CuInSe_2和TiO_2半导体薄膜的液相法制备及其异质结构特性
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
以TiO_2为光阳极,CuInSe_2为无机敏化层的NPC太阳能电池造价低、易制造、大气稳定。本文采用连续离子层吸附反应(SILAR)法和电沉积法研究了CuInSe_2薄膜制备,同时采用溶胶-凝胶法研究了TiO_2薄膜制备,最后在TiO_2基底上采用电沉积法制备CuInSe_2薄膜,研究了CuInSe_2敏化TiO_2异质结构的特性。
     利用SILAR法制备CuInSe_2薄膜时,首次采用三乙醇胺络合Cu~(2+)离子和柠檬酸钠络合In~(3+)离子的双络合法制备了混合阳离子前驱体溶液,调整阳离子前躯体溶液pH值至8。结果表明,该混合阳离子溶液制备的薄膜容易实现Cu、In、Se三种元素的均匀分布。前躯体溶液水浴温度的提高可以显著加快薄膜的生长速度。当溶液中Cu/In比为1.5时,CuInSe_2薄膜中的元素比在400℃下热处理30min后比较接近1:1:2的化学计量。适当提高热处理温度和延长热处理时间均有利于改善CuInSe_2薄膜的晶化。
     利用电沉积法制备CuInSe_2时,采用柠檬酸钠络合Cu、In、Se元素,将溶液pH值调制6~7之后,Se成为最难沉积的元素,由于三种元素沉积电位相差大,首次提出了采用双阶跃恒电位(DPSED)法沉积CuInSe_2薄膜,双电位参数分别为V1=-800mV,V2=-1400mV。阶跃时间的变化对沉积薄膜的组分和形貌有一定影响,阶跃时间t1=30s,t2=60s最合适。当电解液CuCl_2/InCl_3/SeO_2摩尔比为2/0.4/4~5时,DPSED法制备的薄膜接近1:1:2的化学计量,所制备的薄膜的禁带宽度为1.05eV。
     溶胶-凝胶法制备介孔TiO_2时,采用钛酸异丙脂(Ti(O~iPr)_4)为钛源,乙醛肟(CH_3CH=NOH)为络合剂,分别利用表面活性剂F127和Brij56作为成孔剂,350~400℃下热分解。研究表明,采用CH_3CH=NOH络合修饰的Ti(O~iPr)_4制备的TiO_2在较高焙烧温度时,仍然可以得到具有高比表面积,小的粒径和窄的孔径分布的TiO_2材料。在350℃下煅烧之后利用F127作为成孔剂的样品的最高比表面积可达219m~2/g,利用Brij56作为成孔剂的样品的最高比表面积可达283m~2/g。
     以TiO_2为基底制备CuInSe_2时其沉积电位要比在ITO玻璃上沉积时负移近200mV,阶跃参数为V1=-1000mV, t1=30s, V2=-1600mV, t2=60s时制备CuInSe_2薄膜最接近Cu: In: Se=1:1:2的化学计量,循环6次后所制备的CuInSe_2薄膜的厚度约为300nm。ITO/TiO_2/CuInSe_2/电解液/Pt电池的最大开路电压出现在贫Cu富Se的样品,为446 mV,最大短路电流为0.0054 mA/cm~2。
The NPC solar cell is a very promising kind of solar cells as it is cheap, easy to manufacture and high air stability. Here TiO_2 was used as photo-anode, and CuInSe_2 as inorganic sensitizer. CuInSe_2 films were prepared both by successive ionic layers adsorption and reaction (SILAR) method and electrodeposition method on glass substrate, and TiO_2 films were prepared by Sol-Gel method. Subsequently, the CuInSe_2 films were electrodeposited on TiO_2 films to form TiO_2/CuInSe_2 heterogeneous structure.
     In the CuInSe_2 preparation by SILAR method, triethanolamine and sodium citrate were used to complex Cu~(2+) and In~(3+), respectively, to form the Cu and In mixed cationic precursor solutions. The results indicitated that the Cu and In mixed cationic precursor solutions resulted in more uniform distribution for Cu, In and Se elements than the separated cationic precursors. The temperature elevation of precursor solutions could accelerate the growth of CuInSe_2 films. Chalcopyrite CuInSe_2 thin film with near stoichiometry was obtained from Cu/In mol ratio =1.5 in mixed cationic precursor solution after annealed at 400℃for 30min. The suitable rise of annealing temperature and time is beneficial for improvement of CuInSe_2 crystallization.
     In the process of CuInSe_2 electrodeposition, sodium citrate were used to complex Cu, In and Se elements in order to tune the pH value to 6~7. In this mild solution conditions, the deposition potentials for Cu, In, and Se elements had a big difference with each other, and Se element required the most negative potential to be deposited. Thus, one step electrodepostion with an alternating double-potentiostatic (DPSED) program was used to prepare CuInSe_2 thin films in the nearly neutral aqueous electrolytes, and the double potential parameters were V1=-800mV and V2=-1400mV. The step time had influences on the morphology and components of CuInSe_2 films, and the appropriate time were t1=30s and t2=60s. When the Cu/In/Se mol ratio was 2/0.4/4~5 in the electrolytes, the deposited CuInSe_2 films were near to Cu: In: Se = 1:1:2 stoichiometry, and the band gap is 1.05eV.
     In TiO_2 Sol-Gel preparation, acetaldoxime (CH_3CH=NOH) was used as a new ligand, and F127 and Brij56 were used as pore-forming agent. The organic parts were decomposed at 350~400℃. The results showed that the TiO_2 prepared by CH_3CH=NOH-modified Ti(OiPr)4 could preserve high BET surface, small particle size and narrow pore distribution even at higher calcinating temperature. The highest BET surface is 219m~2/g for TiO_2 sample with F127 and 283m~2/g for sample with Brij56, respectively, after calcinated at 350℃.
     For the CuInSe_2 electrodeposition on TiO_2 substrate, the deposition potentials had nearly 200mV negative shift compared with the deposition potentials on ITO substrate. Thus the best deposition parameters were changed to V1=-1000mV, t1=30s, V2=-1600mV, t2=60s, under which the prepared CuInSe_2 films were near 1:1:2 stoichiometry. After 6 cycles, the thickness of prepared CuInSe_2 films was about 300nm. The heterogeneous solar cell was designed as ITO/TiO_2/CuInSe_2/electrolyte/Pt structure. The biggest open-circuit voltage was 446mV, and the biggest short-circuit current was 0.0054 mA/cm~2.
引文
[1]H. B. Richard, Photovoltalic Materials, Imperial College Press, London, 1998.
    [2]A. E. Becquerel, Memoire sur les effetsélectriques produits sous l’influence des rayons solaires. C. R. Acad. Sci. 9 (1839) 561– 567.
    [3]W. G. Adams, R. E. Day, The action of Light on Selenium. Proceeding of the Royal Society of London 25 (1877) 113-117.
    [4]D. M. Chapin, C. S. Fuller, G. L. Pearson, A New Silicon p-n Junction Photocell for Converting Solar Radiation into Electrical Power. Journal of Applied Physics 25 (1954) 676-677.
    [5]P. J. Verlinden, R. M. Swanson, R. A. Sinton, D. E. Kane, Multilevel Metallization for Large Area Point-Contact Solar Cells, in, Proc. 20th IEEE Photovoltaic Specialists Conf., Las Vegas, 1988, pp. 532-537.
    [6]J. A. Bragagnolo, R. W. Brikmire, J. E. Phillips, Thin-film CdS/Cu2S cells with high open-circuit voltage and low reflection losses, in, Photovoltaic Specialists Conference, 14th,, San Diego, Calif., 1980, pp. 11-44.
    [7]D. A. Jenny, J. J. Loferski, P. Rappaport, Photovoltaic effect in GaAs diffusion junctions. Bulletin of the American Physical Society 1 (1956) 111.
    [8]A. Fujishima, K. Honda, Electrochemical photolysis of water at a semiconductor electrode. Nature 238 (1972) 37-38.
    [9]http://en.wikipedia.org/wiki/Solar_cell, in.
    [10]http://www.nrel.gov/news/press/2008/625.html, in.
    [11]梁宗存,沈辉,李戬洪,太阳能电池研究进展.能源工程4 (2000) 8-11.
    [12]林鹏,张志峰,有机太阳能电池研究进展.光电子技术24 (2004) 55~60.
    [13]A. Hagfeldt, S.-E. Lindquist, M. Gr?tzel, Charge carrier separation and charge transport in nanocrystalline junctions. Solar Energy Materials and Solar Cells 32 (1994) 245~257.
    [14]B. O. Regan, M. Gr?tzel, A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO_2 films. Nature 353 (1991) 737-740.
    [15]M. K. Nazeeruddin, A.Kay, I. Rodicio, R. Humphry-Baker, E. Mueller, P. Liska, N. Vlachopoulos, M. Graetzel, Conversion of light to electricity by cis-X2bis(2,2'-bipyridyl-4,4'-dicarboxylate)ruthenium(II) charge-transfer sensitizers (X = Cl-, Br-, I-, CN-, and SCN-) on nanocrystalline titanium dioxide electrodes. Journal of the American Chemical Society 115 (1993) 6382-6390.
    [16]M. K. Nazeeruddin, P. Pechy, M. Gr?tzel, Efficient panchromatic sensitization of nanocrystalline TiO_2 films by a black dye based on a trithiocyanato-ruthenium complex. Chemical Communications 10 (1997) 1705-1706.
    [17]U. Bach, D. Lupo, P. Comte, J. E. Moser, F. Weissortel, J. Salbeck, H. Spreitzer, M. Gratzel, Solid-state dye-sensitized mesoporous TiO_2 solar cells with high photon-to-electron conversion efficiencies. Nature 395 (1998) 583-585.
    [18]施永明,赵高凌,染料敏化纳米薄膜太阳能电池的研究进展.材料科学与工程20 (2002) 125-127.
    [19]范乐庆,吴季怀,黄昀等,染料敏化TiO_2纳米晶太阳能电池研究.化工新型材料31 (2003) 14-15.
    [20]孙世国,徐勇前,时磊等,染料敏化纳米晶体光电池.当代化工33 (2004) 47-50.
    [21]鲁厚芳,阎康平,涂铭旌,影响染料敏化二氧化钛纳米晶太阳能电池的因素.现代化工24 (2004) 16-19.
    [22]范乐庆,吴季怀,阴极修饰对染料敏化TiO_2太阳能电池性能的改进.电子元件与材料22 (2003) 1-3.
    [23]M. Gr?tzel, Perspectives for dye-sensitized nanocrystalline solar cells. Progress of Photovoltaic Research and Application 8 (2000) 171-185.
    [24]J. Moller, Ch. H. Fischer, S. Siebentritt, R. Konenkamp, M.C. Lux-Steiner, CuInS2 as an extremely thin absorber in an eta solar cell, in, EUR 18656, 2nd World Conference on Photovoltaic Solar Energy Conversion, Vienna, 1998, pp. 209-211.
    [25]I. Kaiser, K. Ernst, C. H. Fischer, R. Konenkamp, C. Rost, I. Sieber, M.C. Lux-Steiner, The eta-solar cell with CuInS2: A photovoltaic cell concept using an extremely thin absorber (eta). Solar Energy Materials and Solar Cells 67 (2001) 89-96.
    [26]F. Lenzmann, M. Nanu, O. Kijatkina, A. Belaidi, Substantial improvement of the photovoltaic characteristics of TiO_2/CuInS2 interfaces by the use of recombination barrier coatings. Thin Solid Films 451-452 (2004) 639-643.
    [27]C. Lévy-Clément, A. Katty, S. Bastide, F. Zenia, I. Mora, V. Munoz-Sanjose, A new CdTe/ZnO columnar composite film for Eta-solar cells. Physica E: Low-Dimensional Systems & Nanostructures 14 (2002) 229-232.
    [28]R. Tena-Zaera, A. Katty, S. Bastide, C. Lévy-Clément, B. O'Regan, V. Munoz-Sanjose, ZnO/ CdTe /CuSCN, a promising heterostructure to act as inorganic eta -solar cell. Thin Solid Films 483 (2005) 372-377.
    [29]A. Belaidi, R. Bayon, L. Dlozik, K. Ernst, M. Ch. Lux-Steiner, R. Konenkamp, Comparison of different thin film absorbers used in eta-solar cells. Thin Solid Films 431-432 (2003) 488-491.
    [30]R. Vogel, P. Hoyer, H. Weller, Quantum-sized PbS, CdS, Ag2S, Sb2S3, and Bi2S3 particles as sensitizers for various nanoporous wide-bandgap semiconductors. Journal of Physical Chemistry 98 (1994) 3183-3188.
    [31]R. Plass, S. Pelet, J. Krueger, M. Graetzel, U. Bach, Quantum Dot Sensitization of Organic-Inorganic Hybrid Solar Cells. Journal of Physical Chemistry B 106 (2002) 7578-7580.
    [32]A. Zaban, O. I. Micic, B. A. Gregg, A. J. Nozik, Photosensitization of nanoporous TiO_2 electrodes with InP quantum dots. Langmuir 14 (1998) 3153-3156.
    [33]L. Reijnen, B. Meester, A. Goossens, J. Schoonman, Nanoporous TiO_2/Cu1.8S heterojunctions for solar energy conversion. Materials Science & Engineering, C: Biomimetic and Supramolecular Systems C19 (2002) 311-314.
    [34]B. M. Basol, High-efficiency copper indium selenide ( CuInSe2 ) thin-film, solar cells. Doga: Turkish Journal of Physics 17 (1993) 221-233.
    [35]K. Urabe, T. Hama, M. Roy, H. Sato, H. Fujisawa, M. Ohsawa, Y. Ichikawa, H. Sakai, Properties of copper indium selenide ( CuInSe2 ) films for solar cell applications, in, Conference Record of the IEEE Photovoltaic Specialists Conference, 1991, pp. 1082-1087.
    [36]L. L. Kazmerski, S. Wagner, Copper-ternary chalcopyrite solar cells. Curr. Top. Photovoltaics (1985) 41-109.
    [37]T. Warminski, M. Kwietniak, W. Giriat, L. L. Kazmerski, J. J. Loferski, Structural properties of some copper ternary compounds, in, Ternary Multinary Compd., Proc. Int. Conf., 1987, pp. 127-131.
    [38]J. J. Loferski, Stoichiometric effects on the properties of copper based chalcopyrite I–III–VI2 semiconductor thin films. Materlals Science and Engineering: B 13 (1992) 271-277.
    [39]曾隆月,史成武,方霞琴等,纳米ZnO在染料敏化薄膜太阳电池中的应用.中国科学院研究生院学报21 (2004) 393-397.
    [40]A. Venkatarathnam, G.V.S. Rao, Photoelectrochemical studies on single crystal CuInS2/In- system. Materials Chemistry and Physics 16 (1987) 145-155.
    [41]D. Cahen, Y. W. Chen, Stable copper indium selenide (n- CuInSe2 )/iodide-iodine photoelectrochemical cell. U. S. Pat. Appl. PAT-APPL-6-652 396 (1985) 16pp.
    [42]D. O. Rudmann, Effects of Sodium on Growthh and Properties of Cu(In,Ga)Se2 Thin Films and Solar Cells, in, Department of Physics, Swiss Federal Institute of Technology, Zurich, 2004, pp. 187.
    [43]B. J. Stanbery, Copper indium selenides and related materials for photovoltaic devices. Critical Reviews in Solid State and Materials Sciences 27 (2002) 73-113.
    [44]T. Anderson, Processing of CuInSe2-Based Solar Cells: Characterization of Deposition Processes in Terms of Chemical Reaction Analyses, in, University of Florida, Gainesville, FL, 1999, pp. 1-56.
    [45]Z. A. Shukri, C. H. Champness, Effect of nonstoichiometry on conductivity type in Bridgman-grown CuInSe2. Journal of Crystal Growth 191 (1998) 97-107.
    [46]A. Zegadi, M. V. Yakushev, E. Ahmed, Effect of Se content on defect levels in CuInSe2 single crystals detacted by photoacoustie spectrometry, in, IEEE Photovoltaic Specialists Conference, 24th, IEEE, Waikoloa, USA, 1994.
    [47]K. G. Deepa, R. Jayakrishnan, K. P. Vijayakumar, C. Sudha Kartha, V. Ganesan, Sub-micrometer thick CuInSe2 films for solar cells using sequential elemental evaporation. Solar Energy 83 (2009) 964-968.
    [48]R. D. Tomlinson, D. Omezi, J. Parkes, M.J. Hampshire, Some observations on the effect of evaporation source temperature on the composition of CuInSe2 thin films. Thin Solid Films 65 (1980) L3-L6.
    [49]G. P. Vassilev, P. Docheva, N. Nancheva, B. Arnaudov, I. Dermendjiev, Technology and properties of magnetron sputtered CuInSe2 layers. Materials Chemistry and Physics 82 (2003) 905-910.
    [50]J. Piekoszewski, J.J. Loferski, R. Beaulieu, J. Beall, B. Roessler, J. Shewchun, RF-sputtered CuInSe2 thin films. Solar Energy Materials 2 (1980) 363-372.
    [51]S. Niki, I. Kim, P. J. Fons, H. Shibata, A. Yamada, H. Oyanagi, T. Kurafuji, S. Chichibu, H. Nakanishi, Effects of annealing on CuInSe2 films grown by molecular beam epitaxy. Solar Energy Materials and Solar Cells 49 (1997) 319-326.
    [52]H. Takenoshita, Liquid phase epitaxial growth and electrical characterization of CuInSe2. Solar Cells 16 (1986) 65-89.
    [53]J. Kois, S. Bereznev, E. Mellikov, A. ?pik, Electrodeposition of CuInSe2 thin films onto Mo-glass substrates. Thin Solid Films 511-512 (2006) 420-424.
    [54]I. M. Dharmadasa, R. P. Burton, M. Simmonds, Electrodeposition of CuInSe2 layers using a two-electrode system for applications in multi-layer graded bandgap solar cells. Solar Energy Materials & Solar cells 90 (2006) 2191-2200.
    [55]A. A. I. Al-Bassam, Electrodeposition of CuInSe2 thin films and their characteristics. Physica B: Condensed Matter 266 (1999) 192-197.
    [56]J. L. Yang, Z. G. Jin, Y. Shi, C. Y. Li, H. S. An, Effects of post-heat treatment on performance of chalcopyrite CuInSe2 film prepared by SILAR method. Wuji Huaxue Xuebao 21 (2005) 1701-1704.
    [57]涂洁磊,刘祖明,廖华,陈庭金,王东城,三源真空蒸发CuInSe2薄膜的性能.半导体光电19 (1998) 123-127, 132.
    [58]孙小玲,马鸿文, CuInSe2太阳电池薄膜的制备技术及研究进展.地质科技情报15 (1996) 99-104.
    [59]http://fgmdb.kakuda.jaxa.jp/others/FMpro?-DB=chartxt_.fp5&-Lay=web&-Format=j_objlist2.html&paper_reCode=Paper-014-029&-Max=50&-Find.
    [60]http://www.ece.utep.edu/research/cdte/Fabrication/index.htm.
    [61]H. Takenoshita, Liquid phase epitaxial growth and electrical characterization of CuInSe2 Solar Cells 16 (1985) 65-89.
    [62]http://en.wikipedia.org/wiki/Copper_Indium_Gallium_Selenide_Solar_Cells, in.
    [63]L. Thouin, S. Massaccesi, S. Sanchez, J. Vedel, Formation of copper indium diselenide by electrodeposition. J. Electroanal. Chem. 374 (1994) 81-88.
    [64]L. Thouin, J. Vedel, Electrodeposition and characterisation of CuInSe2 thin films. J. Electrochem. Soc. 142 (1995) 2996-3000.
    [65]J. F. Guillemoles, P. Cowache, A. Lusson, K. Fezzaa, F. Boisivon, J. Vedel, D. Lincot, One step electrodeposition of CuInSe2: improved structural, electronic, and photovoltaic properties by annealing under high selenium pressure. J. Appl. Phys. 79 (1996) 7293–7302.
    [66]D. Lincot, J. F. Guillemoles, S. Taunier, D. Guimard, J. Sicx-Kurdi, A. Chaumont, O. Roussel, O. Ramdani, C. Hubert, J. P. Fauvarque, N. Bodereau, L. Parissi, P. Panheleux, P. Fanouillere, N. Naghavi, P. P. Grand, M. Benfarah, P. Mogensen, O. Kerrec, Chalcopyrite thin film solar cells by electrodeposition. Solar Energy 77 (2004) 725-737.
    [67]靳正国,刘晓新,步绍静,程志捷, SILAR法制备无机化合物薄膜.材料导报17 (2003) 66-68.
    [68]Y. Shi, Z. G. Jin, C. Y. Li, H. S. An, J. J. Qiu, Effects of post-heat treatment on the characteristics of chalcopyrite CuInSe2 film deposited by successive ionic layer absorption and reaction method. Thin Solid Films 515 (2007) 3339-3343.
    [69]石勇,低温液相法制备三元硫属半导体薄膜的研究, in,材料学院,天津大学,天津, 2005.
    [70]http://www.helmholtz-berlin.de/forschung/enma/heterogene-materialsysteme/arbeitsgebiete/eta/methoden_en.html.
    [71]刘庆,陆文雄,印仁和,电化学法制备纳米材料的研究现状.材料保护37 (2004) 33-36.
    [72]J. A. Switzer, M. G. Shumsky, E. W. Bohannan, Electrodeposited ceramic single crystals. Science 284 (1999) 293-296.
    [73]Y. F. Nicolau, Solution deposition of thin solid compound films by a successive ionic-layer adsorption and reaction process. Applications of Surface Science 22-23 (1985) 1067-1074.
    [74]R. N. Bhattacharya, Solution growth and electrodeposited CuInSe2 thin films. J. Electrochem. Soc. 130 (1983) 2040-2042.
    [75]R. P. Singh, S. L. Singh, S. Chandra, Electrodeposited semiconducting copper indium selenide (CuInSe2) films. I. Preparation, structural and electrical characterization. Journal of Physics D: Applied Physics 19 (1986) 1299-1309.
    [76]C. D. Lokhande, Pulse plated electrodeposition of copper indium diselenide films. Journal of the Electrochemical Society 134 (1987) 1727-1729.
    [77]F. J. Pern, J. Goral, R. J. Matson, T. A. Gessert, R. Noufi, Device quality thin films of copper indium selenide (CuInSe2) by a one-step electrodeposition process. Thin Solid Films 157 (1988) 159-168.
    [78]M. G. Ganchev, K. D. Kochev, Investigation of the electrodeposition process in the copper-indium-selenium system. Solar Energy Materials and Solar Cells 31 (1993) 163-170.
    [79]S. Nakamura, Electrodeposition of CuInSe2 for photovoltaic cell application. New Research on Semiconductors (2006) 159-207.
    [80]O. Ramdani, E. Chassaing, B. Canava, P.-P. Grand, O. Roussel, M. Lamirand, E. Rzepka, A. Etcheberry, J.-F. Guillemoles, D. Lincot, O. Kerrec, Electrochemical Cementation Phenomena on Polycrystalline Molybdenum Thin Films from Cu(II)-In(III)-Se(IV) Acidic Solutions. Journal of the Electrochemical Society 154 (2007) D383-D393.
    [81]R. C. Buchanan, T. Park, Materials crystal chemistry, Marcel Dekker Inc., New York, 1997.
    [82]刘昭麟,张志焜,纳米TiO2的结构相变和光学性能.青岛科技大学学报25 (2004) 26-28.
    [83]J. K. Leland, A. J. Bard, Photochemistry of colloidal semiconducting iron oxide polymorphs. Journal of Physical Chemistry 91 (1987) 5076-5083.
    [84]D. Farin, J. Kiwi, D. Avnir, Size effects in photoprocesses on dispersed catalysts. Journal of Physical Chemistry 93 (1989) 5851-5854.
    [85]M. Gr?tzel, Sol-gel processed TiO2 films for photovoltaic applications. Journal of Sol-Gel Science and Technology 22 (2001) 7-13.
    [86]S. Y. Dai, K. J. Wang, Optimum nanoporous TiO2 film and its application to dye-sensitized solar cells. Chinese Physics Letters 20 (2003) 953-955.
    [87]M. K. Nazeeruddin, P. Péchy, T. Renouard, S. M. Zakeeruddin, R. Humphry-Baker, P. Comte, P. Liska, L. Cevey, E. Costa, V. Shklover, L. Spiccia, G. B. Deacon, C. A. Bignozzi, M. Graetzel, Engineering of Efficient Panchromatic Sensitizers for Nanocrystalline TiO2-Based Solar Cells. Journal of the American Chemical Society 123 (2001) 1613–1624.
    [88]M. Gr?tzel, Conversion of sunlight to electric power by nanocrystalline dye-sensitized solar cells. Journal of Photochemistry and Photobiology A: Chemistry 164 (2004) 3-14.
    [89]M. K. Nazeeruddin, F. De Angelis, S. Fantacci, A. Selloni, G. Viscardi, P. Liska, S. Ito, B. Takeru, M. Graetzel, Combined Experimental and DFT-TDDFT Computational Study of Photoelectrochemical Cell Ruthenium Sensitizers. Journal of the American Chemical Society 127 (2005) 16835-16847.
    [90]A. Zaban, S. T. Aruna, S. Tironsh, B. A. Gregg, Y. Mastai, Effect of the preparation condition of TiO2 colloids on their surface structures. Journal of Physical Chemistry B 104 (2000) 4130-4133.
    [91]K. Kato, A. Tsuzuki, Y. Torii, H. Taoda, T. Kato, Y. Butsugan, Morphology of thin anatase coatings prepared from alkoxide solutions containing organic polymer, affecting the photocatalytic decomposition of aqueous acetic acid. Journal of Materials Science 30 (1995) 837-841.
    [92]陈文梅,赵修建,溶胶凝胶法制备TiO2多孔纳米薄膜.武汉工业大学学报22 (2000) 6-9.
    [93]S. Deki, Y. Aoi, O. Hiroi, A. Kajinami, Titanium (IV) Oxide Thin Films Prepared from Aqueous Solution. Chemistry Letters 25 (1996) 433-434.
    [94]孙一军,张志峰,用MOCVD方法制备TiO2薄膜:工艺及进展.硅酸盐通报2 (1997) 37-40.
    [95]罗瑾,周静,祖延兵,林仲华,电沉积二氧化钛纳米微粒膜的光电化学性能和表面形貌研究.高等学校化学学报19 (1998) 1484-1487.
    [96]S. Karuppuchamy, K. Nonomura, T. Yoshida, T. Sugiura, H. Minoura, Cathodic electrodeposition of oxide semiconductor thin films and their application to dye-sensitized solar cells. Solid State Ionics 151 (2002) 19-21.
    [97]C. F. Lao, Y. T. Chuai, L. Su, X. Liu, L. Huang, H. M. Cheng, Z. D. C, Mix-solvent-thermal method for the synthesis of anatase nanocrystalline titanium dioxide used in dye-sensitized solar cell. Solar Energy Materials and Solar Cells 85 (2005) 457-465.
    [98]H. Hirashima, H. Imai, V. Balek, Preparation of meso-porous TiO2 gels and their characterization. Journal of Non-Crystalline Solids 285 (2001) 96-100.
    [99]雅菁,徐明霞,溶胶-凝胶技术在氧化物薄膜制备方面的应用.材料工程5 (1996) 21-23.
    [100]G. W. Scherer, Stress and fracture during drying of gels. Journal of Non-Crystalline Solids 121 (1990) 104-109.
    [101]胡勇胜,陈文,徐庚,溶胶―凝胶在薄膜制备技术的研究.陶瓷工程34 (2000) 7-9.
    [102]P. C. A. Alberius, K. L. Frindell, R. C. Hayward, E. J. Kramer, G. D. Stucky, B. F. Chmelka, General Predictive Syntheses of Cubic, Hexagonal, and Lamellar Silica and Titania Mesostructured Thin Films. Chemistry of Materials 14 (2002) 3284-3294.
    [103]D. Grosso, G. J. de A. A. Soler-Illia, F. Babonneau, C. Sanchez, P.-A. Albouy, A. Brunet-Bruneau, A. R. Balkenende, Highly organized mesoporous titania thin films showing mono-oriented 2D hexagonal channels. Advanced Materials 13 (2001) 1085-1090.
    [104]M. M. Yusuf, H. Imai, H. Hirashima, Preparation of Porous Titania Film by Modified Sol-Gel Method and its Application to Photocatalyst. Journal of Sol-Gel Science and Technology 25 (2002) 65-74.
    [105]E. L. Crepaldi, G. J. de A. A. Soler-Illia, D. Grosso, C. Sanchez, Nanocrystallised titania and zirconia mesoporous thin films exhibiting enhanced thermal stability. New Journal of Chemistry 27 (2003) 9-13.
    [106]D. M. Antonelli, J. Y. Ying, Synthesis of hexagonally packed mesoporous TiO2 by a modified sol-gel method. Angewandte Chemie, International Edition in English 34 (1995) 2014-2017.
    [107]G. J. de A. A. Soler-Illia, A. Louis, C. Sanehez, Synthesis and Characterization of Mesostructured Titania-Based Materials through Evaporation-Induced Self-Assembly. Chemistry of Materials 14 (2002) 750-759.
    [108]P. D. Yang, D. Y. Zhao, D. I. Margolese, B. F. Chmelka, G. D. Stucky, Generalized syntheses of large-pore mesoporous metal oxides with semicrystalline frameworks. Nature 396 (1998) 152-155.
    [109]郑金玉,丘坤元,危岩,有机小分子模板法合成二氧化钛中孔材料.高等学校化学学报21 (2000) 647-649.
    [110]A. S. Attar, M. S. Ghamsari, F. Hajiesmaeilbaigi, S. Mirdamadi, Modifier ligands effects on the synthesized TiO2 nanocrystals. Journal of Materials Science Letters 43 (2008) 1723-1729.
    [111]J. Livage, M. Henry, C. Sanchez, Sol-gel chemistry of transition metal oxides. Progress in Solid State Chemistry 18 (1998) 259-341.
    [112]U. Schubert, Organically Modified Transition Metal Alkoxides: Chemical Problems and Structural Issues on the Way to Materials Syntheses. Accounts of Chemical Research 40 (2007) 730-737.
    [113]U. Schubert, N. Hüsing, A. Lorenz, Hybrid Inorganic-Organic Materials by Sol-Gel Processing of Organofunctional Metal Alkoxides. Chemistry of Materials 7 (1995) 2010-2027.
    [114]E. Beyers, P. Cool, E. F. Vansant, Anatase Formation during the Synthesis of Mesoporous Titania and Its Photocatalytic Effect. Journal of Physical Chemistry B 109 (2005) 10081-10086.
    [115]刘保顺,何鑫,赵修建,赵青南,纳米TiO_2的表面能态及光生电子-空穴对复合过程的研究.光谱学与光谱分析26 (2006) 208-212.
    [116]B. R. Sankapal, R. S. Mane, C.D. Lokhande, Preparation and characterization of Sb2S3 thin films using a successive ionic layer adsorption and reaction (SILAR) method. Journal of Materials Science Letters 18 (1999) 1453-1455.
    [117]D. J. Chen, T. M. Lei, G. Lu, Preparation and Structural Characterization of Nanocrystalline Bi2Se3-Sb2Se3 Thin Films Deposited by SILAR Method. Rare Metal Materials and Engineering 35 (2006) 343-346.
    [118]A. E. Jimenez-Gonzailez, P. K. Nair, Photosensitive ZnO thin films prepared by the chemical deposition method SILAR. Semicond. Sci. Technol. 10 (1995) 1277-1281.
    [119]高相东,李效民,于伟东,连续离子吸附与反应法(SILAR)生长ZnO多晶薄膜的研究.无机材料学报19 (2004) 610-616.
    [120]M. Ristov, Gj. Sinadinovski, I. Grozdanov, Chemical deposition of Cu2O thin films. Thin Solid Films 123 (1985) 63-67.
    [121]C.D.L. R. B. Kale, Room temperature deposition of ZnSe thin films by successive ionic layer adsorption and reactio (SILAR) method. MATER RES BULL 39 (2004) 1829-1839.
    [122]B. R. Sankapal, A. Ennaoui, T. Guminskaya, Th. Dittrich, W. Bohne, J. Rohrich, E. Strub, M. Ch. Lux-Steiner, Characterization of p-CuI prepared by the SILAR technique on Cu-tape/n-CuInS2 for solar cells. Thin Solid Films 480-481 (2005) 142-146.
    [123]S. Lindroos, T. Ruuskanen, M. Ritala, M. Leskel?, Growth of Cu thin films by the successive ionic layer adsorption and reaction (SILAR) method. Thin Solid Films 460 (2004) 36-40.
    [124]L. Wang, S. Z. Kang, J. Mu, Electrical properties of Ag thin films deposited by the improved SILAR method. J DISPER SCI TECHNOL 27 (2006) 393-397.
    [125]符斌,常用化学手册,地质出版社,北京, 1997.
    [126]H. Q. Zhang, L. Z. Song, Y. H. Zhang, Y. J. Li, Practical Chemistry Handbook, Science Press, Beijing, China, 2001.
    [127]П.И.Федоров,Р.Х.Акчурин, Indium chemical handbook, Beijing University Press, Beijing, China, 2005.
    [128]K. Nakanshi, P.H. Solomon, Infrared Absorption Spectroscopy, Science Press, Beijing, China, 1984.
    [129]M. Vil?nki, M. ?igon, M. Zupan, A. ?ebenik, Influence of polymerization parameters on the molecular weight of polyaniline. Acta Chimica Slovenica 45 (1998) 173-183.
    [130]K. H. Whitmire, J. C. Hutchison, A. Gardberg, C. Edwards, Triethanolamine complexes of copper. Inorganica Chimica Acta 294 (1999) 153-162.
    [131]K. Bindu, C. Sudha Kartha, K.P. Vijayakumar, T. Abe, Y. Kashiwaba, CuInSe2 thin film preparation through a new selenisation process using chemical bath deposited selenium. Solar Energy Materials and Solar Cells 79 (2003) 67-79.
    [132]H. M. Pathan, B. R. Sankapal, J. D. Desai, C. D. Lokhande, Preparation and characterization of nanocrystalline CdSe thin films deposited by SILAR method. Materials Chemistry and Physics 78 (2003) 11-14.
    [133]M. Kundakci, A. Ate?, A. Astam, M. Yildirim, Structural, optical and electrical properties of CdS, Cd0.5In0.5S and In2S3 thin films grown by SILAR method. Physica E: Low-Dimensional Systems & Nanostructures 40 (2008) 600-605.
    [134]Y. Shi, Z. G. Jin, C. Y. Li, H. S. An, J. J. Qiu, Effect of [Cu]/[In] ratio on properties of CuInS2 thin films prepared by successive ionic layer absorption and reaction method Applied Surface Science 252 (2006) 3737-3743.
    [135]N. G. Deshpande, R. Sharma, Modifications in physical, optical and electrical properties of tin oxide by swift heavy Au8+ ion bombardment. Current Applied Physics 8 (2008) 181-188.
    [136]P.W. Lu, Physical Chemistry of Silicate, Press ofWuhan Industrial University, Wuhan, 1996.
    [137]K. Kinichi, I.Tatsuo, A. Ikou, Adsorption Science, Chemical Industry Press, Beijing, 2006.
    [138]Z. L.Wang, Y. P. Zhou, S. L. Li, J. J. Liu, Physical Chemistry, Higher Education Press, Beijing, 2001.
    [139]T. P. Niesen, M. R. De Guire, Review: deposition of ceramic thin films at low temperatures from aqueous solutions. Solid State Ionics 151 (2002) 61-68.
    [140]T. Kanniainen, S. Lindroos, J. Ihanus, M. Leskel?, Growth of strongly oriented lead sulfide thin films by successive ionic layer adsorption and reaction (SILAR) technique. Journal of Materials Chemistry 6 (1996) 161-164.
    [141]T. Kanniainen, S. Lindroos, R. Resch, M. Leskela, G. Friedbacher, M. Grasserbauer, Structural and topographical studies of SILAR-grown highly oriented PbS thin films. Materials Research Bulletin 35 (2000) 1045-1051.
    [142]H. M. Pathan, C. D. Lokhande, Chemical deposition and characterization of copper indium diselenide (CISe) thin films. Applied Surface Science 245 (2005) 328-334.
    [143]H. Santschi, W. Schindler, Complex Formation in the Systems CaⅡ--H4HSiO2O. J. Chem. Soc. Dalton 2 (1974) 181-184.
    [144]L. L. Olson, C. R. O'Melia, The Interactions of Fe(Ⅲ) with Si(OH)4. J. Inorg. Nucl. Chem. 35 (1973) 1977-1985
    [145]S. R.Morrison, Electrochemistry at semiconductor and oxidized metal electrodes, Beijing, 1988.
    [146]E. Tzvetkova, N. Stratieva, M. Ganchev, I. Tomov, K. Ivanova, K. Kochev, Preparation and structure of annealed CuInSe2 electrodeposited films. Thin Solid Films 311 (1997) 101-106.
    [147]F. Chraibi, M. Fahoume, A. Ennaoui, J. L. Delplancke, Influence of Citrate Ions as Complexing Agent for Electrodeposition of CuInSe2 Thin Films. phys. stat. sol. (a) 186 (2001) 373-381.
    [148]O. Roussel, O. Ramdani, E. Chassaing, P.-P. Grand, M. Lamirand, A. Etcheberry, O. Kerrec, J.-F. Guillemoles, D. Lincot, First Stages of CuInSe2 Electrodeposition from Cu(II)-In(III)-Se(IV) Acidic Solutions on Polycrystalline Mo Films. Journal of The Electrochemical Society 155 (2008) 141-147.
    [149]O. Savadogo, Chemically and electrochemically deposited thin films for solar energy materials. Solar Energy Materials & Solar cells 52 (1998) 361-388.
    [150]S. Menezes, Molecular Layer Electrodeposition for Synthesis of Semiconductor Compounds. Electrochemical and Solid-State Letters 5 (2002) C79-C81.
    [151]F. Y. Liu, Y. Lü, Z. An Zhang, Y. Q. Lai, J. Li, Y. X. Liu, Pulse-plating electrodeposition and annealing treatment of CuInSe2 films. Trans. Nonferrous Met. Soc. China 18 (2008) 884-889.
    [152]R. Ugarte, R. Schrebler, R. Córdova, E. A. Dalchiele, H. Gómez, Electrodeposition of CuInSe2 thin films in a glycine acid medium. Thin Solid Films 340 (1999) 117-124.
    [153]W. B. Wu, Z. G. Jin, Z. Hua, Y. N. Fu, J. J. Qiu, Growth Mechanisms of CuSCN Films Electrodeposited on ITO in EDTA-Chelated Coppor(Ⅱ) and KSCN Aqueous Solution. Electrochimica Acta 50 (2005) 2343-2349.
    [154]G. Sasikala, S. Moorthy Babu, R. Dhanasekaran, Electrocrystallization and characterization of CuInSe2 thin films. Materials Chemistry and Physics 42 (1995) 210-213.
    [155]J. X. Yang, Z. G. Jin, T. J. Liu, C. J Li, Y. Shi, An investigation into effect of cationic precursor solutions on formation of CuInSe2 thin films by SILAR method. Solar Energy Materials and Solar Cells 92 (2008) 621-627.
    [156]L. Kaupmees, M. Altosaar, O. Volubujeva, E. Mellikov, Study of composition reproducibility of electrochemically co-deposited CuInSe2 films onto ITO. Thin Solid Films 515 (2007) 5891-5894.
    [157]M. D. Kannan, R. Balasundaraprabhu, S. Jayakumar, Preparation and study of structural and optical properties of CSVT deposited CuInSe2 thin films. Solar Energy Materials & Solar Cells 81 (2004) 379-386.
    [158]M. Valdés, M. A. Frontini, M. Vázquez, A. Goossens, Low-cost 3D nanocomposite solar cells obtained by electrodeposition of CuInSe2. Applied Surface Science 254 (2007) 303–307.
    [159]M. Valdés, M. Vázquez, A. Goossens, Electrodeposition of CuInSe2 and In2Se3 on flat and nanoporous TiO2 substrates. Electrochimica Acta 54 (2008) 524–529.
    [160]Q. Wang, K. Zhu, N. R. Neale, A. J. Frank, Constructing Ordered Sensitized Heterojunctions: Bottom-Up Electrochemical Synthesis of p-Type Semiconductors in Oriented n-TiO2 Nanotube Arrays. Nano Letters 9 (2009) 806-813.
    [161]U. Cernigoj, U. L. Stangar, P. Trebse, U.O. Krasovec, S. Gross, Photocatalytically active TiO2 thin films produced by surfactant-assisted sol-gel processing. Thin Solid Films 495 (2005) 327-332.
    [162]H. Choi, E. Stathatos, D.D. Dionysiou, Effect of surfactant in a modified sol on the physicochemical properties and photocatalytic activity of crystalline TiO2 nanoparticles. . Topics in Catalysis 44 (2007) 513-521.
    [163]G. Q. Liu, Z. G. Jin, X. X. Liu, T. Wang, Z. F. Liu, Anatase TiO2 porous thin films prepared by sol-gel method using CTAB surfactant. Journal of Sol-Gel Science and Technology 41 (2007) 49-55.
    [164]N. Alexaki, T. Stergiopoulos, A. G. Kontos, D. S. Tsokleris, A. P. Katsoulidis, P. J. Pomonis, D. J. LeClere, P. Skeldon, G. G. Thompson, P. Falaras, Mesoporous titania nanocrystals prepared using hexadecylamine surfactant template: Crystallization progress monitoring, morphological characterization and application in dye-sensitized solar cells. Microporous and Mesoporous Materials 124 (2009) 52-58.
    [165]H. Choi, E. Stathatos, D. D. Dionysiou, Synthesis of nanocrystalline photocatalytic TiO2 thin films and particles using sol-gel method modified with nonionic surfactants. Thin Solid Films 510 (2006) 107-114.
    [166]J. Jiu, S. Isoda, M. Adach, F. Wang, Preparation of 3-5-nm TiO2 nanocrystal and application for dye-sensitized solar cell. Journal of Photochemistry and Photobiology, A: Chemistry 189 (2007) 314-321.
    [167]S. O. Baumann, M. Bendova, H. Fric, M. Puchberger, C. Visinescu, U. Schubert, Ketoximate Derivatives of Titanium Alkoxides and Partial Hydrolysis Products Thereof. Eur. J. Inorg. Chem. 2009 (2009) 3333-3340.
    [168]A. L. Patterson, The Scherrer formula for x-ray particle-size determination. Phys. Rev. 56 (1939) 978-982.
    [169]K. S. W. Sing, D. H. Everett, R. A. W. Haul, L. Moscou, R. A. Pierotti, J. Rouquerol, T. Siemieniewska, Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984). Pure and Applied Chemistry 57 (1985) 603-619.
    [170]G. Beaucage, Approximations leading to a unified exponential/power-law approach to small-angle scattering. Journal of Applied Crystallography 28 (1995) 717-728.
    [171]G. Beaucage, Small-angle scattering from polymeric mass fractals of arbitrary mass-fractal dimension. Journal of Applied Crystallography 29 (1996) 134-146.
    [172]S. Trabelsi, A. Janke, R. Haessler, N. E. Zafeiropoulos, G. Fornasieri, S. Bocchini, L. Rozes, M. Stamm, J. F. Gerard, C. Sanchez, Novel Organo-Functional Titanium-oxo-cluster-Based Hybrid Materials with Enhanced Thermomechanical and Thermal Properties. Macromolecules 38 (2005) 6068-6078.
    [173]H. Peterlik, P. Fratzl, Small-Angle X-Ray Scattering to Characterize Nanostructures in Inorganic and Hybrid Materials Chemistry. . Monatshefte fuer Chemie 137 (2006) 529-543.
    [174]J. S. Pedersen, Analysis of small-angle scattering data from colloids and polymer solutions: modeling and least-squares fitting. Advances in Colloid and Interface Science 70 (1997) 171-210.
    [175]T. Kamiyama, N. Yoshida, K. Suzuki, A SAXS characterization of particle aggregation in TiO2 sol-gel system. Bulletin of the Institute for Chemical Research, Kyoto University 72 (1994) 225-230.
    [176]V. Torma, H. Peterlik, U. Bauer, W. Rupp, N. Hüsing, S. Bernstorff, M. Steinhart, G. Goerigk, U. Schubert, Mixed Silica Titania Materials Prepared from a Single-Source Sol-Gel Precursor: A Time-Resolved SAXS Study of the Gelation, Aging, Supercritical Drying, and Calcination Processes. Chemistry of Materials 17 (2005) 3146-3153.
    [177]M. Chrysos, F. Rachet, N. I. Egorova, Intermolecular Raman spectroscopy of long-range interactions:The CO2-Ar collision-inducedυ3 CO2 band, Physical Review A 75(2007) 012707.
    [178]A. B. Horn, T. Koch, M. A. Chesters, M. R. S. McCoustra, J. R. Sodeau, A low-Temperature Infrared Study of the Reactions of the Stratospheric NOy Reservoir Species Dinitrogen Pentoxide with Water Ice, 80-160 K. J. Phys. Chem. 98 (1994) 946-951.
    [179]R. Vogel, K. Pohl, H. Weller, Sensitization of highly porous, polycrystalline TiO2 electrodes by quantum sized CdS. Chemical Physics Letters 174 (1990) 241-246.
    [180]A. Kongkanand, K. Tvrdy, K. Takechi, M. Kuno, P. V. Kamat, Quantum Dot Solar Cells. Tuning Photoresponse through Size and Shape Control of CdSe - TiO2 Architecture. Journal of the American Chemical Society 130 (2008) 4007-4015.
    [181]I. Mora-Seró, J. Bisquert, Th. Dittrich, A. Belaidi, A. S. Susha, A. L. Rogach, Photosensitization of TiO2 Layers with CdSe Quantum Dots: Correlation between Light Absorption and Photoinjection. J. Phys. Chem. C 111 (2007) 14889–14892.
    [182]J. A. Seabold, K. Shankar, R. H. T. Wilke, M. Paulose, O. K. Varghese, C. A. Grimes, K. S. Choi, Photoelectrochemical Properties of Heterojunction CdTe/TiO2 Electrodes Constructed Using Highly Ordered TiO2 Nanotube Arrays. Chemistry of Materials 20 (2008) 5266–5273.
    [183]S. N. Sharma, S. Kohli, A. C. Rastogi, Role of cadmium-related defects on the structural and electrical properties of nanocrystalline CdTe:TiO2 sputtered films. Current Applied Physics 3 (2003) 263-267.
    [184]R. O'Hayre, M. Nanu, J. Schoonman, A. Goossens, A parametric study of TiO2/CuInS2 nanocomposite solar cells: how cell thickness, buffer layer thickness, and TiO2 particle size affect performance. Nanotechnology 18 (2007) 055702 (055707pp)
    [185]M. Nanu, L. Reijnen, B. Meester, A. Goossens, J. Schoonman, CuInS2–TiO2 heterojunctions solar cells obtained by atomic layer deposition Thin Solid Films 431-432 (2003) 492-496.
    [186]X. Q. Li, Y. Cheng, L. F. Liu, J. Mu, Enhanced photoelectrochemical properties of TiO2 nanotubes co-sensitized with CdS nanoparticles and tetrasulfonated copper phthalocyanine Colloids and Surfaces A: Physicochemical and Engineering Aspects 353 (2010) 226-231.
    [187]P. Sudhagar, J. H. Jung, S. Park, Y. G. Lee, R. Sathyamoorthy, Y. S. Kang, H. Ahn, The performance of coupled (CdS:CdSe) quantum dot-sensitized TiO2 nanofibrous solar cells Electrochemistry Communications 11 (2009) 2220-2224.
    [188]K. T. Kuo, D. M. Liu, S. Y. Chen, C. C. Lin, Core-shell CuInS2/ZnS quantum dots assembled on short ZnO nanowires with enhanced photo-conversion efficiency. J. Mater. Chem. 19 (2009) 6780-6788.
    [189]M. S. Tomar, F. J. Garcia, A zinc oxide/p-copper indium selenide(CuInSe2) thin film solar cell prepared entirely by spray pyrolysis. Thin Solid Films 90 (1982) 419-423.
    [190]C. X. Qiu, I. Shih, Properties of zinc oxide/copper indium diselenide heterojunctions. Semicond.-Based Heterostruct.: Interfacial Struct. Stab., Proc. Northeast Reg. Meet. Metall. Soc. (1986) 379-383.
    [191]M. Nishitani, M. Ikeda, T. Negami, S. Kohoki, N. Kohara, M. Terauchi, H. Wada, T. Wada, Fabrication of substrate-type CuInSe2 thin film solar cells. Solar Energy Materials and Solar Cells 35 (1994) 203-208.
    [192]R. Hunger, P. Fons, K. Iwata, A. Yamada, K. Matsubara, S. Niki, K. Nakahara, H. Takasu, Observation of interdiffusion in ZnO/CuInSe2 heterostructures and its effect on film properties. Materials Research Society Symposium Proceedings 668(II-VI Compound Semiconductor Photovoltaic Materials) (2001) H8.21/21-H28.21/26.
    [193]J. Hermann, M. Benfarah, S. Bruneau, E. Axente, G. Coustillier, T. Itina, J. F. Guillemoles, P. Alloncle, Comparative investigation of solar cell thin film processing using nanosecond and femtosecond lasers. Journal of Physics D: Applied Physics 39 (2006) 453-460.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700