]陈金毅,刘小玲,李阊轮,李家麟,纳米氧化亚铜可见光催化分解亚中基蓝[J],华中师范大学学报(自然科学版),2002;36,200-203.
    [11]刘小玲,陈金毅,周文涛,李家麟,纳米氧化亚铜太阳光催化氧化法处理印染废水[J],华中师范大学学报(自然科学版),2002,36,475-477.
    [12]朱俊武,陈海群,谢波,杨绪杰,.陆路德,汪信,纳米Cu2O的制备及其对高氯酸铵热分解的催化性能[J],催化学报,2004,25,637-640.
    [13]黄险波,涂洪斌,氧化亚铜在聚氯乙烯燃烧热降解中的作用[J],北京理
    工大学学报,1997,17,590-594.
    [14]秦海莉,何润霞,防水氢电极导电助剂的研究[J],内蒙古石油工,1998,24,22-24.
    [15]邵文柱,宋磊,崔玉胜,沙德生,V.V.伊凡诺夫,杨德庄,Cu2O-Cu系金属陶瓷制备工艺研究[J],,材料科学与工艺,1999,7,38-42.
    [16]张萍,李大成,氧化亚铜的制备[J],四川有色金属,1995,3,6-8.
    [17]张炜,许小青,郭承育,低温固相法制备Cu2O纳米晶[J],清海师范大学学报,2004,3,53-56.
    [18]Y. Konishi, T. Nomura, D. Satoh, Solvothermal Preparation of Cuprous Oxide Fine Particles by Hydrolysis of Copper(II) Carboxylate in Two-Phase Liquid-Liquid System [J], Ind. Eng. Chem. Res.2004,43,2088-2092.
    [19]Z. Liang, Y. Zhu, Synthesis of unifoumly sized Cu2O crystais with star-likeand flower-like morphologies [J], Mater. Lett.2005,59,2423-2425.
    [20]H.Xu, W. Wang, W. Zhu, Shape Evolution and Size-Controllable Synthesis of Cu2O Octahedra and Their Morphology-Dependent Photocatalytic Properties [J], J. Phys. Chem. B 2006,110,13829-13834.
    [21]吴晓春,电解法研制氧化亚铜[J],上海有色金属,2005,20,118-121.
    [22]H. Yang, J. Ouyang, A. Tang, Y. Xiao, X. Li, X. Dong, Y. Yu, Electrochemical synthesis and photocatalytic property of cuprous oxide nanoparticles [J], Mater. Res. Bull.2006,41,1310-1318.
    [23]Y. Tang, Z. Chen, Z. Jia, L. Zhang, J. Li, Electrochemical synthesis and photocatalytic property of cuprous oxide nanoparticles [J], Mater. Lett.2005,59, 434-438.
    [24]T. Mahalingam, J. S. P. Chitra S. Rajendran, M. Jayachandran, M. J. Chockalingam, Galvanostatic deposition and characterization of cuprous oxide thin films [J], J. Cryst. Growth:2000,216,304-310.
    [25]汪志勇,曾庆学,崔舜,康志君,电化学法制备氧化亚铜的研究[J],化学研究,2001,12,29-32.
    [26]乔振亮,马铁成,溶胶凝胶法制备氧化亚铜薄膜及其工艺条件[J],大连轻
    工业学院学报,2004,23,4-7.
    [27]C. Feldmann, H.O. Jungk, Polyol-Mediated Preparation of Nanoscale Oxide Particles [J], Angew. Chem. Int. Ed.2001,40,359-362.
    [28]陈祖耀,朱玉瑞,紫外射线辐照制备Cu2O超细粉及其宏观动力学[J],金属学报,1997,33,330-336.
    [29]J. Medina-Valtierra, J. Ramirez-Ortiz, V. M. Arroyo-Rojas, P. Bosch, J. A. Reyes, Chemical vapor deposition of 6CuO·Cu2O films on fiberglass [J], Thin Solid Films,2002,405,23-28.
    [30]T. Kosugi, S. Kaneko, Novel Spray-Pyrolysis Deposition of Cuprous Oxide Thin Films [J], J. Am. Ceram. Soc.1998,81,3117-3124.
    [31]Z. L. Wang, Transmission electron microscopy of shape-controlled nanocrystals and their assemblies [J], J. Phys. Chem. B 2000,104,1153-1175.
    [32]D. Wang, M. Mo, D. Yu, L. Xu, F. Li, Y. Qian, Large-Scale Growth and Shape Evolution of Cu2O Cubes [J], Cryst. Growth Des.2003,3,717-720.
    [33]顾大明,孙沫莹,次磷酸盐在纳米金属粉制备中的作用机理[J],哈尔滨工业大学学报,2003,35,1009-1011.
    [34]陈嘉甫,谭光熏,磷酸盐生产应用[M],成都科技大学出版社,1987.
    [1]A. Dong, N. Ren, Y. Tang, Y. Wang, Y. Zhang, W. Hua, Z. Gao, General Synthesis of Mesoporous Spheres of Metal Oxides and Phosphates [J], J. Am. Chem, Soc.2003,125,4976-4977.
    [2]N. Botterhuis, Q. Sun, P. Magusin, R. Santen, N. Sommerdijk, Hollow Silica Spheres with an Ordered Pore Structure and Their Application in Controlled Release Studies [J], Chem. Eur. J.2006,12,1448-1456.
    [3]W. Wei, G. H. Ma, G. Hu, D. Yu, T. Mcleish, Z. G. Su, Z. Y. Shen, Preparation of hierarchical hollow CaCO3 particles and the application as anticancer drug carrier [J], J. Am. Chem. Soc.2008,130,15808-15810.
    [4]J. Shin, R. M. Anisur, M. K. Ko, G. H. Im, J. H. Lee, I. S. Lee, Hollow manganese oxide nanoparticles as multifunctional agents for magnetic resonance imaging and drug delivery [J], Angew. Chem. Int. Ed.2009,48,321-324.
    [5]N. Du, H. Zhang, J. Chen, J. Sun, B. Chen, D. Yang, Metal oxide and sulfide hollow spheres:Layer-by-Layer synthesis and their application in lithium-ion battery [J], J. Phys. Chem. B 2008,112,14836-14842.
    [6]H. Djojoputro, X. Zhou, S. Qiao, L. Wang, C. Yu, G. Lu, Periodic Mesoporous Organosilica Hollow Spheres with Tunable Wall Thickness [J], J. Am. Chem. Soc. 2006,128,6320-6321.
    [7]N. A. Dhas, K. S. Suslick, Sonochemical preparation of hollow nanospheres and hollow nanocrystals [J],J. Am. Chem. Soc.2005,127,2368-2369.
    [8]H. Cao, X. Qian, C. Wang, X. Ma, J. Yin, Z. Zhu, High symmetric 18-facet polyhedron nanocrystals of CU7S4 with a hollow nanocage [J], J. Am:Chem. Soc. 2005,127,16024-16025.
    [9]B. Fang, M. Kim, J. H. Kim, J. S. Yu, Controllable synthesis of hierarchical nanostructured hollow core/mesopore shell carbon for electrochemical hydrogen storage [J], Langmuir 2008,24,12068-12072.
    [10]P. Bruinsma, A. Kim, J. Liu, S. Baskaran, Mesoporous Silica Synthesized by Solvent Evaporation:Spun Fibers and Spray-Dried Hollow Spheres [J], Chem. Mater.1997,9,2507-2512.
    [11]M. Iida, T. Sasaki, M. Watanabe, Titanium Dioxide Hollow Microspheres with an Extremely Thin Shell [J], Chem. Mater.1998,10,3780-3782.
    [12]Y. Yin, C. Erdonmez, S. Aloni, A. P. Alivisatos, Faceting of nanocrystals during chemical transformation:From solid silver spheres to hollow gold octahedra [J], J. Am. Chem. Soc.2006,128,12671-12673.
    [13]Y, Vasquez, A. K. Sra, R. E. Schaak, One-pot synthesis of hollow superparamagnetic CoPt nanospheres [J], J. Am. Chem. Soc.2005,127, 12504-12505.
    [14]H. P. Liang, H. M. Zhang, J. S. Hu, Y. G. Guo, L. J. Wan, C. L. Bai, Pt Hollow Nanospheres:Facile Synthesis and Enhanced Electrocatalysts [J], Angew. Chem. Int. Ed.2004,43,1540-1543.
    [15]Y. Sun, B. Mayers, Y. Xia, Metal Nanostructures with Hollow Interiors [J], Adv. Mater.2003,15,641-646.
    [16]Y. Yin, Y. Lu, B. Gates, Y Xia, Synthesis and Characterization of Mesoscopic Hollow Spheres of Ceramic Materials with Functionalized Interior Surfaces [J], Chem. Mater.2001,13,1146-1148.
    [17]Y. Ma, K. Huo, Q. Wu, Y. Lu, Y. Hu, Z. Hu, Y. Chen, Self-templated synthesis of polycrystalline hollow aluminium nitride nanospheres [J], J. Mater. Chem. 2006,16,2834.2838.
    [18]S. Chah, J. H. Fendler, J. J.Yi, Nanostructured Gold Hollow Microspheres Prepared on Dissolvable Ceramic Hollow Sphere Templates [J], J. Colloid Interface Sci. 2002,250,142-148.
    [19]C. Li, X. Yang, B. Yang, Y. Yan, Y. Qian, A template-interface co-reduction synthesis of hollow sphere-like carbides [J], Eur. J. Inorg. Chem.2003, 3534-3537.
    [20]Q. Liu, H. Liu, M. Han, J. Zhu, Y. Liang, Z. Xu, Y. Song, Nanometer-sized nickel hollow spheres [J],Adv. Mater.2005,17,1995-1999.
    [21]Z. Niu, Z. Yang, Z. Hu, Y. Lu., C.C. Han, Polyaniline-Silica Composite Conductive Capsules and Hollow Spheres [J], Adv. Funct. Mater.2003,13,
    949-954.
    [22]L. Qi, J. Li, J. Ma, Biomimetic morphogenesis of calcium carbonate in mixed solutions of surfactants and double-hydrophilic block copolymers [J], Adv. Mater. 2002,14,300-303.
    [23]J.J. Zhu, S. Xu, H. Wang, J.M. Zhu, H. Y. Chen, Sonochemical Synthesis of CdSe Hollow Spherical Assemblies Via an In-Situ Template Route [J], Adv. Mater. 2003,15,156-159.
    [24]F. Gu, C. Z. Li, S. F. Wang, M. K. Lu, Solution-phase synthesis of spherical zinc sulfide nanostructures [J], Langmuir 2006,22,1329-1332.
    [25]Y. Yin, R.M. Rioux, C. K. Erdonmez, S. Hughes, G. A. Somorjai, A. P. Alivisatos. Formation of Hollow Nanocrystals Through the Nanoscale Kirkendall Effect [J], Science,2004,304,711-714.
    [26]B. Liu, H. C. Zeng, Fabrication of ZnO "Dandelious" via a Modified Kirkendall Process [J],J. Am. Chem. Soc.2004,126,16744-16746.
    [27]W, Ostwald, Z. Phys. Chem.1900,34,495.
    [28]B. Liu, H. C. Zeng, Symmetric and asymmetric Ostwald ripening in the fabrication of homogeneous core-shell semiconductors [J], Small 2005,1, 566-571.
    [29]J. Zhou, W. Wu, D. Caruntu, M. H. Yu, A. Martin, J, F. Chen, C. J. Oconnor, W. L. Zhou, Synthesis of porous magnetic hollow silica nan.ospheres for nanomedicine application [J], J. Phys. Chem. C 2007,111,17473-17477.
    [30]V. V. Sokolova,I. Radtke, R. Heumann, M. Epple, Effective transfection of cells with multi-shell calcium phosphate-DNA nanoparticles [J], Biomaterials 2006, 27,3147-3153.
    [31]Y. F. Zhu, J. L. Shi, W. H. Shen, X. P. Dong, J. W. Feng,M. L. Ruan, Y. S. Li, Stimuli-responsive controlled drug release from a hollow mesoporous silica sphere/polyelectrolyte multilayer core-shell structure [J], Angew. Chem. Int. Ed. 2005,44,5083-5087.
    [32]E. Baumeister, S. Klaeger, Advanced New Lightweight Materials: Hollow-Sphere Composites (HSCs) for Mechanical Engineering Applications [J], Adv. Eng.Mater.2003,5,673-677.
    [33]X. Zhang, L. Feng, S. Song, B. Wang, X. Ma, S. Cao, Prepartionn of nano-zinc borate with ultra-hollow spheres as flame retardant [J], New Chem. Mater.2008, 36,60-62.
    [34]N. Nishiyama, M. Miyamoto, Y. Egashira, K. Ueyama, Zeolite membrane on catalyst particles for selective formation of p-xylene in the disproportionation of toluene [J], Chem. Commun.2001,1746-1747.
    [35]G. Duan, W, Cai, Y. Luo, Zh. Li, Y. Lei, Hierarchical structured Ni nanoring and hollow sphere arrays by morphology inheritance based on ordered through-pore template and electrodeposition [J], J. Phys. Chem. B 2006,110,15729-15733.
    [36]S. Kim, M. Kim, W. Lee, T. Hyeon, Fabrication of Hollow Palladium Spheres and Their Successful Application to the Recyclable Heterogeneous Catalyst for Suzuki Coupling Reactions [J],J. Am. Chem. Soc.2002,124,7642-7643.
    [37]Q. Zhao, Y. Gao, X. Bai,C. Wu, Y. Xie, Facile synthesis of SnO2 hollow nanospheres and applications in gas sensors and electrocatalysts [J], Eur. J. Inorg: Chem.2006,2006,1643-1648.
    [38]J. Zhang, J. Liu, Q. Peng, X. Wang, Y Li, Nearly Monodisperse Cu2O and CuO Nanospheres:Preparation and Applications for Sensitive Gas Sensors [J], Chem. Mater.2006,18,867-871.
    [39]X. Li, H. Gao, J. Murphy, L. Guo, Nanoindentation of Cu2O Nanocubes [J], Nano Lett.2004,4,1903-1907.
    [40]H. Xu, W. Wang, Template synthesis of multishelled Cu2O hollow spheres with a single-crystalline shell wall [J],Angew. Chem. Int. Ed.2007,46,1489-1492.
    [41]Y. Xu, D. Chen, X. Jiao, K. Xue, Nanosized Cu2O/PEG400 composite hollow-spheres with mesoporous shells [J], J. Phys. Chem. C,2007,111, 16284-16289.
    [42]C. Lu, L. Qi, J. Yang, X. Wang, D. Zhang, J. Xie, J. Ma, One-Pot Synthesis of Octahedral Cu2O Nanocages via a Catalytic Solution Route [J], Adv. Mater. 2005,17,2562-2567.
    [43]Y. Chang, J. J. Teo, H. C. Zeng, Formation of colloidal CuO nanocrystallites and their spherical aggregation and reductive transformation to hollow Cu2O nanospheres [J], Langmuir 2005,21,1074-1079.
    [44]J. J. Teo, Y. Chang, H. C. Zeng, Fabrications of Hollow Nanocubes of Cu2O and Cu via Reductive Self-Assembly of CuO Nanocrystals [J], Langmuir 2006,22, 7369-7377.
    [1]F. Bao, J. Li, B. Ren, J. Yao, R. Gu, Z. Tian, Synthesis and Characterization of Au@Co and Au@Ni Core-Shell Nanoparticles and Their Applications in Surface-Enhanced Raman Spectroscopy [J], J. Phys. Chem. C 2008,112,345-350.
    [2]J. Yin, X. Qian, J. Yin, M. Shi, J. Zhang, G, Zhao, Preparation of polystyrene/zirconia core-shell microspheres and zirconia hollow shells [J], Inorg. Chem. Commun.2003,6,942-945.
    [3]J. Hu, Z. Wen, Q. Wang, X. Yao, Q. Zhang, J. Zhou, J. Li, Controllable Synthesis and Enhanced Electrochemical Properties of Multifunctional AucoreCo3O4shell Nanocubes [J], J. Phys. Chem. B 2006,110,24305-24310.
    [4]S. Guo, Y. Fang, S. Dong, E. Wang, High-Efficiency and Low-Cost Hybrid Nanomaterial as Enhancing Electrocatalyst:Spongelike Au/Pt Core/Shell Nanomaterial with Hollow Cavity [J], J. Phys. Chem. C 2007,111,17104-17109.
    [5]A. Shavel, B. Rodriguez-Gonzalez, M. Spasova, M. Farle, L. Liz-Marzan, Synthesis and Characterization of Iron/Iron Oxide Core/Shell Nanocubes [J], Adv. Fuc. Mater.2007,17,3870-3876.
    [6]G. Chen, D. Xia, Z. Nie, Z. Wang, L. Wang, L. Zhang, J. Zhang, Facile Synthesis of Co-Pt Hollow Sphere Electrocatalyst [J], Chem, Mater.2002,14,4736-4745.
    [7]L. Quaroni, G. Chumanov, Preparation of Polymer-Coated Functionalizee Silver Nanoparticles [J],J. Am. Chem. Soc.1.999,121,10642-10643.
    [8]H. Sakai, T. Kanda, H. Shibata, T. Ohkubo, M. Abe, Preparation of Highly Dispersed Core/Shell-type Titania Nanocapsules Containing a Single Ag Nanoparticle [J], J. Am. Chem. Soc. 2006,128,4944-4945.
    [9]Z. Xu, Y Hou, S. Sun, Magnetic Core/Shell Fe3O4/Au and Fe3O4/Au/Ag Nanoparticles with Tunable Plasmonic Properties [J],J. Am. Chem. Soc.2007,129, 8698-8699.
    [10]郭飞, 朱以华, 杨晓玲,包覆多层聚电解质/树状大分子的聚合物微球表面CdS纳米粒的形成[J],过程工程学报,2006,6,845-848.
    [11]U. Jeong, Y Wang, M. Ibisate, Y. Xia, Some New Developments in the Synthesis, Functionalization, and Utilization of Monodisperse Colloidal Spheres [J],Adv. Fuc. Mater.2005,15,1907-1921.
    [12]S. Pande, S. Ghosh, S. Praharaj, S. Panigrahi, S. Basu, S. Jana, A. Pal, T. Tsukuda, T. Pal, Synthesis of Normal and Inverted Gold-Silver Core-Shell Architectures in a-Cyclodextrin and Their Applications in SERS [J], J. Phys. Chem. C 2007,111,10806-10813.
    [13]E. Shevchenko, M. Bodnarchuk, M. Kovalenko, D. Talapin, R. Smith, S. Aloni, W. Heiss, A. Alivisatos, Gold/Iron Oxide Core/Hollow-Shell Nanoparticles [J], Adv. Mater.2008,20,4323-4329.
    [14]X. Goo, P. Dong, Multistep Coating of Thick Titania Layers on Monodisperse Silica Nanospheres [J], Langmuir 1999,12,5535-5540.
    [15]X. Fu, S, Qutubuddin, Synthesis of titan ia-coated silica nanoparticles using ono-ionic water-in-oil [J], Colloids Surf, A 2001,178,151-156.
    [16]N. Kato, F. Caruso, Homogeneous, Competitive Fluorescence Quenching Immunoassay Based on Gold Nanoparticle/Polyelectrolyte Coated Latex Particles [J], J. Phys. Chem. B 2005,109,19604-19612.
    [17]Y. Deng, W. Yang, C. Wang, S. Fu A Novel Approach for Preparation of Thermoresponsive Polymer Magnetic Microspheres with Core-Shell Structure [J], Adv. Mater.2003,15,1729-1732.
    [18]W. Wang, S. Asher, Photochemical Incorporation of Silver Quantum Dots in Monodisperse Silica Colloids for Photonic Crystal Applications [J], J. Am. Chem. Soc.2001,123,12528-12535.
    [19]杨晓峰,董相廷,周艳慧,王进贤,刘桂霞,贵金属核壳纳米粒子最新研究进展[J],稀有金属材料工程,2009,38,368-372.
    [20]K. Aslan, M. Wu, J. Lakowicz, C. Geddes, Fluorescent Core-Shell Ag@SiO2 Nanocomposites for Metal-Enhanced Fluorescence and Single Nanoparticle Sensing Platforms [J], J. Am. Chem. Soc.2007,129,1524-1525.
    [21]M. Tsuji, N. Miyamae, S. Lim, K. Kimura, X. Zhang, S, Hikino, M. Nishio, Crystal Structures and Growth Mechanisms of Au@Ag Core-Shell Nanoparticles Prepared by the Microwave-Polyol Method [J], Cryst. Growth Des.2006,6,
    1801-1807.
    [22]J. Song, F. Kim, D. Kim, P. Yang, Crystal Overgrowth on Gold Nanorods: Tuning the Shape, Facet, Aspect Ratio, and Composition of the Nanorods [J], Chem. Eur. J.2005,11,910-916.
    [23]D. Gittins, F. Caruso, Tailoring the Polyelectrolyte Coating of Metal Nanoparticles [J], J. Phys. Chem. B 2001,105,6846-6852.
    [24]J. Zhang, J. Liu, Q. Peng, X. Wang, Y. Li, Nearly Monodisperse Cu2O and CuO Nanospheres:Preparation and Applications for Sensitive Gas Sensors [J], Chem. Mater.2006,18,867-871.
    [25]X. Li, H. Gao, J. Murphy, L. Guo, Nanoindentation of Cu2O Nanocubes [J], Nano Lett.2004,4,1903-1907.
    [26]B. Liu, H. C. Zeng, Symmetric and Asymmetric Ostwald Ripening in the Fabrication of Homogeneous Core-Shell Semiconductors [J], Small 2005,1, 566-571.
    [27]S. Guo, L. Wang, Y. Wang, Y. Fang, E. Wang, Bifunctional Au@,Pt hybrid nanorods [J], J. Colloid Interface Sci.2007,315,365-368.
    [28]Y. Mizukoshi, T. Fujimoto, Y. Nagata, R. Oshima, Y Maeda, Characterization and Catalytic Activity of Core-Shell Structured Gold/Palladium Bimetallic Nanoparticles Synthesized by the Sonochemical Method [J], J. Phys. Chem. B 2000,104,6028-6032.
    [29]O. Tovmachenko, C. Graf, D. Heuvel, A. Blaaderen, H. Gerritsen, Fluorescence Enhancement by Metal-Core/Silica-Shell Nanoparticles [J], Adv. Mater.2006,18, 91-95.
    [30]C. Xue, J. Millstone, S. Li, C. Mirkin, Plasmon-Driven Synthesis of Triangular Core-Shell Nanoprisms from Gold Seeds [J], Angew. Chem. Int. Ed.2007,46, 8436-8439.
    [31]Y. Xiang, X. Wu, D. Liu, Z. Li, W. Chu, L. Feng, K. Zhang, W. Zhou, S. Xie, Gold Nanorod-Seeded Growth of Silver Nanostructures:From Homogeneous Coating to Anisotropic Coating[J],Langmuir 2008,24,3465-3470.
    [32]D. Jose, B. Jagirdar, Au@Pd Core-Shell Nanoparticles through Digestive Ripening [J],J. Phys. Chem. C 2008,112,10089-10094.
    [33]M. Grzelczak, B. Rodriguez-Gonzalez, J. Perez-Juste, L, Liz-Marzan, Quasi-Epitaxial Growth of Ni Nanoshells on Au Nanorods [J], Adv. Mater.2007, 19,2262-2266.
    [34]T, Yonezawa, N. Toshima, Polymer-protected and micelleprotectedgold platinum bimetallic systems'preparation, application to catalysis for visible-light-induced hydrogen evolution, and analysis of formation process with optical methods [J] J. Mol Catal.1993,83,167-181.
    [35]J. Lin, W. Zhou, A. Kumbhar, J. Wiemann, J.Fang, E.Carpenter, C. O'Connor, Cold-coated iron(Fe@Au)nanoparticles:synthesis, characterization and magnetic field-induced self-assembly [J],J. Solid State Chem.2001,159,26-31.
    [36]G. Zhou, M.Lu, Z.Yang, Aqueous Synthesis of Copper Nanocubes and Bimetallic Copper/Palladium Core-Shell Nanostructures [J], Langmuir 2006,22, 5900-5903.
    [37]M. Nadagouda, R. Varma, A Greener Synthesis of Core (Fe, Cu)-Shell (Au, Pt, Pd, and Ag) Nanocrystals Using Aqueous Vitamin C [J], Cryst. Growth Des. 2007,7,2582-2587.
    [38]A. Henglein, Preparation and Optical Aborption Spectra of AucorePtshell and PtcoreAushell Colloidal Nanoparticles in Aqueous Solution [J], J. Phys. Chem. B 2000,104,2201-2203.
    [39]Y. Chang, J. J. Teo, H. C. Zeng, Formation of colloidal CuO nanocrystallites and their spherical aggregation and reductive transformation to hollow Cu2O nanospheres [J], Langmuir 2005,21,1074-1079.
    [40]S. Chen, D. Carroll, Silver Nanoplates:Size Control in Two Dimensions and Fornation Mechanisms [J],J. Phys. Chem. B 2004,108,5500-5506.
    [41]J. Hu, Q, Chen, Z. Xie, G. Han, R. Wang, B. Ren, Y. Zhang, Z. Yang, Z.Tian, A Simple and Effective Route for the Synthesis of Crystalline Silver Nanorods and Nanowires [J],Adv. Fuc. Mater.2004,14,183-189.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700