ZnO薄膜的制备及其晶体管性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
ZnO-TFT具有低温生长、高迁移率以及全透明的优点,具有取代Si基器件成为下一代薄膜晶体管技术的可能,有很大的应用前景。而其材料特性、器件和工艺特性等方面还有很多前沿的科学问题值得研究。本文围绕着“ZnO薄膜的制备”和“ZnO薄膜器件特性研究”两个主题,将全文分成四个部分,对ZnO的薄膜特性和器件性能进行了系统研究。
     第一部分研究了ZnO薄膜特性与生长条件和后期处理的关系。首先研究了退火条件对离子束淀积ZnO薄膜特性的影响。采用原位XRD方法在100℃到950℃范围研究了ZnO薄膜特性随温度的变化,发现退火特性存在三个温度区间,并根据结果选择了300℃到600℃作为研究区间。在该温度范围内对ZnO薄膜的物相特性、电学特性和光学特性与退火温度和气氛的关系进行了系统研究。实验发现,氧气气氛可以明显减少薄膜内部氧缺陷的含量,从而降低载流子浓度,使薄膜的电学特性由导体向半导体转换。研究了直流磁控溅射淀积的ZnO薄膜特性和生长温度的关系,当衬底温度达到300℃时,薄膜的结晶性明显改善,带边发射增强。而用溶胶凝胶法淀积的ZnO薄膜结晶性能较差,在退火温度低于500℃时,薄膜为非晶形态,但是PL谱中薄膜表现出良好的光学特性,具有较为单一的紫外光发射。
     第二部分制备了n-ZnO薄膜/p-Si异质结,研究了ZnO薄膜不同气氛和温度的淀积条件对异质结电学特性如开关比和电流传输特性的影响。实验表明,在正向电压下异质结导通电流可以分为线性电流区、隧道-复合电流区和空间电荷限制电流区。通过变温测试,验证了不同的导电机理:隧道-复合电流不依赖于测试温度的变化;空间电荷限制电流随着温度的升高而减小,根据Rose理论反映出缺陷在能带中的分布对载流子输运的影响。
     在第三部分中用离子束溅射和溶胶凝胶法制备了ZnO薄膜晶体管,并研究了工艺条件对器件性能的影响。实验发现,采用离子束淀积的ZnO薄膜由于载流子浓度较高,必须在氧气条件下进行退火处理,降低薄膜的导电特性。经过氧气退火的样品,晶体管的开关比和场效应迁移率随着温度的升高而增加。但是延长退火时间会造成介质层漏电流增大,引起器件开关比降低。研究了不同后期退火温度、电极材料以及掺杂对溶胶凝胶法制作的ZnO-TFT性能的影响。实验发现,选择与ZnO薄膜有高肖特基势垒的Pt作为源漏电极时晶体管的导通电流明显减小,并且可以迅速进入饱和区。通过对ZnO与Pt接触特性的研究发现,ZnO与Pt之间势垒达到0.89 eV。该类源-栅薄膜晶体管器件在低功耗小尺寸电路的应用中具有一定的潜力。针对溶胶凝胶法易掺杂的特点,研究了不同的In掺杂对器件性能的影响。随着In含量的增加,器件的开关比降低,但是迁移率由未掺杂的0.061 cm2/V·s增加到5%In掺杂的0.246 cm2/V·s,选择合适的掺杂浓度显得非常重要。此外利用日本制备的GIZO薄膜制备了TFT器件,经过500℃空气退火场效应迁移率达到3.48 cm2/V·s。
     第四部分中我们研究了ZnO纳米结构制备场效应晶体管。通过水热法在低温条件下合成了ZnO纳米棒阵列,采用Pt作为源漏电极,ZnO纳米棒阵列作为导电沟道层制作了背栅结构的场效应晶体管。相比ZnO薄膜场效应晶体管,纳米场效应晶体管由于缺陷的减少具有更高的导通电流。通过纳米棒的图形化生长,减少了纳米棒之间“结”所引入的缺陷,载流子迁移率达到了6.7 cm2/V·s。整个工艺温度控制在300℃以下,与柔性衬底上的应用相兼容。
ZnO-TFT has several advantages over the tranditional Si-TFT for the low growth temperature, high carrier mobility and transparency properties, which can be widely used in flat panel display as switch arrays or driver in the future. This work has carried out the research on "ZnO thin film properties by different deposition method" and "ZnO based device investigation". The dissertation has four sections as summarized below.
     In the first part, we investigate the influence of the deposition condition and post annealing treatment on the properties of the ZnO films. For the films grown by the ion beam deposition, the in-situ XRD (X-Ray diffraction) results reveal the existence of three regions during annealing process and proves that most of the improvement for the films' properties occurs in the temperature region of 100℃to 300℃. The effects of post-annealing treatment on the performance of the ZnO thin films in this region have been investigated. For the ZnO films deposited by the DC magnetron sputtering, the relationship between the films'properties and the deposition conditions has been studied. For the films deposited by the sol-gel method, the effects of the annealing temperature on the films' physical and optical properties have been reported.
     In the second part, we prepared the n-ZnO film/p-Si heterojunction. The effect of the growth condition on the heterojunctions'properties, such as on/off ratio and current transport has been studied. The different carrier transport mechanism for the heterojunctions under forward and reverse bias is systematically studied which has been proved by the high temperatureⅠ-Ⅴmeasurement. With the increasing measurement temperature, the recombination-tunneling current shows temperature insensitive performance. But the space-charge limited current (SCLC) changes with the temperature which results from the trap assistant in the junction.
     In the third part, we prepared the ZnO-TFTs by the ion beam deposition and sol-gel method. All as-deposited ZnO films prepared by the ion beam sputtering need annealing treatment in the air ambient or O2 ambient to decrease the carrier concentration in the film. The correlation between the TFT's performance and the annealing treatment is studied. For the ZnO film deposited by the sol-gel method, the transistor fabricated with Pt electrode exhibits lower saturation voltage and current, which is due to the Schottky contact between the Pt electrode and the ZnO film. This kind of Source-gate transistor has the advantage of low power consumption.
     The study on the In-doped ZnO-TFT shows that increasing the In content results in higher carrier mobility but lower on/off ratio. The ZnO-TFT has the carrier mobility of 0.061 cm2/V-s while the one with 5% In doping is 0.246 cm2/V-s. The effects of annealing treatment on the GIZO-TFT's properties have also been studied. For the GIZO-TFT annealed at 500℃in air, the mobility reaches 3.48 cm2/V-s.
     Finally, the properties of the ZnO nanorods network transistor have been studied. The channel region is defined by selective growth of the ZnO nanorods on the patterned seed layer. The device obeys the n-type depletion mode with the Ion/Ioff ratio of 103 and field effect mobility of 6.7 cm2/Vs. The fabrication temperature of the whole process is below 300℃which has great potential in the application on flexible substrate.
引文
[1]DisplaySearch.2010年液晶电视出货将超过1亿8千万台.(2010-03-24)http://www.displaysearch.com.cn/press releases/20100324.php
    [2]D. Sarangi, I. Arfaoui, J. M. Bonard. Growth of CNTs on 304 Stainless Steel Using Sparked iron as a Catalyst [J]. Phys. B,2002,165:323-326.
    [3]J. H. Choi, S. H. Choi, J. H. Han, J. B. Yoo, C. Y. Park, T. Jung, S. Yu, I. T. Han, and J. M. Kim. Enhanced electron emission from carbon nanotubes through density control using in situ plasma treatment of catalyst metal [J]. J. Appl. Phys.,2003,94(1):487-490
    [4]DisplaySearch根据DisplaySearch最新关于OLED出货调查指出2009年OLED出货持续成长达8亿2千6百万美元,年成长率35%,同时AMOLED出 货 金 额 首 次 超 越PMOLED. (2010-04-2) http://www.displaysearch.com.cn/press releases/20100402.php
    [5]张志伟,荆海,邝俊峰,蔡克炬,郜峰利,朱长春.TFT-OLED驱动电路的研究[J].液晶与显示,2004,19(6):472-476
    [6]M. J. Powell, C. Berkel, and J. R. Hughes. Time and temperature dependence of instability mechanisms in amorphous silicon thin-film transistors [J]. Appl. Phys. Lett.,1989,54(14):1323-1325
    [7]R. Ishihara, P.C.V.D. Wilt, B.D.V. Dijk, J.W. Metselaar, and C.I.M. Beenakker. Property of Single-Crystalline Si TFTs Fabricated with u-Czochralski (Grain Filter) Process [C]. Conference on Poly-Silicon Thin Film Transistor Technology and Applications in Displays and Other Novel Technology Areas, 2003:10-19
    [8]J. Levinson, F. Shepherd, P. J. Scanlon, W. Westwood, G. Este, and M. Rider. Conductivity behavior in polycrystalline semiconductor thin film transistor [J]. J. Appl. Phys.,1982,53:1193-1202
    [9]K. R. Olasupo and M. K. Hatalis. Leakage current mechanism in submicron poly silicon thin-film transistors [J]. IEEE Trans. Electron Devices,1996, 43(8):1218-1223
    [10]Y. C. Wu, T. C. Chang, P. T. Liu, C. W. Chou, Y. C. Wu, C. H. Tu, and C. Y. Chang. Reduction of Leakage Current in Metal-Induced Lateral Crystallization Polysilicon TFTs With Dual-Gate and Multiple Nanowire Channels [J]. IEEE ELECTRON DEVICE LETTERS,2005,29(9):646-648
    [11]C. D. Dimitrakopoulos and D. J. Mascaro. Organic Thin-Film Transistors:A Review. IBM Journal of Research and Development,2001,45 (1):11-27
    [12]C. W. Bunn. The lattice-dimensions of zinc oxide [J]. Proc. Phys. Soc. London.,1935,47:835-842
    [13]T. C. Damen, S. P. S. Porto, and B. Tell. Raman Effect in Zinc Oxide [J]. Phys. Rev.,1966,142:570-574
    [14]C. A. Mead. Metal-semiconductor surface barriers [J]. Phys. Lett.,1965,18: 218-228
    [15]T. Minami, M. Tanigawa, M. Yamanishi, and T. Kawamura. Fabrication and Near-UV Emission of p-SrCu2O2/n-ZnO Heterojunction LED [J]. Jpn. J. Appl., 1974,13:1475-1484
    [16]Tsurkan et al., ZnO/ZnSe n-p junctions [J]. Semiconductors 1975,6: 1183-1185
    [17]L. J. Brillson. Chemical reaction and charge redistribution at metal-semiconductor interfaces [J]. J. Vac. Sci. Technol.1978,15(4):1378-1383
    [18]D. C. Look and B. Claflin. P-type doping and devices based on ZnO [J]. phys. stat. sol. B,2004,241 (3):624-630
    [19]D. C. Reynolds, D. C. Look, B. Jogai, C. W. Litton, G Cantwell, and W.C. Harsch. Valence-band ordering in ZnO [J]. Phys. Rev. B,1999,60:2340-2344
    [20]D. Chakraborti, S. Ramachandran, G. Trichy, J. Narayan and J. T. Prater. Magnetic, electrical, and microstructural characterization of ZnO thin films codoped with Co and Cu [J]. J. Appl. Phys.,2007,101:053918-1-053918-7
    [21]R. L. Hoffman, B. J. Norris and J. F. Wager. ZnO-based transparent thin-film transistors [J]. Appl. Phys. Lett.,2003,82(5):733-735
    [22]Y.M. Sun. Ph.D. Thesis. University of Science and Technology of China,2000
    [23]E. Fortunato, A. Pimentel, L. Pereira, A. Goncalves, G. Lavareda, H. Aguas, I. Ferreira, C. N. Carvalho, R. Martins. High field-effect mobility zinc oxide thin film transistors produced at room temperature [J]. J. Non-Cryst. Solids,2004, 338-340:806-809
    [24]P. F. Carcia, R. S. McLean, M. H. Reilly and G. Nunes. Transparent ZnO thin-film transistor fabricated by rf magnetron sputtering [J]. Appl. Phys. Lett., 2003,82(7):1117-1119
    [25]S. Masuda, K. Kitamura, Y. Okumura, S. Miyatake, H. Tabata and T. Kawai. Transparent thin film transistors using ZnO as an active channel layer and their electrical properties [J]. J. Appl. Phys.,2003,93(3):1624-1630
    [26]H. C. Cheng, C. F. Chen and C. C. Lee. Thin-film transistors with active layers of zinc oxide (ZnO) fabricated by low-temperature chemical bath method [J]. Thin solid Films,2006,498:142-145
    [27]D. Redinger and V. Subramanian. High-Performance Chemical-Bath-Deposited Zinc Oxide Thin-Film Transistors [J]. IEEE Trans. Electron. Devices,2007,54(6):1301-1307
    [28]H. C. Cheng, C. F. Chen and C. Y. Tsay. Transparent ZnO thin film transistor fabricated by sol-gel and chemical bath deposition combination method [J]. Appl. Phys. Lett.,2007,90:012113-1-012113-3
    [29]Y. H. Hwang, S. J. Seo and B. S. Bae. Fabrication and characterization of sol-gel-derived zinc oxide thin-film transistor [J]. J. Mater. Res.,2010,25(4): 695-700
    [30]K. Lee, J. H. Kim, S. Im, C. S. Kim and H. K. Baik. Low-voltage-driven top-gate ZnO thin-film transistors with polymer/high-k oxide double-layer dielectric [J]. Appl. Phys. Lett.,2006,89:133507-1-133507-3
    [31]P. F. Carcia, R. S. McLean, and M. H. Reilly. High-performance ZnO thin-film transistors on gate dielectrics grown by atomic layer deposition [J]. Appl. Phys. Lett.,2006,88:123509-1-123509-3
    [32]K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano and H. Hosono. Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors [J]. Nature,2004,432(25):488-491
    [33]W. J. Park, H. S. Shin, B. D. Ahn, G. H. Kim, S. M. Lee, K. H. Kim, and H. J. Kim. Investigation on doping dependency of solution-processed Ga-doped ZnO thin film transistor [J]. Appl. Phys. Lett.,2008,93:083508-1-083508-3
    [34]C. Y. Tsay, M. C. Wang and S. C. Chiang. Characterization of Znl-xMgxO Films Prepared by the Sol-Gel Process and Their Application for Thin-Film Transistors [J]. J. Electron. Mater.2009,38(9):1962-1968
    [35]D. Kim, C. Y. Koo, K. K. Song, Y. M. Jeong, and J. H. Moon. Compositional influence on sol-gel-derived amorphous oxide semiconductor thin film transistors [J]. Appl. Phys. Lett.,2009,95:103501-1-103501-3
    [36]B. Yaglioglu, H. Y. Yeom, R. Beresford, and D. C. Paine. High-mobility amorphous In2O3-10 wt %ZnO thin film transistors [J]. Appl. Phys. Lett., 2006,89:062103-1-062103-3
    [37]P. Barquinha, L. Pereira, G. Goncalves, R. Martins, and E. Fortunato. The Effect of Deposition Conditions and Annealing on the Performance of High-Mobility GIZO TFTs [J]. Electrochem. Solid-State Lett.,2008,11(9): H248-H251
    [38]J. H. Na, M. Kitamura, and Y. Arakawa. High field-effect mobility amorphous InGaZnO transistors with aluminum electrodes [J]. Appl. Phys. Lett.,2008,93: 063501-1-063501-3
    [39]P. C. Chang, Z. Y. Fan and C. J. Chien. High-performance ZnO nanowire field effect transistors [J]. Appl. Phys. Lett.,2006,89:133113-1-133113-3
    [40]K. Keem, D. Y. Jeong and S. Kim. Fabrication and Device Characterization of Omega-Shaped-Gate ZnO Nanowire Field-Effect Transistors [J]. Nanoletters. 2006,6(7):1454-1458
    [41]S. H. Ko, I. Park, H. Pan, N. Misra, M. S. Rogers, C. P. Grigoropoulos, and A. P. Pisano. ZnO nanowire network transistor fabrication on a polymer substrate by low-temperature, all-inorganic nanoparticle solution process [J]. Appl. Phys. Lett.,2008,92:154102-1-154102-3
    [42]L. Zhang, H. Zhang, Y. Bai, J. W. Ma, J. Cao, X. Y. Jiang and Z. L. Zhang. Enhanced performances of ZnO-TFT by improving surface properties of channel layer [J]. Solid State Commun.,2008,146:387-390
    [43]X. A. Zhang, J. W. Zhang, W. F. Zhang, D. Wang, Z. Bi, X. M. Bian, and X. Hou. Enhancement-mode thin film transistor with nitrogen-doped ZnO channel layer deposited by laser molecular beam epitaxy [J]. Thin solid Films, 2008,516:3305-3308
    [44]H. Dislich. New routes to multicomponent oxide glasses [J]. Angew. Chem. Int. Ed.,1971,10(6):363-370
    [45]肖宗湖,张萌.[J].功能材料,2007,12(8):2015-2020
    [46]A. Valentini, F. Quaranta, M. Penza, F. R. Rizzi. The stability of zinc oxide electrodes fabricated by dual ion beam sputtering [J]. J. Appl. Phys.,1993,73 (3):1143-1145
    [47]S. Jeong, B. Kim, and B. Lee. Photoluminescence dependence of ZnO films grown on Si (100) by radio-frequency magnetron sputtering on the growth ambient [J]. Appl. Phys. Lett.,2003,82:2625-2627
    [48]M. Suchea, S. Christoulakis, N. Katsarakis, T. Kitsopoulos and G. Kiriakidis. Comparative study of zinc oxide and aluminum doped zinc oxide transparent thin films grown by direct current magnetron sputtering [J]. Thin Solid Films, 2007,515:6562-6566
    [49]V. Gupta and A. Mansingh. Influence of post deposition annealing on the structural and optical properties of sputtered zinc oxide film [J]. J. Appl. Phys., 1996,80:1063-1073
    [50]S. L. King, J. G. E. Gardeniers, and I.. W. Boyd. Pulsed-laser deposited ZnO for device applications [J]. Appl. Surf. Sci.,1996,96:811-818
    [51]G. Z. Xing, B. Yao, C. X. Cong, T. Yang, Y. P. Xie, B. H. Li and D. Z. Shen. Effect of annealing on conductivity behavior of undoped zinc oxide prepared by rf magnetron sputtering [J]. J. Alloy. Compd.2008,457:36-41
    [52]X. Q. Wei, Z. G. Zhang, M. Liu, C. S. Chen, G. Sun, C. S. Xue, H. Z. Zhuang and B. Y. Man. Annealing effect on the microstructure and photoluminescence of ZnO thin films Mater [J]. Chem. and Phys.2007,101:285-290
    [53]S. J. Kang, Y. H. Joung, H. H. Shin and Y. S. Yoon. Effect of substrate temperature on structural, optical and electrical properties of ZnO thin films deposited by pulsed laser deposition [J]. J. Mater. Sci:Mater. Electron., 2008,19:1073-1078
    [54]B. E. Sernelius, K. F. Berggren, Z. C. Jim, I. Hamberg and C. G. Granqvist. Band-gap tailoring of ZnO by means of heavy Al doping [J]. Phys. Rev. B. 1988,37(17):10244-10248
    [55]S. Maniv, W. D. Westwood, E. Colombini. Pressure and angle of incidence effects in reactive planar magnetron sputtered ZnO layers [J]. J. Vac. Sci. Technol.,1982,20(2):162-170
    [56]B. J. Coppa, R. F. Davis, R. J. Nemanich. Gold Schottky contacts on oxygen plasma-treated, n-type ZnO (0001) [J]. Appl. Phys. Lett.,2003,82 (3): 400-403
    [57]J.C.C. Fan, J. B. Goodenough. X-ray photoemission spectroscopy studies of Sn-doped indium-oxide films [J]. J. Appl. Phys.,1977,48:3524-3531
    [58]S. Major, S. Kumar, M. Bhatnagar, K. L. Chopra. Effect of hydrogen plasma treatment on transparent conducting oxides [J]. Appl. Phys. Lett.,1986,49: 394-396
    [59]U. Ozgur, Ya. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Dogan, V. Avrutin, S. J. Cho, and H. Morkoc. A comprehensive review of ZnO materials and devices [J]. J. Appl. Phys.,2005,98:041301-1-041301-103
    [60]A. Pimentel, E. Fortunato, A. Gonc,alves, A. Marques, H. Aguas, L. Pereira, I.Ferreira, R. Martins. Polycrystalline intrinsic zinc oxide to be used in transparent electronic devices [J]. Thin Solid Films,2005,487:212-215
    [61]S. Jeong, B. Kim, and B. Lee. Photoluminescence dependence of ZnO films grown on Si(100) by radio-frequency magnetron sputtering on the growth ambient [J].Appl. Phys. Lett.2003,82:2625-2627
    [62]S. J. Chen, Y. C. Liu, J. G. Ma, Y. M. Lu, J. Y. Zhang, D. Z. Shen, and X. W. Fan. Effects of thermal treatment on the properties of ZnO films deposited on MgO-buffered Si substrates [J]. J. Cryst. Growth,2003,254:86-91
    [63]X.Q. Wei, B.Y. Man, M. Liu, C.S. Xue, H.Z. Zhuang, C. Yang. Blue luminescent centers and microstructural evaluation by XPS and Raman in ZnO thin films annealed in vacuum, N2 and O2 [J]. Physica B,2007,388: 145-152
    [64]X. L. Wu, G. G. Siu, C. L. Fu and H. C. Ong. Photoluminescence and cathodoluminescence studies of stoichiometric and oxygen-deficient ZnO films [J]. Appl. Phys. Lett.,2001,78:2285-2287
    [65]H. K. Kim and M. Mathur. ZnO Films Deposited on GaAs Substrates With a SiO2 Thin Buffer Layer [J]. J. Elec. Mate.,1993,22:267-273
    [66]R. Menon, K. Sreenivas, and V. Gupta. Influence of stress on the structural and dielectric properties of rf magnetron sputtered zinc oxide thin film [J]. J. Appl. Phys.,2008,103:094903-1-094903-9
    [67]C. R. Aita, A. J. Purdes, R. J. Lad, and P. D. Funkenbusch, The effect of O2 on reactively sputtered zinc oxide [J]. J. Appl. Phys.,1980,51(10):5533-5536
    [68]S. Mridha and D. Basak. Effect of thickness on the structural, electrical and optical properties of ZnO films [J]. Materials Research Bulletin,2007,42: 875-882
    [69]S. Fujihara, C. Sasaki and T. Kimura. Crystallization behavior and origin of c-axis orientation in sol-gel-derived ZnO:Li thin films on glass substrates [J].Appl. Surf. Sci.,2001,180:341-350
    [70]M.L. Cui, X.M. Wu, L.J. Zhuge, Y.D. Meng. Effects of annealing temperature on the structure and photoluminescence properties of ZnO films [J]. Vacuum, 2007,81:899-903
    [71]H. P. Maruska, F. Namavar and N. M. Kalkhoran. Current injection mechanism for porous-silicon transparent surface light-emitting diodes [J]. Appl. Phys. Lett.,1992,61:1338-1340
    [72]C. Yuen, S. F. Yu, S. P. Lau, Rusli and T. P. Chen. Fabrication of n-ZnO:Al/p-SiC(4H) heterojunction light-emitting diodes by filtered cathodic vacuum arc technique [J]. Appl. Phys. Lett.2005,86:241111-1-241111-3
    [73]Ya. I. Alivov, E. V. Kalinina, A. E. Cherenkov, D. C. Look, B. M. Ataev, A. K. Omaev, M. V. Chukichev and D. M. Bagnall. Fabrication and characterization of n-ZnO/p-AlGaN heterojunction light-emitting diodes on 6H-SiC substrates [J]. Appl. Phys. Lett.,2003,83:4719-4721
    [74]P. L. Chen, X. Y. Ma and D. R. Yang. Electroluminescent and carrier transport mechanisms of MgxZn1-xO/Si heterojunctions [J]. J. Appl. Phys., 2007,101:053103-1-053103-6
    [75]J. D. Ye, S. L. Gu, S. M. Zhu, W. Liu, S. M. Liu, R. Zhang, Y. Shi and Y. D. Zheng. Electroluminescent and transport mechanisms of n-ZnO/p-Si heterojunctions [J]. Appl. Phys. Lett.,2006,88:182112-1-182112-3
    [76]J. W. Sun, Y. M. Lu, Y. C. Liu, D. Z. Shen, Z. Z. Zhang, B. H. Li, J. Y. Zhang, B. Yao, D. X. Zhao and X. W. Fan. Excitonic electro-luminescence from ZnO-based heterojunction light emitting diodes [J]. J. Phys. D:Appl. Phys., 2008,41:155103
    [77]M. Dutta and D. Basak. P-ZnO/n-Si heterojunction:Sol-gel fabrication, photoresponse properties, and transport mechanism [J]. Appl. Phys. Lett., 2008,92:212112-1-212112-3
    [78]J. B. Fedison, T. P. Chow, H. Lu, and I. B. Bhat. Electrical characteristics of magnesium-doped gallium nitride junction diodes [J]. Appl. Phys. Lett.,1998, 72(22):2841-2843
    [79]P. N. Murgatroyd. Theory of space-charge-limited current enhanced by Frenkel effect [J]. J. Phys. D:Appl. Phys.,1970,3:151-156
    [80]A. Rose. Space-Charge-limited Currents in Solids [J]. Phys. Rev.,1955,97(6): 1538-1544
    [81]M. Ahmetoglu. Electrical transport at a isotype type Ⅱ heterojunctions in the system of GaSb-GaInAsSb [J]. Thin Solid Films,2008,516:1227-1231
    [82]A. R. Riben, D. L. Feucht. nGe-pGaAs heterojunction [J]. Solid State Electron.,1966,9:1055
    [83]S. M. Sze, Physics of Semiconductor Devices,2nd ed. (Wiley, new York, 1981)
    [84]R. Ghosh and D. Basaka. Electrical and ultraviolet photoresponse properties of quasialigned ZnO nanowires/p-Si heterojunction [J]. Appl. Phys. Lett.,2007, 90:243106-1-243106-3
    [85]D. Hong, G. Yerubandi, H. Q. Chiang, M. C. Spiegelberg, J. F. Wager. Electrical Modeling of Thin-Film Transistors [J]. Crit. Rev. Solid State Mater. Sci.,2008,33:101-132
    [86]J. Levinson, F. R. Shepherd, P. J. Scanlon, W. D. Westwood,G. Este, and M. Roder. Conductivity behavior in polycrystalline semiconductor thin film transistor [J]. J. Appl. Phys.,1982,53(2):1193-1202
    [87]K. Ip, G. T. Thaler, H. Yang, S. Y. Han, Y. J. Li, D.P. Norton, S. J. Pearton, S. Jang, F. Ren. Contacts to ZnO [J]. J. Cryst. Growth,2005,287:149-156
    [88]A. Suresh and J. F. Mutha. Bias stress stability of indium gallium zinc oxide channel based transparent thin film transistors [J]. Appl. Phys. Lett.,2008,92: 033502-1-033502-3
    [89]J. M. Shannon and E. G. Gerstner. Source-Gated Thin-Film Transistors [J]. IEEE ELECTRON DEVICE LETTERS,2003,24(6):405-407
    [90]姚绮君.基于氧化物半导体的薄膜晶体管(博士论文).2008:50-51
    [91]H.i Endo, M. Sugibuchi, K. Takahashi, S. Goto, S. Sugimura, K. Hane and Y. Kashiwaba. Schottky ultraviolet photodiode using a ZnO hydrothermally grown single crystal substrate [J]. Appl. Phys. Lett.,2007,90: 121906-1-121906-3
    [92]M. S. Oh, D. K. Hwang, J. H. Lim, Y. S. Choi, and S. J. Parka. Improvement of Pt Schottky contacts to n-type ZnO by KrF excimer laser irradiation [J]. Appl. Phys. Lett.,2007,91:042109-1-042109-3
    [93]J. S. Park, J. K. Jeong, H. J. Chung, Y. G. Mo, and H. D. Kim. Electronic transport properties of amorphous indium-gallium-zinc oxide semiconductor upon exposure to water [J]. Appl. Phys. Lett.,2008,92:072104-1-072104-3
    [94]J. K. Jeong, J. H. Jeong, H. W. Yang, J. S. Park, Y. G. Mo, and H. D. Kim. High performance thin film transistors with cosputtered amorphous indium gallium zinc oxide channel [J]. Appl. Phys. Lett.,2007,91: 113505-1-113505-3
    [95]B. Sun and H. Sirringhaus. Solution-Processed Zinc Oxide Field-Effect Transistors Based on Self-Assembly of Colloidal Nanorods [J]. Nano Lett., 2005,5 (12):2408-2413
    [96]B. Sun, R. L. Peterson, and H. Sirringhaus. Low-Temperature Sintering of In-Plane Self-Assembled ZnO Nanorods for Solution-Processed High-Performance Thin Film Transistors [J]. J. Phys. Chem. C,2007,111 (51): 18831-18835
    [97]W. K. Hong, J. I. Sohn, D. K. Hwang, S. S. Kwon, G. Jo, S. Song, S. M. Kim, H. J. Ko, S. J. Park, M. E. Welland, and T. Lee. Tunable Electronic Transport Characteristics of Surface-Architecture-Controlled ZnO Nanowire Field Effect Transistors [J]. Nano Lett.,2008,8 (3):950-956
    [98]J. Yanga, J. Zhenga, H. Zhaia, X. Yangb, L. Yanga, Y. Liua, J. Langa, M. Gao. Oriented growth of ZnO nanostructures on different substrates via a hydrothermal method [J]. J. Alloys Compd.,2010,489:51-55
    [99]N. K. Reddy, Q. Ahsanulhaq, J. H. Kim, and Y. B. Hahn. Behavior of n-ZnO nanorods/p-Si heterojunction devices at higher temperatures [J]. Appl. Phys. Lett.,2008,92:042109-1-042109-3
    [100]P. Klason, O. Nur and M. Willander. Electrical characteristics and stability of gold and palladium Schottky contacts on ZnO nanorods [J]. Nanotechnology, 2008,19:475202-1-475202-5
    [101]N. K. Reddy, Q. Ahsanulhaq, and Y. B. Hahn. Fabrication of zinc oxide nanorods based heterojunction devices using simple and economic chemical solution method [J]. Appl. Phys. Lett.,2008,93:083124-1-083124-3
    [102]Klason P 2008 Zinc oxide bulk and nanorods:a study of the optical and mechanical properties. PhD Thesis, University of Gothenburg
    [103]P. Gao, J. L. Brent, B. A. Buchine, B. Weinstraub, Z. L. Wang, and J. L. Lee. Bridged ZnO nanowires across trenched electrodes [J]. Appl. Phys. Lett.,2007, 91:142108-1-142108-3

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700