非贵金属催化剂上葡萄糖一步氢解制备低碳二元醇研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
作为地球上储存量最大的生物质能源及资源之一,糖类在自然界中的两种主要存在形式为纤维素和淀粉。通过均相或者非均相催化,以生物质来源的糖类为原料来制备化学品减轻对传统化石原料的依赖极具现实意义。然而使用贵金属为催化剂的氢解工艺投资成本大,限制了该工艺的应用和工业化。因此寻求一种热稳定性和催化活性优良的非贵金属催化剂对控制投资成本十分关键。研究发现过渡金属碳化物具有“类Pt”的性质,在催化加氢方面具有广阔的前景。在此基础之上,作者提出了过渡金属碳化物上葡萄糖催化氢解制备低碳二元醇的绿色工艺路线。
     本文首先建立了适合分析葡萄糖氢解产物的高效液相色谱方法。并通过碳热氢气还原合成了过渡金属碳化物催化剂,研究了双金属催化剂的催化活性。考察了碳化温度和载体对催化剂结构及其活性的影响,并对糖类的氢解机理进行了初步探索和讨论,主要的工作和结果如下:
     (1)选用Shodex公司的SC1211色谱柱建立了葡萄糖及其氢解产物的高效液相色谱分析方法,并对分析条件进行了优化。结果表明该方法在优化后的分析条件下,满足分离要求,经济简便,具有较高的准确度和精密度。
     (2)对葡萄糖氢解的操作条件进行优化,结果表明反应压力为10Mpa,反应温度为220℃反应半小时,葡萄糖转化率为48.5%,二醇收率为30.6%,目的产物选择性较高。
     (3)采用碳热氢气还原法分别制备了Ni、Co促进的碳化钨和碳化钼催化剂,发现碳化钨的反应活性要优于碳化钼,并且Ni促进的催化剂优于Co促进的催化剂。碳化温度为750℃时,活性相W2C基本完全形成,催化性能优于其他温度下制备的催化剂。以CNFs为载体的催化剂,活性相晶粒大,比表面积小,氢解反应活性反而比AC负载催化剂高。结果表明碳化钨催化剂的活性和选择性是随着晶粒增大比表面积减小而上升。
     (4)葡萄糖氢解产物溶液变色的原因是生成了少量的5-HMF,该物质在空气中氧化使溶液变成黄色。探讨了糖类氢解的逆向迈克尔反应机理和逆向羟醛缩合反应机理,从产物分布推出果糖是从分子中间断链得到两分子的三碳醇。而葡萄糖一部分首先转化为果糖发生氢解,得到1,2-丙二醇和甘油;另一部分在2、3碳原子和4、5碳原子之间直接断链从而得到两个碳原子的乙二醇。
Carbohydrate, mainly existing in the form of cellulose and starch, is the largest biomass on the earth. Biomass-derived carbohydrates are employed as building blocks for the synthesis of fine chemicals via heterogeneous or homogenous catalytic processes. However, the cost of the process, using noble-metal as catalyst, limits the application and industrialization. In this way, it is worth exploring low-cost catalyst with good thermal stability and chemical performance for the possible control the investment of the process. Transition metal carbides have been identified as the potential catalysts to replace noble metal due to their behavior similar to the platinum catalyst for hydroprocessing.
     In this thesis, a reasonable analytical method was established for liquid products. Transition metal carbides for glucose hydrogenolysis were prepared by carbothermal hydrogen reduction (CHR). The hydrogenolysis mechanism and catalytic performance of different bi-metal carbides were studied. The influence of carburizing temperate and supports on the catalyst was investigated. The main work and results are as follows:
     (1) A high performance liquid chromatogram method was established to determine the concentration of products in glucose hydrogenolysis. The results shown that HPLC method, on condition of flow rate 0.5mL/min, temperate 50℃and solvent composite of CH3CN/H2O=4/6, fit the separation with high accuracy, precision and efficiency.
     (2) The operation conditions of hydrogenolysis were optimized. Under the conditions of pressure 10Mpa, temperate 220℃and residence time 30min, glucose conversion reached 48.5% with yield 30.6% of glycols.
     (3) Bi-metal carbides for glucose hydrogenolysis were prepared by carbothermal hydrogen reduction. Ni-W2C/CNFs was formed at 750℃showed better catalytic performance than Co promoted W2C or Mo2C, due to NiW alloy was synthetized during the carburizing process. It is proved that catalyst support on CNFs with larger crystal size and less surface area has higher selectivity than catalyst support on AC.
     (4) The formation of 5-HMF result in the yellow color of the products. The hydrogenolysis of fructose, compared with those of other carbohydrates, presented better selectivity to low carbon polyols with fewer by-products. The C-C cleavage happened in the middle of fructose while occurred between every second C of glucose.
引文
[1]Kundes E. L., Simonetti D. A., West R. M., Serrano-Ruiz J. C., Gartner C. A., Dumesic J. A, Catalytic conversion of biomass to mono functional hydrocarbons and targeted liquid-fuel classes, Science,2008,322:417-421.
    [2]Yu Y, Lou X, Wu HW, Some recent advances in hydrolysis of biomass in hot-compressed, water and its comparisons with other hydrolysis methods, Energy & fuels,2008,22(1):46-60.
    [3]王勇,李伟,阿纳斯,孙宗宝等.一种生产乙二醇的新工艺[P],CN1919814A,2006
    [4]Ludwig Schuster, Process for the preparation of lower polyhydric alcohols [P], US5107018,1992.
    [5]Fritz Conrodin, Tamins. Process for the direct hydrogenation splitting of saccharose to glycerol and glycols [P].US3030429,1962.
    [6]Weigert E. C., Stottlemyer A. L., Zellner M. B., Chen Jingguang G., Tungsten monocarbide as potential replacement of platinum for methonol electrooxidation, The Journal of Physical Chemistry C.,2007,111:14617-14620.
    [7]Mandil C. World Energy Outlook 2006 (International Energy Agency Report).2006.
    [8]张百良,宋华民,李世欣.生物能源发展及科技创新机遇[J].农业工程学报,2008,2(24):285-289.
    [9]Charles E. Wyman, Ethanol from lignocellulosic biomass:Technology, economics and opportunities. Bioresource Technology,50(1),1994,3-15.
    [10]The Roadmap for biomass technologies in the U.S., Biomass R&D Technical Advisory Committee, US department of Energy, Accession No. ADA 436527,2002.
    [11]Juben N. Chheda, George W. Huber, and James A. Dumesic., Angew. Chem. Int. Ed. 2007,46:2-22.
    [12]EP 0072629; EP 0086296; EP 0510238; US 4476331; US 4380678; US 4366332; US 4338472; US 6291725.
    [13]Zhao L., Zhou J.H., Sui Z.J. and Zhou X.G., Chem. Eng. Sci.2009, doi:10.1016 /j.ces.2009.03.026.
    [14]Laisse C A Maranhao, Cesar A M Abreu. Continuous process of fine polyols prodution in a trickle-bed reactor. Ind. Eng. Chem. Res.,2005,44:9642-9645.
    [15]朱培玉,李扬,王永宏.乙二醇生产新技术研究进展.[J]化工进展,2002,21(10):713-717.
    [16]许茜,王保伟,许根慧.乙二醇合成工艺的研究进展[J].石油化工,2007,36(2):194-199.
    [17]何立,肖含,李应成.乙二醇合成技术研究进展[J].工业催化,2006,14(6):11-13.
    [18]Rita L D Aquino.Three routes vie for the 1.3-propanediol market [J]. Chem Eng, 1999,106(5):56-62.
    [19]Improved method of hydrogenelysis of sugars [P], GB988040A.
    [20]Blaise J. Arena, Des Plaines. Hydrogenolysis of polyhydroxylated compounds, US 4401832,1983
    [21]西蒙彼得克拉布特里,德里克文森特泰尔斯,糖原料氢解[P],CN1849284,2005
    [22]徐昌洪,应慧卿,方家骥,等.氢化裂解法生产乙二醇及低级多元醇的方法[P],CN1762938A,2005
    [23]Mark A. Andrews, and Stephen A. Klaeren. J. Am. Chem. SOC.1989,111, 4131-4133.
    [24]D. K. Sohounloue, C. Montassier and J. Barbier, React. Kinet. Catal. Lett., Vol.22, Nos 3-4,391-397 (1983).
    [25]Montassier C, Giraud D, Barbier J. Polyol conversion by liquid phase heterogeneous catalysis over metals. Heterogeneous Catalysis and Fine Chemicals [M]. Amsterdam: Elsevier,1988.
    [26]J. G.Chen, Carbide and nitride overlayers on early transition metal surfaces: preparation, characterization and reactivities, Chem.R ev,1996,96:1477-1498.
    [27]R.B.Levy and M.Boudart, Platinum-like behavior of tungsten carbide in surface catalysis, Science,1973,181:547-549.
    [28]J. L.Calais, Band structure of transition metal compounds, Adv Phys.,1977, 26:847-885.
    [29]A.Neckel, Recent investigations on the electronic structure of the fourth and fifth group transition metal monocarbides, mononitrides and monoxides, Int.J Quantum Chem.,198323(4):1317-1353.
    [30]K.Schwarz, CRC Crit., Rev. Solid State Mater.Sci.,1987,13-11.
    [31]J. G.Chen, Carbide and nitride overlayers on early transition metal surfaces: preparation, characterization andreactivities, Chem.Rev,1996,96:1477-1498.
    [32]S.T.Oyama, Preparation and catalytic properties of transition metal carbides and nitrides, Catal.Today,1992,15:179-200.
    [33]L.Volpe and M.Boudart, Compounds of molybdenum and tungsten with high specific surface area I nitrides, J Solid State Chem.,1985,59:332-347.
    [34]L.Volpe and M.Boudart, Compounds of molybdenum and tungsten with high specific surface area nitrides, J Solid State Chem.,1985,59:348-356.
    [35]M.Nagai,T.Suda,K.Oshikawa,N.Hirano and S.Omi,CVD preparation of alumina- supported tungsten nitride and its activity for thiophene hydrodesulfurization,Coral Today,1999,50:29-37.
    [36]R.B.Levy and M.Boudart, Platinum-like behavior of tungsten carbide in surface catalysis, Science,1973,181:547-549.
    [37]Na Ji, Tao Zhang,Mingyuan Zheng, Aiqin Wang, Hui Wang, Xiaodong Wang, Yuying Shu, Alan L. Stottlemyer and Jingguang G. Chen, catalysis today,2009,147:77-85.
    [38]Neylon M K, Choi S. Catalytic Properties of Early Transition Metal Nitrides and Carbides. Applied Catalysis A:General,1999,183:253-263.
    [39]Lee J S,Locatelli S, Oyama S T, el al. Molybdenum Carbide Catalysts 3 Turnover Rates for the Hydrngenolysis of n-Butane. Journal of catalysis.1990,125:157-170.
    [40]Lee J S.Volpe F, Ribecro F H, el al. Molybdenum Carbide Catalysts:II Topotactic Synthesis of Unsupported Powders. Journal of catalysis,1988,112:44-53.
    [41]Lee J S, Oyama S T, Boudart M. Molybdenum Carbide catalysts:I Synthesis of Unsupported Powders. Journal of Catalysis,1987,106:125-133.
    [42]Schdatter J C, Oyuama S T. Catalytic Behavior of Selected Transition-Metal Carbide Nitride in the HDN of Quinoline.Industrial Engineering Chemistry Research,1988, 27:1648-1653.
    [43]Muller J M, Gault F G.Cault Bull Soc chim,1970,2:416.
    [44]Keller V. Wehrer P. Garin F. et al. Catalytic Activity of Bulk Tungsten Carbides for Alkane Reforming. Journal of Catalysis.1995,153:9-16.
    [45]Zhang Yiping, Albert Frenet. Hydrogen Effect on Hydrocarbon Reactions over Bulk Tungsten Carbide. Journal of Catalysis 1996.163:223-231.
    [46]Brayner R, Djega-Mariadassou G, Cruz GM, Rodrigues J A J. Catal Today,2000, 57 (3-4):225.
    [47]Chen X W, Zhang T, Xia L G, Li T, Zheng M Y, Wu Z L, Wang X D, Wei Zh B, Xin Q, Li C. Catal Lett,2002,79 (124):21.
    [48]De Jong KP, Geus JW. Carbon Nanofibers:Catalytic Synthesis and Applications. Catalysis Reviews.2000; 42(4):481-510.
    [49]Ledoux MJ, Vieira R, Pham-Huu C, Keller N. New catalytic phenomena on nanostructured (fibers and tubes) catalysts. Journal of Catalysis.2003:216(1-2):333-42.
    [50]Planeix JM, Coustel N, Coq B, Brotons V, Kumbhar PS, Dutartre R, et al. Application of Carbon Nanotubes as Supports in Heterogeneous Catalysis. J Am Chem Soc.1994:116(17):7935-6.
    [51]赵铁均.纳米碳纤维的微观结构调控及相关催化性能研究.上海:华东理工大学;2004.
    [52]Park C, Baker RTK. Catalytic Behavior of Graphite Nanofiber Supported Nickel Particles. J Phys Chem B.1998,102(26):5168-77.
    [53]Park C, Baker RTK. Catalytic Behavior of Graphite Nanofiber Supported Nickel Particles.3. The Effect of Chemical Blocking on the Performance of the System. J Phys Chem B.1999;103(13):2453-9.
    [54]Ma J, Park C, Rodriguez NM, Baker RTK. Characteristics of Copper Particles Supported on Various Types of Graphite Nanofibers. J Phys Chem B.2001; 105(48):11994-2002.
    [55]Zartman W H, Adkins H. Hydrogenolysis of sugars [J]. Journal of the American Chemical Society.1933,55(11):4559-4563.
    [56]Burkhard Kusserow, Sabine Schimpf. Hydrogenation of Glucose to Sorbitol over Nickel and Ruthenium Catalysts, Adv. Synth. Catal.2003,345:289-299
    [57]Toth, L. E. Transition Metal Carbides and Nitrides; Academic Press:New York, 1971.
    [58]Oyama, S. T. The Chemistry of Transition Metal Carbides and Nitrides; Blackie Academic and Professional:Glasgow,1996.
    [59]Lofberg A, et al., Mechanism of WO3 Reduction and Carburization in CH4/H2 Mixtures Leading to Bulk Tungsten Carbide Powder Catalysts. Journal of Catalysis, 2000.189(1):p.170-183.
    [60]Liang, C., et al., Preparation and Adsorption Properties for Thiophene of Nanostructured W2C on Ultrahigh-Surface-Area Carbon Materials. Chemistry of Materials,2003.15(25):p.4846-4853.
    [61]Liang, C., P. Ying, and C. Li, Nanostructured Ni-Mo2C Prepared by Carbothermal Hydrogen Reduction on Ultrahigh Surface Area Carbon Material. Chemistry of Materials,2002.14(7):p.3148-3151.
    [62]Long Zhao, Jinghong Zhou, Zhijun Sui, Xinggui Zhou. Hydrogenolysis of sorbitol to glycols over carbon nanofiber supported ruthenium catalyst. Chemical Engineering Science,2010,65(1):30-35.
    [63]Miyazawa T, Kusunoki Y, Kunimori K, Tomishige K. Glycerol conversion in the aqueous solution under hydrogen over Ru/C+an ion-exchange resin and its reaction mechanism [J]. Journal of Catalysis.2006,240(2):213-221.
    [64]Lahr D G, Shanks B H. Effect of sulfur and temperature on ruthenium-catalyzed glycerol hydrogenolysis to glycols [J]. Journal of Catalysis.2005,232(2):386-394.
    [65]Dasari M A, Kiatsimkul P, Sutterlin W R, Suppes G J. Low-pressure hydrogenolysis of glycerol to propylene glycol [J]. Applied Catalysis A:General.2005,281(1-2): 225-231.
    [66]Schwartz, V., Oyama, S. T., and Chen, J.G., J. Phys. Chem. B 104,8800 (2000).
    [67]Oyama, S T., Yu, C. C., and Ramanathan, S., J. Catal.184,535 (1999).
    [68]Xiao, T.-C.,York, A. P. E., Al-Megren, H., Claridge, J. B.,Wang,H.-T., and Green, M. L. H., C. R. Acad. Sci.3,451 (2000).
    [69]C. H. Bartholomew, R. J. Farrauto, N. J. Hoboken, Fundamentals of industrial catalytic processes, Wiley Interscience,2006.
    [70]Lewandowski, M., et al., Catalytic performance of platinum doped tungsten carbide in simultaneous hydrodenitrogenation and hydrodesulphurization. Applied Catalysis B: Environmental.93(3-4):p.241-249.
    [71]Xiao, T., et al., Preparation of Nickel-Tungsten Bimetallic Carbide Catalysts. Journal of Catalysis,2002.209(2):p.318-330.
    [72]Nagai, M., M. Yoshida, and H. Tominaga, Tungsten and nickel tungsten carbides as anode electrocatalysts. Electrochimica Acta,2007.52(17):p.5430-5436.
    [73]Moreno-Castilla, C., et al., Tungsten and Tungsten Carbide Supported on Activated Carbon:Surface Structures and Performance for Ethylene Hydrogenation. Langmuir, 2001.17(5):p.1752-1756.
    [74]Neylon, M.K., et al., Catalytic properties of early transition metal nitrides and carbides:n-butane hydrogenolysis, dehydrogenation and isomerization. Applied Catalysis A:General,1999.183(2):p.253-263.
    [75]Chen, J. G, Chem. Rev.96,1477 (1996).
    [76]Suetin, D.V., I.R. Shein, and A.L. Ivanovskii, Structural, electronic properties and stability of tungsten mono- and semi-carbides:A first principles investigation. Journal of Physics and Chemistry of Solids,2009.70(1):p.64-71.
    [77]Ji, N., et al., Catalytic conversion of cellulose into ethylene glycol over supported carbide catalysts. Catalysis Today,2009.147(2):p.77-85.
    [78]J. Sun, M. Y. Zheng, X. D. Wang, A. Q. Wang, R. H. Cheng, T. Li, T. Zhang,Catalytic performance of activated carbon supported tungsten carbide for hydrazine decomposition, Catal. Lett.,2008,123:150-155.
    [79]Edward Furimsky, Metal carbides and nitrides as potential catalysts for hydropreocessing,applied catalysis A:General 240 (2003):1-28
    [80]Kim, J.C. and B.K. Kim, Synthesis of nanosized tungsten carbide powder by the chemical vapor condensation process. Scripta Materialia,2004.50(7):p.969-972.
    [81]Kirakosyan, K.G., et al., Synthesis of tungsten carbide-carbon nanomaterials by combustion reaction. Materials Chemistry and Physics,2008.110(2-3):p.454-456.
    [82]Medeiros, F.F.P., et al., Synthesis of tungsten carbide through gas-solid reaction at low temperatures. Materials Science and Engineering A,2001.315(1-2):p.58-62.
    [83]Liang, C. H.; Ying, P. L.; Li, C. Chem. Mater.2002,14,3148.
    [84]Ledoux M J, Vieira R, Pham-Huu C, Keller Nicolas. New catalytic phenomena on nanostructured (fibers and tubes) catalysts[J]. J Catal,2003,216(1-2):333-342.
    [85]Bartholomew C H. Carbon deposition in steam reforming and methanation [J]. Catalysis Reviews-Science and Engineering.1982,24(1):67-112.
    [86]Furimsky, E., Metal carbides and nitrides as potential catalysts for hydroprocessing. Applied Catalysis A:General,2003.240(1-2):p.1-28.
    [87]Chinthaginjala J K, Seshan K, Lefferts L. Preparation and application of carbon nanofiber based microstructured materials as catalys supports [J]. Industrial & Engineering Chemistry Research.2007,46(12):3968-3978.
    [88]Perez-Cadenas A F, Kapteijn F, Zieverink M M P, Moulijn J A. Selectivity hydrogenation of fatty acid methyl esters over palladium on carbon-based monoliths structural control of activity and selectivity [J]. Catalysis Today.2007,128(1-2):13-17.
    [89]Pham-HUu C, Keller N, Ehret G, Charbonniere L J, Ziessel R, Ledoux M J. Carbon nanofiber supported palladium catalyst for liquid-phase reactions:an active and selectivie catalyst for hydrogenation of cinnamaldehyde into hydrocinnamaldehyde [J]. Journal of Molecular Catalysis A:Chemical.2001,170(1-2):155-163.
    [90]Ros T G, Keller D E, van Dillen A J, Geus J W, Koningsberger D C. Preparation and activity of small rhodium metal particles on fishbone carbon nanofibers [J]. Journal of Catalysis.2002,211(1):85-102.
    [91]Irchenko,A.G, Khakimor Yu.S. Abidova.MF. User of alloy catalyss for continuous hydrogenation of glucose to sorbitol uzb.khim zh(3):66-68(1990)
    [92]Haibo Zhao, et al.Metal Chlorides in Ionic Liquid Solvents Convert Sugars to 5-Hydroxymethylfurfural,Science 316,1597 (2007);)(Yuriy Roman-Leshkov, et al.Phase Modifiers Promote Efficient Production of Hydroxymethylfurfural from Fructose Science 312,1933 (2006);
    [93]Montassier C, Giraud D, Barbier J. Polyol conversion by liquid phase heterogeneous catalysis over metals. Heterogeneous Catalysis and Fine Chemicals [M]. Amsterdam: Elsevier,1988.
    [94]Wang K Y, Hawley M C, Furney T D. Mechanism study of sugar and sugar alcohol hydrogenolysis using 1,3-diol model compounds [J]. Industrial & Engineering Chemistry Research.1995,34(11):3766-3770.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700