掺杂TiO_2薄膜的制备、表征及性能
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
二氧化钛(TiO2)是一种重要的无机功能材料,具有优异的光催化活性和光电特性。自1972年Fujishima发现了在TiO2电极上光分解水制氢的作用以来,人们对TiO2的光催化特性进行了大量的研究,其在光电转换、污染物降解、自洁净、传感器以及潜在的癌症治疗等高新技术领域显示出广阔的应用前景。这些应用领域都可以归结为“环境”和“能源”两个方面,即围绕着光催化环境污染物的消除和控制以及洁净新能源材料的研制和开发等展开广泛研究。TiO2的应用不仅受其物理化学特性和改性客体的影响,还依赖于TiO2与环境的相互作用。研制具有可见光活性的TiO2薄膜,是提高太阳光利用率、推进光催化技术实用化进程的关键,也成为光催化领域具有挑战性的重要课题之一。
     本论文采用溶胶-凝胶法,结合浸渍-提拉技术,在载玻片或铟锡氧化物(ITO)导电玻璃基片上,合成了单一锐钛矿型TiO2薄膜和(101)晶面择优取向TiO2薄膜;不同金属离子和非金属(共)掺杂TiO2薄膜;金属氧化物/Ti02薄膜。利用热分析(TG/DSC)、X-射线衍射(XRD)、傅立叶红外光谱(FTIR)、原子力显微镜(AFM)、扫描电镜(SEM)、X-射线光电子能谱(XPS)、紫外-可见吸收光谱(UV-vis)、交流阻抗(EIS)、线性扫描伏安(LSV)、循环伏安(CV)及润湿角等多种现代测试手段对制备的系列产物进行了系统的表征,并讨论了制备TiO2薄膜过程中溶胶的物理化学变化及镀膜工艺,着重研究了优化制备工艺、(共)掺杂不同离子和复合半导体氧化物等不同改性手段对合成系列TiO2薄膜的结构和可见光条件下电化学、光诱导亲水性能的影响,并结合基于密度泛函理论的第一性原理对TiO2纳米材料进行了模拟计算,旨在分析不同改性手段提高TiO2可见光活性的内在机制。
     (1)优化制备工艺对TiO2薄膜结构和可见光活性的影响
     热处理对TiO2薄膜结构和性能的影响已有报道,本论文在分析TiO2薄膜溶胶-凝胶制备过程中物理化学性能变化的基础上,着重研究了100℃、500℃、冷冻干燥和微波加热不同预处理方式对TiO2薄膜结构和光学性能的影响。由于4种预处理方式在干燥过程中加热机理不同,TiO2薄膜表面的颗粒形貌、晶粒尺寸和表面粗糙度产生了明显变化,其中100℃预处理制备的薄膜表面由大小均匀(15.5 nm)的球形颗粒紧密排列组成,粗糙度仅为4.1 nm,由于“量子尺寸效应”,微波加热和冷冻干燥相对100℃预处理制备的薄膜产生了“红移”。通过优化工艺制备了具有(101)晶面择优取向TiO2薄膜,其UV-vis吸收光谱的吸收边向可见光范围明显偏移,禁带宽度为2.9 eV,表现出良好的可见光活性,电化学测试结果表明,其电极对应的电容值随着外加电压的增大而减小,平带电位Vfb为-0.493V,空间电荷浓度为6.28×1021cm-3。这些研究结果为制备可见光活性TiO2薄膜提供了有效途径,为实现TiO2薄膜的调控合成提供新思路。
     (2)离子(共)掺杂改性对TiO2薄膜结构和可见光活性的影响
     系统研究了不同金属离子Li+、Ni2+、Bi3+、Ce4+、V5+和W6+和非金属F、S和N掺杂以及N-Bi、Ni-Ce和S-Ce共掺杂对TiO2薄膜结构和光学性能的影响。研究结果发现,由于掺杂离子的半径、价态及电子轨道构型等改性客体的差异,使得TiO2薄膜表面化学组成、氧化态、颗粒形貌和晶粒尺寸产生了明显变化,从而对TiO2薄膜的光学性能产生了不同的影响,不同价态金属离子掺杂后(Li+除外),吸收边产生了不同程度的“红移”,其中Ni2+和Ce4+的效果更明显,禁带宽度分别为2.42 eV和2.51 eV,高价态的V5+和W6+并不明显,而掺杂Li+反而增加了TiO2的禁带宽度。非金属F掺杂后,吸收边产生了“蓝移”,S和N掺杂后,TiO2薄膜的禁带宽度明显减小,可见光活性明显增强。通过研究两种离子共掺杂对TiO2薄膜结构和光学、电化学、亲水性能的影响,分析了N-Bi、Ni-Ce和S-Ce共掺杂产生的有效协同效应。这些研究查明了不同掺杂离子的存在状态,发现了N-Bi等共掺杂对提高TiO2薄膜的可见光活性具有协同效应,为探索掺杂不同离子改善TiO2薄膜可见光活性的影响规律提供了新思路。
     (3)金属氧化物对TiO2薄膜结构和可见光活性的影响
     金属氧化物复合是制备具有可见光响应TiO2的重要技术途径。硫化物复合TiO2已有大量研究,论文着重研究了Y2O3/Ti02和CuO/TiO2薄膜结构、光学、电化学和光诱导亲水性能,并与单一TiO2薄膜进行比较。研究发现Y2O3/TiO2薄膜产生了额外的氧空位Vo¨,同时O 1s和Ti 2p的原子轨道结合能产生偏移,相对较多的Y和Ti元素富集表面,使得Y2O3/TiO2薄膜的表面活性明显提高,吸收边向长波方向“红移”,禁带宽度为2.68 eV,可见光照射一定时间后,与水的接触角仅为8°,表现良好的亲水性能,Y2O3/TiO2薄膜电极的空间电荷浓度为1.05×1020cm-3,比TiO2薄膜电极的空间电荷浓度(1.57×1019cm-3)提高了1个数量级,平带电位和空间电荷层厚度也明显降低。利用混合半导体系统的禁带宽度是其组成函数的原理,结合溶胶-凝胶制备薄膜的技术特点,成功制备了的CuO/TiO2梯度化薄膜,从薄膜表面至基片的深度方向,Cu的含量逐渐降低,O的含量逐渐增多,Ti的含量先缓慢增加再急剧下降,在沿薄膜厚度方向化学组成梯度化的基础上,实现了禁带宽度的梯度化,其薄膜电极产生的阳极光电流明显增多,光电响应范围相对TiO2薄膜电极明显扩大,CuO/TiO2梯度化薄膜不仅拓宽了光电响应范围和提高了可见光活性,还实现了TiO2薄膜光电特性稳定化和无突变势垒,有利于光生载流子有效分离,提高了光电化学稳定性能。这些研究结果为TiO2薄膜在自洁净建筑材料和薄膜太阳能电池的应用提供了基础理论支持,对开发新颖结构的TiO2薄膜及拓宽其应用领域具有重要的指导意义。
     (4)第一性原理计算模拟TiO2可见光活性机理
     结合密度泛函理论第一性原理,采用赝势平面波方法,通过对掺杂TiO2建立超晶胞模型,对三种晶型TiO2和F、S、N、Li+、Ni2+、Bi3+、Ce4+、V5+、W6+掺杂以及N-Bi共掺杂TiO2的能带结构、态密度和光学性能进行了系统的计算模拟。研究发现金红石、锐钛矿和板钛矿三种晶型TiO2的导带和价带结构的差异,是其物理化学性能不同的主要原因;掺杂离子的F 2p、N 2P、Ni 3d、Bi 6p、Ce 5d和Ce 5p、V 3d和V 3p以及W 5d轨道分别混合了O 2p和Ti 3d轨道,引起了TiO2的导带和价带的构成的变化,从而使TiO2的禁带宽度产生了变化;计算得到掺杂TiO2光学性质的变化趋势与实验测试的结果一致。研究结果查明了不同掺杂离子对TiO2导带和价带的影响,揭示了不同离子掺杂TiO2可见光活性提高的内在机制,为归纳不同离子掺杂TiO2改善可见光活性的影响规律和掺杂效应提供了理论依据,同时也为建立材料组成—结构—性能之间的关系提供了崭新的思路。
Titanium dioxide (TiO2) is one of important functional inorganic materials. Since Fujishima discovered the photocatalytic splitting of water on a TiO2 electrode under ultraviolet light in 1972, enormous efforts have been devoted to the research of TiO2 materials due to its excellent optical, electrical, photocatalytic and thermal properties, which led to promising applications in the fields of photovoltaics, photocatalysis, sensors, medicine et al. These applications can be roughly divided into "energy" and "environmental" categories. For example, the control of environmental contamination and the investigation of new energy sources depend not only on the properties of the TiO2 material itself but also on the modifications of the TiO2 and on the interactions of TiO2 materials with the environment. The development of photocatalysts under visible light irradiation is one of the major goals for enhancing the efficient utilization of solar energy and realizing the practical industrialization, which is also one of the challenging tasks in the field of photocatalysis.
     In this thesis, series of TiO2 thin films have been synthesized deposited on microscope slides or indium tin oxides (ITO) glass substrate using sol-gel dip-coating method, including pure anatase TiO2 thin films and (101) crystalline plane oriented TiO2 thin films; nonmetallic ions (N, S and F) doped TiO2 thin films; metallic ions (Li+, Ni2+, Bi3+, Ce4+, V5+ and W6+) doped TiO2 thin films; Ce-Ni, Bi-N and Ce-S co-doped TiO2 thin films; Y2O3/TiO2 nanocomposite thin films and CuO/TiO2 up-graded nanocomposite thin films with gradient bandgap. The as-synthesized samples are characterized using thermo-gravimetric /differential scanning calorimetric (TG/DSC), X-ray diffraction (XRD), fourier transform infrared spectroscopy (FTIR), atomic force microscopy (AFM), scanning electron microscope (SEM), X-ray photoelectron spectroscopy (XPS), ultraviolet-visible (UV-vis), linear sweep voltammetry (LSV), electrochemical impedance spectroscopy (EIS), cyclic voltametry (CV) and contact angle analysis technologies. The synthesis process of TiO2 thin films and the physicochemical changes of sol have been briefly investigated. The effects of different treatments on structure, optical, electrochemical and photo-induced hydrophilic properties of TiO2 based thin films have been systematically emphasized. The as-synthesized TiO2 based materials have been simulated using the first-principle calculation based on the Density Functional Theory (DFT). The aim is to investigate the intrinsic factor of enhancing visible light activation of TiO2 based thin films from different modified methods. The main works and results are as following.
     (1) Effects of processes optimization on the structure and properties of TiO2 thin films
     Based on the analysis on the physicochemical changes of sol-gel preparation processes, the effects of 100℃,500℃, freeze drying and microwave heating pretreatment on crystalline structure, surface morphology and optical properties of TiO2 thin films have been primarily investigated. The pretreatment process is important during preparation of thin films and shows obvious effect on the morphology, crystalline size and roughness of the surface of TiO2 thin films due to the different heating mechanisms. The absorption edge of TiO2 thin films after freeze drying and microwave heating pretreatment, whose crystalline size is 30.1 nm and 61.45 nm respectively, has a red shift compared with that of 100℃pretreated sample (15.45 nm) due to quantum size effect. On the other hand, the researches on the different crystalline plane orientation of TiO2 thin films have drawn greater attention gradually. The oriented TiO2 thin films synthesized by modified preparation process have obviously absorbed property in range of visible spectra and the band gap is 2.9 eV for indirect transmission. The value of capacitance for (101) oriented TiO2 thin film electrode decreases with increasing the potential, the flat-band potential is-0.493 V and the donor concentration (ND) is 6.28×1021 cm-3. These results can provide technical support for the development of visible light activity of TiO2 thin films and novel ideas for the realization of the controlled synthesis of TiO2 thin films.
     (2) Effects of different ions doping on the structure and properties of TiO2 thin films
     The effects of doping of different ions, including Li+, Ni2+, Bi3+, Ce4+, V5+, W6+ metallic ions and N, S, F non-metallic ions, on the structure, optical and hydrophilic properties of TiO2 thin films have been primarily investigated. The results indicate that the morphology and crystalline size is different on the surface of thin films; the absorption edge produces a red shift to some degree, except for Li+. The band gap of Ni2+ and Ce4+ doped TiO2 thin films are 2.42 eV and 2.51 eV, respectively, and that of doped with V5+ and W6+ are not obvious, while the band gap increases by doping Li+. The absorption edge of S and N doped TiO2 also has red shifts because the band gap of TiO2 thin film decreased obviously and the visible light activity is remarkably improved, while that of F doped sample produces blue shift. The N-Bi、Ni-Ce and S-Ce co-doped TiO2 thin films have been successfully synthesized for the first time. The effective synergetic effects resulted from co-doping have been discussed through analyzing the effects on the structure, optical electrochemical and photo-induced hydrophilic properties of TiO2 thin films doped with the two different dopants. The results shows that the properties of doped TiO2 thin films with different ions have close relations with the intrinsical properties of the doped ions, the effective methods of modification by doping are the conduction band (CB) and valence band (VB) of TiO2 influenced by doping ions and the band gap obviously narrows to enhance the response in visible light region.
     (3) Effect of composite metal oxides on the structure and properties of TiO2 thin films
     It is an important technological method to prepare visible-light irradiated TiO2 thin films through compositing with semiconductors. Many researches have focused on sulfide compositing with TiO2. In this thesis, the optical, electrochemical and photo-induced hydrophilic properties of Y2O3/TiO2 (YTF) and CuO/TiO2 nanocomposite thin films in visible light region have been obviously improved compared with that of the pure TiO2 thin film. The binding energy appears chemical shift and relatively more Y and Ti species are present on the surface, indicating that active surfaces of the nanocomposite films have been enhanced with more oxygen vacancies Vo due to doping of Y2O3 to TiO2. The absorption edge has a red shift with the band gap of 2.68 eV. The water contact angle is about 8°after daylight lamp irradiation for 60 min. Based on the Mott-Schottky equation, the donor concentration (ND) for YTF is 1.05×1020cm-3, which enhances one order of magnitude than that for pure TiO2 film (TF), but the flat-band potential (Vfb) and the space charge layer(dsc) obviously decreased. The CuO/TiO2 nanocomposite thin film has successfully been synthesized on the basis of the relation between the chemical composition and band gap in mixed semiconductor systems. From the surface of the up-graded thin films to substrate glass in the direction of depth, the percentage of Cu decreases, that of O increases, that of Ti is slowly enhancing and then quickly decreasing. It can be concluded that the band gap of the as-synthesized film decreases alone the direction of depth due to the graded chemical composition. The anode photocurrent of up-graded nanocomposite thin film electrode obviously increases and the photo-response region is greater than that of TiO2 thin film electrode. These results should provide basic theories for the TiO2 thin film as solar cells and as a novel self-cleaning material in the field of in construction industry, which also have important instructional functions for the development and application of novel structured TiO2 thin films.
     (4) Computational simulation of visible light activities for nano-TiO2 using the first-principle calculation based on the Density Functional Theory.
     The structure of energy level, density of states and optical properties of three crystalline models TiO2, and F、S、N、Li+、Ni2+、Bi3+、Ce4+、V5+、W6+ doping TiO2, and N-Bi co-doping TiO2 have theoretically been calculated using the first-principle methods based on plane-wave pseudo-potential theory in detail. The results indicate that:(1) the CB and VB of TiO2 consist of both the Ti 3d and O 2p orbital, the CB distributes is mainly attributed to Ti 3d orbital with a smaller contribution from O 2p orbital, and the VB consists of the O 2p orbital (the main contribution) hybridized with the Ti 3d orbital, the physicochemical properties of rutile, anatase and brookite TiO2 are different due to the difference in the structure of CB and VB; (2) the O 2p and Ti 3d orbital, mixed with F 2p, S 3p, N 2p, Ni 3d, Bi 6p, Ce 5d、Ce5p, V 3d、V 3p and W 5d orbital of doping F, S, N, Ni, Bi, Ce, V and W ions, respectively, causes the changes of constitute of CB and VB and narrows the band gap; (3) the optical properties obtained from calculation are in good agreement with that of experimental results. These computational results discover the intrinsic nature of improving visible light activities of TiO2 through doping ions, which can provide basic theory for developing novel catalyst with visible light irradiation and significative directions to build the relation of composition, structure and property of TiO2 materials.
引文
[1]Chen X. Samuel S.M. Titanium dioxide nanomaterials:synthesis, properties, modifications and applications[J]. Chem. Rev.,2007,107,2891-2959.
    [2]Carp O, Huisman C L. Reller A. Photoinduced reactivity of titanium dioxide [J]. Prog. Solid State Chem.,2004,32:33-177.
    [3]Bavykin D V, Friedrich M J, Walsh F C. Protonated titanates and TiO2 nanostructured materials:synthesis, properties and applications [J]. Adv.Mater.,2006,18:2807-2824.
    [4]Becquerel A E, Acad C R. Memoire sur les effets electriques produits sous 1'influence des rayons solaires [J]. Science,1839,9:561-567.
    [5]Brattain W H, Garrett C G B. Experiments on the interface between germanium and an electrolyte [J]. Bell. Syst. Tech. J.,1955,34:129-176.
    [6]Fujishima A, Honda A. Electrochemical photolysis of water at a semiconductor electrode [J]. Nature,1972,238:37-38.
    [7]Regan B O, Gratzel M. A low-cost, high-efficiency solar cell based on dye sensitized colloidal TiO2 films [J]. Nature,1991,353:737-740.
    [8]Gratzel M. Photoelectrochemical cells [J]. Nature,2001,414:338-344.
    [9]Markvart T, Castaner L. Solar cells:materials, manufacture and operation [M]. Elsevier, 2005.
    [10]Thomas W H, Rebecca A J, Alex B F M, et al. Advancing beyond current generation dye-sensitized solar cells [J]. Energy Environ. Sci.,2008,(1):66-78.
    [11]Richards B S. Comparison of TiO2 and other dielectric coatings for buried-contact solar cells:a review [J]. Prog. Photovolt. Res. Appl.,2004,12:253-281.
    [12]Zhang W, Zhang D, Fan T, et al. Novel photoanode structure templated from butterfly wing scales [J].Chem. Mater.,2009,21(1):33-40.
    [13]Bauer C, Jacques P, Kalt A. Photooxidation of an azo induced by visible light incident on the surface of TiO2 [J]. J. Photochem. Photobio. A,2001,140(1):87-92.
    [14]Galino C, Jacques P, Kalt A. Photooxidation of the phenylazonaphthol AO20 on TiO2: kinetic and mechanistic investigations [J].Chemophere,2001,45(6-7):997-1005.
    [15]Zhang F, Zhao J, Zang L, et al. TiO2-assisted photodegradation of dye pollutants Ⅱ: adsorption and degradation kinetics of eosin in TiO2 dispersions under visible light irradiation [J]. Appl. Catal. B,1998,15(1-2):147-156.
    [16]詹姆斯·E·朗博顿,詹姆斯·J·利希滕伯格编,王克欧等编译.城市和工业废水中有机 化合物分析[M].北京:学术期刊出版社,1989.
    [17]GB16297-1996.大气污染物综合排放标准[S].北京:中国环境科学出版社,1996.
    [18]Chen X, Samuel S M. Titanium dioxide nanomaterials:synthesis, properties, modifications and applications [J]. Chem. Rev.,2007,107:2891-2959.
    [19]Carey J H, Lawrence J, Tosine H M. Photodechlorination of PCB's in the presence of titanium dioxide in aqueous suspension [J]. Bull. Environ. Contam. Toxicol.,1976,16: 697-701.
    [20]Frank S N, Bard A J. Heterogenerous photocatalytic oxidation of cynide ion in aqueous solutions of titanium dioxide powder [J]. J. Am. Chem. Soc.,1977,99(2):303-305.
    [21]Andrew M, Stephen L H. An overview of semiconductor photocatalysis [J]. J. Photochem. Photobiol. A,1997,108(1):1-35.
    [22]Matsunaga T, Tomoda R, Nakajima T, et al. Photoelectrochemical sterilization of microbial cells by semiconductor powders [J]. FEMS. Microbiol. Lett.,1985,29(4):211-214.
    [23]Matsunaga T, Tomoda R, Nakajima T, et al. Continuous-sterilization system that uses photose miconductor powders [J]. Appl. Environ. Microbiol.,1988,54(6):1330-1333.
    [24]Mathews R W, Photooxidation of organic material in aqueous suspensions of titamium dioxide [J]. Wat. Res.,1986,20(5):569-578.
    [25]Matthews R W. Photooxidation of organic impurities in water using thin films of titanium dioxide [J]. J. Phys. Chem.,1987,91(12):3328-3333.
    [26]Thevenot P, Cho J, Dattatray W, et al. Surface chemistry influences cancer killing effect of TiO2 nanoparticles [J]. Nanomedicine:Nanotechn. Bio. Med.,2008, (4):226-236.
    [27]Emmanuelle L, Philippe P, Christophe B. All-solid-state dye-sensitized nanoporous TiO2 hybrid solar cells with high energy-conversion efficiency [J]. Adv.Mater.,2006,18: 2579-2582.
    [28]Tatjana P, Tijana R, Gary W, et al. Biology of TiO2-oligonucleotide nanocomposites [J]. Nature Mater.,2003,2:343-346.
    [29]Ulrike D. The surface science of Titanium dioxide [J]. Sur. Sci. Rep.,2003,48:53-229.
    [30]Kalyanasundaram K, Gratzel M. Applications of functionalized transition metal complexes in photonic and optoelectronic devices [J]. Coord. Chem. Rev.,1998,77:347-414.
    [31]刘守新,刘鸿.光催化及光电催化基础与应用[M].北京:化学工业出版社,2005.
    [32]Fernandez G M, Martinez A A, Hanson J C, et al. Nanostructured oxides in chemistry: characterization and properties [J]. Chem. Rev.,2004,104:4063-4104.
    [33]Rothschild A, Edelman F, Komem Y, et al. Sensing behavior of TiO2 thin films exposed to air at low temperatures [J]. Sensor. Actuat. B,2000,67:282-289.
    [34]Koller G, Berkebile S, Krenn J R, et al. Oriented sexiphenyl single crystal nanoneedles on TiO2 (110) [J]. Adv. Mater.,2004,16:2159-2162.
    [35]Eduardo L C, Galo J A, David G. Controlled formation of highly organized mesoporous titania thin films:from mesostructured hybrids to mesoporous nanoanatase TiO2 [J]. J. Am.Chem.Soc.,2003,125:9770-9786.
    [36]Shankar K, Tep K C, Mor G K, et al. An electrochemical strategy to incorporate nitrogen in nanostructured TiO2 thin films:modification of bandgap and photoelectrochemical properties [J]. J. Phys. D:Appl. Phys.,2006,39:2361-2366.
    [37]Doh J G, Hong J S, Vittal R, et al. Enhancement of photocurrent and photovoltage of dye-sensitized solar cells with TiO2 film deposited on indium zinc oxide substrate [J]. Chem. Mater.,2004,16,493-497.
    [38]Shinde P S, Patil P S, Bhosale P N, et al. Structural, optical, and photoelectrochemical properties of sprayed TiO2 thin films:effect of precursor concentration [J]. J. Am. Ceram. Soc.,2008,91(4):1266-1272.
    [39]Kong F T, Dai S Y, Wang K J. Review of secent progress in dye-sensitized solar cells [J]. Adv. Opt. Electron.,2007,75384:1-13.
    [40]Zhang X, Fujishima A, Jin M, et al. Double-layered TiO2-SiO2 nanostructured films with self-cleaning and antireflective properties [J]. J. Phys. Chem. B,2006,110:25142-25148.
    [41]Yoshinarl M, Oda Y, Kato T, et al. Influence of surface modification to titanium on an tibacterial activity in vitro [J]. Biomaterial.,2001,22(14):2043-2048.
    [42]Schwitzgebel J, Ekerdt J G, Gerischer H, et al. Role of the oxygen molecule and of the photogenerated electron in TiO2-photocatalyzed air oxidation reactions [J]. J.Phys. Chem., 1995,99(15):5633-5638.
    [43]Wang R, Hazuhito K, Fujishima A. Light-induced amphiphilic surfaces [J]. Nature,1997, 388:431-432.
    [44]Masato T, Kenji S, Gianmario M, et al. Mechanism of photoinduced superhydrophilicity on the TiO2 photocatalyst surface [J]. J. Phys. Chem. B,2005,109:15422-15428.
    [45]Fuke N, Fukui A, Komiya R, et al. New approach to low-cost dye-sensitized solar cells with back contact electrodes [J]. Chem. Mater.,2008,20:4974-4979.
    [46]Zhang D, Yoshida T, Oekermann T, et al. Room-temperature synthesis of porous nanoparticulate TiO2 films for flexible dye-sensitized solar cells [J]. Adv. Funct. Mater., 2006,16:1228-1234.
    [47]Kuang D, Brillet J, Gratzel M, et al. Application of highly ordered TiO2 nanotube arrays in flexible dye-sensitized solar cells [J]. ACS Nano.,2008,2(6):1113-1116.
    [48]Gratzel M. Dye-sensitized solar cells [J]. J. Photochem. Photobio. C,2003,4:145-153.
    [49]Park N G, Lagemaat J, Frank A J. Comparison of dye-sensitized rutile-and anatase-based TiO2 solar cells [J]. J. Phys. Chem. B,2000,104:8989-8994.
    [50]Linsebigier A L, Lu G Q, Yates J T. Photocatalysis on TiO2 surface:principles, mechanisms
    and selected results [J]. Chem. Rev.,1995,95(3):735-758.
    [51]Hoffmann M R, Martin S T, Choi W, et al. Applications of semiconductor photocatalysis [J]. Chem. Rev.,1995(95):69-96.
    [52]Nowotny M, Sheppard L, Nowotny J. Defect chemistry of titanium dioxide:application of defect engineering in processing of TiO2-based photocatalysts [J]. J. Phys. Chem.C.,2008, 112,5275-5300.
    [53]He J, Ichinose I, Kunitake T, et al. Facile fabrication of Ag-Pd bimetallic nanoparticles in ultrathin TiO2-gel films:nanoparticle morphology and catalytic activity [J]. J. Am. Chem. Soc.,2003,125:11034-11040.
    [54]Han Y, Liu C, Ge Q. Effect of surface oxygen vacancy on Pt cluster adsorption and growth on the defective anatase TiO2 (101) surface [J]. J. Phys. Chem. C,2007,111(44): 16397-16404.
    [55]Ohko Y, Tatsuma T, Fujii T, et al. Multicolour photochromism of TiO2 films loaded with silver nanoparticles [J]. Nature Mater.,2003,2:29-31.
    [56]Tada H, Soejima T, Ito S, et al. Photoinduced desorption of sulfur from gold nanoparticles loaded on metal oxide surfaces [J]. J. Am. Chem. Soc.,2004,126:15952-15953
    [57]Kim K D, Han D N, Lee J B, et al. Formation and characterization of Ag-deposited TiO2 nanoparticles by chemical reduction method [J]. Scripta Materialia,2006,54:143-146.
    [58]Tracy L T, John T, Yates J. Surface science studies of the photoactivation of TiO2-new photochemical processes [J]. Chem. Rev.,2006,106:4428-4453.
    [59]Gracia F, Holgado J P, Caballero A, et al. Structural optical and electrochemical properties of M"+-TiO2 model thin film photocatalysts [J]. J. Phys. Chem. B,2004,108:17466-17476.
    [60]Tayade R J, Kulkarni R G, Jasra R V. Transition metal ion impregnated mesoporous TiO2 for photocatalytic degradation of organic contaminants in water [J]. Ind. Eng. Chem. Res., 2006,45:5231-5238.
    [61]Koudriachova M V, Harrison N M, Leeuw S W. Structural deformations in lithium doped titanium dioxide [J]. Comput. Mater. Sci.,2002,24(1):235-240.
    [62]Lin J, Yu J C. An investigation on photocatalytic activities of mixed TiO2-rare earth oxides for the oxidation of acetone in air [J]. J. Photochem. Photobiol. A,1998,116(1):63-67.
    [63]Rebecca J, Priya G, Nicola A S. Transition metal-doped TiO2 and ZnO:present status of the field [J]. J. Phys.:Condens. Matter.,2005,17:657-689.
    [64]Chio W, Termin A, Hoffman M R. The role of metal ion dopants in quantum-sized TiO2: correlation between photoreactivity and charge carrier recombination dynamics [J]. J. Phys. Chem.,1994,98:13669-13679.
    [65]Yukina T, Pailin N, Tetsu T. Energy storage TiO2-MoO3 photocatalysts [J]. Electrochimica Acta,2004,49:2025-2029.
    [66]陈崧哲,徐盛明,徐刚,等.稀土元素在光催化剂中的应用及作用机理[J].稀有金属材料与工程,2006,35(4):505-509.
    [67]Sato S, Asahi R, Morikawa T, et al. Photocatalysts sensitive to visible light [J]. Science, 2002,295:626-627.
    [68]Asahi R, Morikawa T, Ohwaki T, et al. Visible-light photocatalysis in Nitrogen-doped titanium oxides [J]. Science,2001,293:269-271.
    [69]Ohno T, Akiyoshi M, Umebayashi T, et al. Preparation of S-doped TiO2 photocatalysts and their photocatalytic activities under visible light [J]. Appl. Catal. A,2004,265(1):115-121.
    [70]Yu J C, Ho W K, Yu J G, et al. Efficient visible-light-induced photocatalytic disinfection on sulfur-doped nanocrystalline titania [J]. Environ. Sci. Technol.,2005,39:1175-1179.
    [71]Umebayashi T, Yamaki T, Tanala S, et al. Visible light-induced degradation of methylene blue on S-doped TiO2 [J]. Chem. Lett.,2003,32:330-331.
    [72]Bacsa R, Kiwi J, Ohno T, et al. Preparation, testing and characterization of doped TiO2 active in the peroxidation of biomolecules under visible light [J] J. Phys. Chem. B,2005, 109:5994-5998.
    [73]Wu G S, Tomohiro N, Bunsho O, et al. Synthesis and characterization of carbon-doped TiO2 nanostructures with enhanced visible light response [J]. Chem.Mater., 2007,19:4530-4537.
    [74]Korosi L, Papp S, Bertoti I, et al. Surface and bulk composition, structure, and photocatalytic activity of phosphate-modified TiO2 [J]. Chem. Mater.,2007,19: 4811-4819.
    [75]Hong X T, Wang Z P, Cai W M, et al. Visible-light-activated nanoparticle photocatalyst of iodine-doped titanium dioxide [J]. Chem. Mater.,2005,17:1547-1552.
    [76]Yang K S, Dai Y, Huang B B. Understanding photocatalytic activity of S-and P-doped TiO2 under visible light from first-principles [J]. J. Phys. Chem. C,2007,111:18985-18994.
    [77]Michael H B, Stefan P P, Tang J, et al. Cubic mesoporous frameworks with a mixed semiconductor nanocrystalline wall structure and enhanced sensitivity to visible light [J]. Angew. Chem. Int. Ed.,2004,43:3037-3040.
    [78]Sun Y, Hao E, Zhang X. Buildup of composite films containing TiO2/PbS nanoparticles and polyelectrolytes based on electrostatic interaction [J]. Langmuir,1997,13:5168-5174.
    [79]Fang J H, Lu X M, Zhang X F. CdSe/TiO2 nanocrystalline solar cells [J]. Supramolecular Science,1998,5(5-6):709-711.
    [80]Davide B, Elisabetta C, Angelo P, et al. First example of ZnO-TiO2 nanocomposites by chemical vapor deposition:structure, morphology composition and gas sensing performances [J]. Chem. Mater.,2007,19:5642-5649
    [81]Chen D, Zhang H, Hu S, et al. Preparation and enhanced electrochemical performance of coupled bicomponent ZnO-TiO2 nanocomposites [J]. J. Phys. Chem. C,2008,112:117-122.
    [82]Tacconi N R, Mrkic M, Rajeshwar K. Photoelectrochemical oxidation of aqueous sulfite on Ni-TiO2 composite film electrodes [J]. Langmuir,2000,16:8426-8431.
    [83]Sergey K P, Dmitri V, Anatoly I K. Structural, optical and photoelectrochemical properties of nanocrystalline TiO2-In2O3 composite solids and films prepared by sol-gel method [J]. J. Phys. Chem. B,2001,105:4816-4823.
    [84]Vinodgopal K, Bedja I, Kamat P V. Nanostructured semiconductor films for photocatalysis. photoelectrochemical behavior of SnO2/TiO2 composite systems and its role in photocatalytic degradation of a textile azo dye [J]. Chem. Mater.,1996,8:2180-2187.
    [85]Fang J, Bao H, He B. Interfacial and surface structures of CeO2-TiO2 mixed oxides [J]. J. Phys. Chem. C,2007,111:19078-19085.
    [86]Wu Y, Hu L, Jiang Z. Study on the electrochemical properties of Fe2O3-TiO2 Films prepared by sol-gel process [J]. J. Electrochem. Soc.,1997,144(5):1728-1733.
    [87]Pan J H, Lee W I. Preparation of highly ordered cubic mesoporous WO3/TiO2 films and their photocatalytic properties [J]. Chem. Mater.,2006,18:847-853.
    [88]Hirai T, Suzuki K, Komasawa I. Preparation and photocatalytic activities of composite CdS nanoparticles titanium dioxide particles [J]. J. Coll. Inter. Sci.,2001,244:262-265.
    [89]Robertson N. Optimizing dyes for dye-sensitized solar cells [J]. Angew. Chem. Int. Ed., 2006,45:2-10.
    [90]Yu J C, Yu J G, Zhao J C. Enhanced photocatalytic activity of mesoporous and ordinary TiO2 thin films by sulfuric acid treatment [J]. Appl. Catal. B,2002,36:31-43.
    [91]Xu Y, Langford C H. Enhanced photoactivity of a titanium (IV) oxide supported on ZSM-5 and zeolite at low coverage [J]. J. Phys. Chem.,1995,99:11501-11507.
    [92]Yoneyama H, Haga S, Yamanaka S. Photocatalytic activities of microcrystalline titanic incorporated in sheet silicates of clay [J]. J. Phys. Chem.,1989,93:4833-4837.
    [93]Wilaiwan C, ApichonW, Ramannair C C, et al. Formation and characterization of self-organized TiO2 nanotube arrays by pulse anodization [J]. J. Am. Chem. Soc.,2008,130: 965-974.
    [94]Tian Z R, James A V, Liu J, et al. Large oriented arrays and continuous films of TiO2-based nanotubes [J]. J. Am. Chem. Soc.,2003,125:12384-12385.
    [95]Changdeuck B, Hyunjun Y, Sihyeong K, et al. Template-directed synthesis of oxide nanotubes:fabrication, characterization, and applications [J]. Chem. Mater.,2008,20: 756-767.
    [96]Xiong C R, Kim M J, Kenneth J B. TiO2 nanofibers and core-shell structures prepared using mesoporous molecular sieves as templates [J]. Small,2006,2(1):52-55.
    [97]刘海涛,杨郦,张树军,等.无机材料合成[M].北京:化学工业出版社,2003.
    [98]Milton Ohring. Materials science of thin films-Deposition and structure [M]. Academic Press,2002.
    [99]成晓玲,胡社军,匡同春,等.纳米二氧化钛薄膜制备研究进展[J].表面技术,2005,34(4):1-8.
    [100]Kohn W. Nobel Lecture:Electronic structure of matter-wave functions and density functionals [J]. Rev. Mod. Phys.,1999,71:1253-1266.
    [101]Parr R G, Yang W. Density functional theory of atoms and molecules [M]. New York: Oxford,1989.
    [102]Janak J F, Morruzi L. Ground-state thermo mechanical properties of some cubic elements in the local-density formalism [J]. Phys. Rev. B,1975,12:1257-1261.
    [103]Schwarz P F, Turro N J, Bossmann S H, et al. A new method to determine generation of hydroxyl radicals in illuminated TiO2 suspensions [J]. J. Phys. Chem. B,1997,101: 7127-7134.
    [104]Shang D M, Ching W Y. Electronic and optical properties of three phases of titanium dioxide:rutile, anatase and brookite [J]. Phys. Rev. B,1995,51(19):13023-13032.
    [105]Glassford K M, Chelikowsky J R. Electronic structure of TiO2:Ru [J]. Phys. Rev. B, 1993,47(19):12550-12553.
    [106]Muscat J, Harrison N M. The physical and electronic structure of the rutile (001) surface [J]. Surf. Sci.,2000,446:119-127.
    [107]Chen Q, Cao H H. Ab initio calculations of electronic structure of anatase TiO2 [J]. Chinese Phys.,2004,13(12):2121-2125.
    [108]Na-Phattalung S, Smith M F, Kim K, et al. First-principles study of native defects in anatase TiO2 [J]. Phys. Rev. B,2006,73:Art. No.125205.
    [109]Sambrano J R, Martins J, Andres J, et al. Theoretical analysis on TiO2 (110)/V surface [J]. Int. J. Quantum. Chem.,2001,85(1):44-51.
    [110]Oshikiri M, Boero M, Ye J, et al. The electronic structures of the thin films of INVO4 and TiO2 by first principles calculations [J]. Thin Solid Films,2003,445(2):168-174.
    [111]曹红红,黄海波.对锐钛矿相TiO2的第一原理计算[J].北京航空航天大学学报,2005,31(2):251-254.
    [112]Justicia I, Ordejon P, Canto G, et al. Designed self-doped titanium oxide thin films for efficient visible-light potocatalysis [J]. Adv.Mater.,2002,14(19):1399-1402.
    [113]Rego L G C, Batista V S. Quantum dynamics simulations of interfacial electron transfer in sensitized TiO2 semiconductors [J]. J. Am. Chem. Soc.,2003,125(26):7989-7997.
    [114]龙明策.新型光催剂的制备、表征及其光催化活性的调控机制[D].上海交通大学博士学位论文,2007.
    [115]Sambrano J R, Andres J, Beltran A, et al. An ab initio study of oxygen vacancies and doping process of Nb and Cr atoms on TiO2 (110) surface models [J] Int.J.Quantum.Chem., 1997,65:625-631.
    [116]Nishikawa T, Shinohara Y, Nakajima T, et al. Prospect of activating a photocatalyst by sunlight:a quantum chemical study of isomorphically substituted titania [J]. Chem.Lett., 1999,65:1133-1134.
    [117]Tsutomu U, Tetsuya Y, Hisayoshi I, et al. Analysis of electronic structure of 3d transition metal-doped TiO2 based on band calculations [J]. J. Phys. Chem. Solids,2002,63: 1909-1920.
    [118]陈琦丽,唐超群.过渡金属掺杂金红石相TiO2能带结构的第一性原理计算[J].材料科学与工程学报,2006,24(4):514-516.
    [119]Yamaki T, Umebayashi T, Sumita T, et al. Fluorine-doping in titanium dioxide by ion implantation technique [J]. Phys. Res. B,2003,206:254-258.
    [120]Geng W T, Kim K S. Structural, electronic, and magnetic properties of a ferromagnetic semiconductor:Co-doped TiO2 rutile [J]. Phys. Rev. B,2003,68 (12):Art.125203.
    [121]Giordano L, Pacchioni G, Bredow T. Cu, Ag, and Au atoms adsorbed on TiO2(110):cluster and periodic calculations [J]. Surf. Sci.,2001,471:21-23.
    [122]Wang Y, Hwang G S. Adsorption of Au atoms on stoichiometric and reduced TiO2 (110) rutile surfaces:a first principles study [J]. Surf. Sci.,2003,542 (1-2):72-80.
    [123]徐凌,唐超群,戴磊,等.N掺杂锐钛矿TiO2电子结构的第一性原理研究.物理学报[J].2007,56(2):1048-1053.
    [124]彭丽萍,徐凌,尹建武.N掺杂锐钛矿TiO2光学性能的第一性原理研究.物理学报[J].2007,56(3):1585-1589.
    [125]Sambrano J R, Vasconcellos L A, Martins J B L, et al. Atheoretical analysis on electronic structure of the (110) surface of TiO2-SnO2 mixed oxide [J]. J. Mol. Struc-Theochem., 2003,629:307-314.
    [126]沈兴.热分析与非等温固相反应动力学[M].北京:冶金工业出版社,1995.
    [127]李树棠.晶体射线衍射学基础[M].北京:冶金工业出版社,1990.
    [128]贾德昌,宋桂明.无机非金属材料性能[M].北京:科学出版社,2008.
    [129]黄惠忠.纳米材料分析[M].北京:化学工业出版社,2003.
    [130]谈育煦,胡志忠.材料研究方法[M].北京:机械工业出版社,2004.
    [131]Wagner C D, Riggs W M, Davis L E, et al. Handbook of X-ray photoelectron spectroscopy [M]. U.S.A.:Perkin-Elmer corporation,1979.
    [132]郑伟涛.薄膜材料与薄膜技术[M].北京:化学工业出版社,2004.
    [133]曹立礼.材料表面科学[M].北京:清华大学出版社,2007.
    [134]杨南如.无机非金属材料测试方法[M].武汉:武汉工业大学出版社,1993.
    [135]Sakka S, Kozuka H. Handbook of sol-gel science and technology:processing, characterization and applications [M]. Kluwer academic Publishers,2002.
    [136]Coucouvanis D. Inorganic syntheses V33 [M]. John Wiley& Sons Inc.,2002.
    [137]Samuneva B, Kozhukharov V, Trapalis C. et al. Sol-gel processing of titanium-containing thin coatings:part I preparation and structure [J]. J. Mater. Sci.,1993,28:2353-2360.
    [138]Trapalis C, Kozhukharov V, Samuneva B. Sol-gel processing of titanium-containing thin coatings:part Ⅱ XPS Studies [J]. J. Mater. Sci.,1993,28:1276-1282.
    [139]Kozhukharov V, Trapalis C, Samuneva B. Sol-gel processing of titanium-containing thin coatings:part III properties [J]. J. Mater. Sci.,1993,28:1283-1288.
    [140]Koichi K, Takeshi Y. Macroporous morphology of the titania films prepared by a sol-gel dip-coating method from the system containing poly (ethylene glycol):effects of molecular weight and dipping temperature [J]. J Sol-Gel Sci. Techn.,2000,19:219-222.
    [141]Yasutaka T, Yoshihiro M. Dip-coating of TiO2 films using a sol derived from Ti(O-i-Pr)4-diethanolamine-H2O-iPrOH system [J]. J. Mater. Sci.,1988,23:2259-2266.
    [142]Liu G Q, Jin Z G, Liu X X, et al. Anatase TiO2 porous thin films prepared by sol-gel method using CTAB surfactant [J]. J Sol-Gel Sci. Techn.,2007,41:49-55.
    [143]Verma A, Basu A, Bakhshi A K. et al. Structural, optical and electrochemical properties of sol-gel derived TiO2 films:annealing effects [J]. Solid State Ionics,2005,176: 2285-2295.
    [144]Bockmeyer M, Lobmann P. Densification and microstructural evolution of TiO2 films prepared by sol-gel processing [J]. Chem. Mater.,2006,18:4478-4485.
    [145]Jaroenworaluck A, Panyathan T, Soontornworajit B. Fabrication and characteristics of TiO2 films by a microwave drying technique [J]. Surf. Interf. Anal.,2006,38:765-768.
    [146]Claudio D D, Phani A R, Santucci S. Enhanced optical properties of sol-gel derived TiO2 films using microwave irradiation [J]. Opt. Mater.,2007,30:279-284.
    [147]刘韩星,欧阳世翕.无机材料微波固相合成方法与原理[M].北京:科学出版社,2006.
    [148]Marinkovic Z V, Milosevic O, Nikolic M V. Evolution of the microstructure of disperse ZnO powders obtained by the freeze-drying method [J]. Mater. Sci. Eng. A,2004,375: 620-624.
    [149]Izutsu H, Nair P K, Mizukami F. Physical stabilization of anatase (TiO2) by freeze-drying [J]. J. Mater. Chem.,1997,7(6):855-856.
    [150]Kudra T. Mujumdar著,李占勇译.先进干燥技术[M].北京:化学工业出版社,2005.
    [151]Nulman J, Krusius J P, Gat A. Rapid thermal processing of thin gate dielectrics oxidation of silicon [J]. IEEE Blectro Device Letters,1985,6(5):205-207.
    [152]Shi L, Krupanidhi S B. Development of ferroelectric Pb(ZrxTi1-x)O3 thin films by metallo-organic decomposition process and rapid thermal annealing [J]. Integrated ferroelectrics, 1992,1:111-127.
    [153]Chen J, Udayakumar K R, Brooks K G, et al. Rapid thermal annealing of sol-gel derived lead zirconate titanate thin films [J]. J. Appl. Phys.,1992,71(9):4465-4469.
    [154]Czoska A M, Livraghi S, Chiesa M, et al. The nature of defects in fluorine-doped TiO2 [J]. J. Phys. Chem. C,2008,112:8951-8956.
    [155]Hagfeldt A, Gratzel M. Light-induced redox reactions in nanocrystalline systems [J]. Chem. Rev.,1995,95:49-68.
    [156]Reddy K M, Manorama S V, Reddy A R. Bandgap studies on anatase titanium dioxide nanoparticles [J]. Mater. Chem. Phy.,2002,78:239-245.
    [157]Barnard A S, Curtiss L A. Prediction of TiO2 nanoparticle phase and shape transitions controlled by surface chemistry [J]. Nano letters,2005,5(7):1261-1266.
    [158]Asaduzzaman A M, Kruger P. Adsorption and cluster growth of vanadium on TiO2 (110) studied by density functional theory [J]. J. Phys. Chem. C,2008,112:4622-4625.
    [159]Yamada S, Tanaka M. Structure of a stacking fault in the (101) plane of TiO2 [J]. J.Electron. Microscopy,1997,1:67-74.
    [160]Diwald O, Thompson T L, Zubkov T, et al. Photochemical activity of nitrogen-doped rutile TiO2 (110) in visible light [J]. J. Phys. Chem. B,2004,108:6004-6008.
    [161]Gong X Q, Selloni A, Batzill M, et al. Steps on anatase TiO2(101) [J]. Nature Materials, 2006,5:665-670.
    [162]Emanuele F, Cristiana D V, Annabella S. et al. First principles study of nitrogen doping at the anatase TiO2 (101) surface [J]. J. Phys. Chem. C,2007,111:9275-9282.
    [163]Thomas A G, Flavell W R, Chatwin C. et al. Adsorption of bi-isonicotinic acid on anatase TiO2 (101) and (001) studied by photoemission and NEXAFS spectroscopy [J]. Surf. Sci., 2005,592:159-168.
    [164]Hebenstreit W, Ruzycki N, Herman G S, et al. Scanning tunneling microscopy investigation of the TiO2 anatase (101) surface [J]. Phys. Rev. B,2000,62:16334-16336.
    [165]Sanjines R, Tang H, Berger H, et al. Electronic structure of anatase TiO2 oxide [J]. J. Appl. Phys.,1994,75:2945-2951.
    [166]冯良荣,谢卫国,吕绍洁,等.纳米TiO2催化剂微晶结构对光催化反应的影响[J].中国科学B,2001,31(6):536-541.
    [167]张长沙,赵高凌,杨耀东,等.具有一定取向的TiO2薄膜的研究与制备[J].功能材料,2006,37(8):1283-1285.
    [168]S R莫里森著,吴辉煌译.半导体与金属氧化膜的电化学[M].北京:科学出版社,1988.
    [169]Randeniya L K, Bendavid A, Martin P J, et al. Photoelectrochemical and structural properties of TiO2 and N-doped TiO2 thin films synthesized using pulsed direct current plasma-activated chemical vapor deposition [J]. J. Phys. Chem. C,2007,111: 18334-18340.
    [170]Krol R V, Goossens A, Schoonman J. Mott-Schotty analysis of nanometer-scale thin-film anatase TiO2 [J]. J. Electrochem. Soc.,1997,144(5):1723-1726.
    [171]曹楚南,张鉴清.电化学阻抗谱导论[M].北京:科学出版社,2002.
    [172]霍莉,丁克强,王庆飞,等.掺杂Fe3+的TiO2薄膜电极的电化学研究[J].微纳电子技术,2005,(2):69-72.
    [173]Serpone N. Is the band gap of pristine TiO2 narrowed by anion-and cation-doping of TiO2 in second-generation photocatalysts [J]? J. Phys. Chem. B,2006,110(48):24287-24293.
    [174]Cho J H, Hwang T J, Joh Y G,et al. Room-temperature ferromagnetism in highly-resistive Ni-doped TiO2 [J]. Appl. Phys. Lett.,2006,88:092505.
    [175]Chen S, Zhang S, Liu W, et al. Preparation and activity evaluation of p-n junction photocatalyst NiO/TiO2 [J]. J. Hazard. Mater.,2008,155:320-326.
    [176]Mejias J A, Jimenez V M, Lassaletta G, et al. Interpretation of the binding energy and auger parameter shifts found by XPS for TiO2 supported on different surfaces [J]. J Phys. Chem.B,1996,100:16255-16262.
    [177]Yu J C, Yu J, Ho W, et al. Effects of F-doping on the photocatalytic activity and microstructures of nanocrystalline TiO2 powders [J]. Chem. Mater.,2002,14:3808-3811.
    [178]Zhou J K, Lv L, Yu J Q, et al. Synthesis of self-organized polycrystalline F-doped TiO2 hollow microspheres and their photocatalytic activity under visible light [J]. J Phys. Chem. C,2008,112:2516-2521.
    [179]Zhou M, Yu J. Preparation and enhanced daylight-induced photocatalytic activity of C, N, S-tridoped titanium dioxide powders [J]. J. Hazard. Mater.,2008,152:1229-1236.
    [180]Burda C, Chen X B. Photoelectron spectroscopic investigation of nitrogen-doped titania nanoparticles [J]. J. Phys. Chem. B,2004,108:15446-15449.
    [181]Neeruganti O G, Hsin H L, Shyue C K. Chemical state and environment of boron dopant in B, N-codoped anatase TiO2 nanoparticles:an avenue for probing diamagnetic dopants in TiO2 by electron paramagnetic resonance spectroscopy [J]. J. Am. Chem. Soc.,2008,130: 2760-2761.
    [182]Zhao W, Ma W H, Chen C C, et al. Efficiency degradation of toxic organic pollutants with Ni2O3/TiO2-xBx under visible irradiation [J]. J. Am. Chem. Soc.,2004,126(15):4782-4783.
    [183]Liu H Y, Gao L. Codoped rutile TiO2 as a new photocatalyst for visible light irradiation [J]. Chem. Lett.,2004,33(6):730-731.
    [184]Li D, Ohashi N, Hishita S, et al. Origin of visible-light-driven photocatalysis:a comparative study on N/F-doped and N-F-codoped TiO2 powders by means of experimental characterizations and theoretical calculations [J]. J. Solid State Chem., 2005,178:3293-3302.
    [185]陆诚,杨平,杜玉扣,等.Fe3+/V5+/TiO2复合纳米微粒光催化性能的研究[J].化学研究与应用,2002,14(3):265-268.
    [186]Bian Z F, Zhu J, Wang S H, et al. Self-assembly of active Bi2O3/TiO2 visible photocatalyst with ordered mesoporous structure and highly crystallized anatase [J]. J. Phys. Chem. C, 2008,112:6258-6262.
    [187]Yang S, Zhu W, Jiang Z, et al. The surface properties and the activities in catalytic wet air oxidation over CeO2-TiO2 catalysts [J]. Appl. Surf. Sci.,2006,252:8499-8505.
    [188]Reddy B M, Khan A, Yamada Y, et al. Structural characterization of V2O5/CeO2-TiO2 and CeO2-TiO2 catalysts by raman and XPS techniques [J]. J. Phys. Chem. B,2003,107: 5162-5167.
    [189]Liu Z, Guo B, Liang H, et al. Preparation and characterization of cerium oxide doped TiO2 nanoparticles [J]. J Phys. Chem. Solids,2005,66:161-167.
    [190]Kwon C H, Kim J H, Jung I S, et al. Preparation and characterization of TiO2-SiO2 nano-composite thin films [J]. Ceramics International,2003,29:851-856.
    [191]Liang L, Sheng Y, Xu Y, et al. Optical properties of sol-gel derived ZrO2-TiO2 composite films [J]. Thin Solid Films 2007,515:7765-7771.
    [192]Shim J H, Chao C C, Huang H, et al. Atomic layer deposition of yttria-stabilized zirconia for solid oxide fuel cells [J]. Chem. Mater.,2007,19:3850-3854.
    [193]Peeva A. Dikovska A O, Atanasov P A. Rare-earth implanted Y2O3 thin films [J]. Appl. Surf. Sci.,2007,253:8165-8168.
    [194]Yolanda C, Beatriz J L, Cedric B, et al. Preparation, structural and optical characterization of rare earth doped mesoporous Y2O3 thin films by EISA method [J]. Micropor. Mesopor. Mater.,2007,103:273-279.
    [195]Sun G B, Hidajat K, Wu X S, et al. A crucial role of surface oxygen mobility on nanocrystalline Y2O3 support for oxidative steam reforming of ethanol to hydrogen over Ni/Y2O3 catalysts [J]. Appl. Catal. B,2008,81:303-312.
    [196]Swanepoel R. Determination of the thickness and optical constants of amorphous silicon [J]. J. Phys. E,1983,16:1214-1222.
    [197]Iketani K, Sun D, Toki M, et al. Sol-gel-derived VxTi1-xO2 films and their photocatalytic activities under visible light irradiation [J]. Mater. Sci. Eng. B.,2004,108:187-193.
    [198]Adachi M, Sakamoto M, Jiu J T, et al. Determination of parameters of electron transport in dye-sensitized solar cells using electrochemical impedance spectroscopy [J]. J. Phys. Chem.B,2006,110:13872-13880.
    [199]Claudia L, Nogueira A, Paoli M. Solid-state and flexible dye-sensitized TiO2 solar cells:a study by electrochemical impedance spectroscopy [J]. J.Phys.Chem.B,2002,106: 5925-5930.
    [200]Leng W H, Zhang Z, Zhang J Q, et al. Investigation of the kinetics of a TiO2 photoelectro-catalytic reaction involving charge transfer and recombination through surface states by electrochemical impedance spectroscopy [J]. J. Phys. Chem. B,2005,109:15008-15023.
    [201]Hukovic M M, Grubac Z. Characterization of electronic and dielectric properties of anodic oxide films on bismuth by electrochemical impedance spectroscopy [J]. J. Phys. Chem. B, 1998,102:7406-7412.
    [202]Vurgaftman I, Meyer J R, Ram-Mohan L R. Band parameters for Ⅲ-Ⅴ compound semiconductors and their alloys [J]. J. Appl. Phys.,2001,89(11):5815-5875.
    [203]Rahman M M, Miki T, Mishrna M K, et al. Structural and optical characterization of PbxTi1-xO2 film prepared by sol-gel method [J]. Mater. Sci. Eng.,1996, B41:67-71.
    [204]Vilquin B, Poullain G, Bouregba R, et al. Compositionally graded Pb(Zr,Ti)O3 thin films with different crystallographic orientations [J]. Thin Solid Films,2003,436(2):157-161.
    [205]Xu H B, Guo H B, Liu F S, et al. Development of gradient thermal barrier coatings and their hot-fatigue behavior [J]. Surf. Coat. Tech.,2000,130:133-146.
    [206]Mishrna M K, Krishna K, Sharon M. Theoretical investigation of optimal mixing ratio for PbO2 and TiO2 to produce a low-band-gap non-corrosive photoelectrode [J]. Chem. Phys., 1992,163:401-412.
    [207]Zhao G, Hiromitsu K, Lin H, et al. Preparation and photoelectrochemical properties of Ti1-xVxO2 solid solution thin film photoelectrodes with gradient bandgap [J]. Thin Solid Films,1999,340:125-131.
    [208]Briggs D, Seah M P. Practical Surface Analysis [M] J. Wiley& Sons, New York,1993.
    [209]Segall M D, Lindan P J. First-principles simulation:ideas, illustrations and the CASTEP code [J]. J. Phys. Conden. Matter.,2002,14:2717-2744.
    [210]Hohenberg P, Kohn W. Inhomogeneous electron gas [J]. Phys. Rev. B,1964,136:864-871.
    [211]Ceperley D M, Alder B J. Ground state of the electron gas by a stochastic method [J]. Phys. Rev. Lett.,1980,45:566-569.
    [212]Perdew J P, Zunger A. Self-interaction correction to density-functional approximations for many-electron systems [J]. Phys. Rev. B,1981,23:5048-5079
    [213]Perdew J P, Burke K, Ernzerhof M. Generalized gradient approximation made simple [J]. Phys. Rev. Lett.1996,77:3865-3868.
    [214]Hamann D, Schluter M. Norm-conserving pseudopotentials [J]. Phys. Rev. Lett.,1979, 43:1494-1497.
    [215]Kohn W, Meir Y, Makarov D. Van der waals energies in density functional theory [J]. Phys. Rev. Lett.,1998,80:4153-4156.
    [216]Vanderbilt D. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism [J]. Phys. Rev. B,1990,41(11):7892-7895.
    [217]Kresse G, Furthmuller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set [J]. Phys. Rev. B,1996,54:11169-11186.
    [218]Cromer D T, Herrington K. Structure and energetics of stoichiometric TiO2 anatase and rutile [J]. J. Am. Chem. Soc.,1955,77:4708-4710.
    [219]Hoffman M R, Martin S T, Choi W, et al. Eviromental application of semiconductor photocatalysis [J]. Chem.Rev.,1995,95(1):69-96.
    [220]Tang H, Prasad K, Sanjines R, et al. Electrical and optical properties of TiO2 anatase thin films [J]. J. Appl. Phys.,1994,75(4):2042-2047.
    [221]Lee J Y, Park J, Cho J H. Electronic properties of N and C doped TiO2 [J]. Appl. Phys. Lett.,2005,87:11904
    [222]Burdett J K, Hughbanks T, Miller G J, et al. Structural-electronic relationships in inorganic solids:powder neutron diffraction studies of the rutile and anatase polymorphs of titanium dioxide at 15 and 295K [J]. J. Am. Chem. Soc.,1987,109:3639-3642.
    [223]Perdew J P. Physical content of the exact Kohn-Sham orbital energies:band gaps and derivative discontinuities [J]. Phys. Rev. Lett.,1983,51:1984-1887.
    [224]Valentin C D, Finazzi E, Pacchioni G, et al. Density functional theory and electron paramagnetic resonance study on the effect of N-F codoping of TiO2 [J]. Chem. Mater., 2008,20:3706-3714.
    [225]Glassford K M, Chelikowsky J R. Structural and electronic properties of titanium dioxide [J]. Phys. Rev. B,1992,46(3):1284-1298.
    [226]Muscat J, Swamy V, Harrison N M. First-principles calculations of the phase stability of TiO2 [J]. Phys. Rev. B,2002,65:224112.
    [227]Grunes L A, Leapman R D, Wilker C N, et al. Oxygen K near-edge fine structure:an electron-energy-loss investigation with comparisons to new theory for selected 3d Transition metal oxides [J]. Phys. Rev. B,1982,25(12):7157-7173.
    [228]Min S, Park S, Kwon K, et al. Electronic structures of doped anatase TiO2:Ti1-xMxO2 (M=Co,Mn,Fe,Ni) [J]. Phys.Rev.B,2002,65:16201.
    [229]French R H, Canon R M, Denoyer L K, et al. Full spectral calculation of non-retarded Hamaker constants for ceramic systems from interband transition strengths [J]. Solid State Ionics,1995,75(13):238-243.
    [230]Tang J W, Zou Z G, Katagiri M, et al. Photocatalytic degradation of MB on MIn2O4 (M= alkali earth metal) under visible light:effects of crystal and electronic structure on the photocatalytic activity [J].Catal. Today,2004,93-95:885-889.
    [231]谢希德,陆栋.固体能带理论[M].上海:复旦大学出版社,1998,10-78.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700