脑电信号采集干电极阵列研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
生物电势的测量记录在医学应用以及学术研究中发挥着重要的作用,是不可缺少的一种关键手段,其中脑电图(EEG)更是在研究大脑功能与疾病方面起着极其重要的作用。传统测量EEG方法是采用湿电极,使用方法较为复杂且受所处环境的限制较大,而新型的干电极使用起来更为简单且可便携化,符合现代医疗保健个人化的社会需求。
     MEMS技术是近年来随着硅微加工技术发展起来的一种微加工技术,通过光刻等技术,可以在微米甚至纳米尺度上制备元器件。近几年来,在MEMS领域中出现了柔性MEMS和Bio-MEMS技术。柔性MEMS技术在柔性基底上加工出微米尺度的器件,这样制备的器件具有能经受冲击、能够折叠弯曲等优点;而Bio-MEMS技术利用MEMS技术制造体外分析诊断器件和体内植入器件。
     本文的研究内容包括:基于微机电系统(MEMS)工艺以及EEG信号采集要求设计了多种微针干电极,包括立体电极、聚酰亚胺衬底平面电极和全金属平面电极三种。其中立体电极阵列为10×10,每根微针的直径分别为50μm、60μm、80μm;聚酰亚胺衬底平面电极分为两批,第一批微针尺寸为250μm(l)×50μm(w)、300μm(l)×60μm(w)与350μm(l)×80μm(w),高度均为40μm,第二批为300μm(l)×150μm(w)与500μm(l)×200μm(w),高度均为60μm;全金属平面电极分为直针和斜针,直针尺寸与第二批聚酰亚胺平面电极相同,斜针还包括底座,与电极夹角60°,斜针尺寸350μm(l)×150μm(w),高度为60μm,底座边长为500μm。第二,设计了微电极阵列的MEMS加工工艺,利用溅射、刻蚀、光刻、电镀等工艺实现了微电极阵列的制备。实现了不同的工艺流程,并进行工艺后分析。在溶液浓度0.9%的生理盐水中测试了平面电极,在0.1 Hz到1000 Hz之间的阻抗总体情况都达到了100 k?~100 ?。第三,进行了人体实验,将平面电极与传统湿电极的效果进行了比较,也进行了不同平面电极之间的比较。证实每种电极都能采集到脑电信号,其中第二批聚酰亚胺衬底平面电极和全金属平面电极(直针)采集到的信号较好,尤以6片至10片组装的效果最佳。
Biopotential recordings are indispensable and vital tools for both medical and research use, especially in the form of electroencephalogram (EEG), which plays an important role in the study of brain function and diseases. Generally, a wet electrode is used in EEG recording and its use is quite complicated and limited by the environment. However, novel dry electrode is more convenient to use and can be portable, which is in line with modern personalized health care needs of the society.
     MEMS technology is a kind of micro manufacture technology which develops along with silicon micro manufacture technology. By fabrication process such as photolithography, we can manufacture device in micro or nano dimension. In recent years, flexible MEMS and Bio-MEMS have emerged. Based on flexible substrate, device in micrometer dimension can be fabricated by MEMS technology, and these devices can bear impact and can be curved. In vitro diagnostic device and vivo implanted device, Bio-MEMS technology can provide edges as well.
     Based on MEMS technology and the requirement of EEG recording, we first design the configuration of three various types of dry electrodes with microneedles, including 3D electrode, plane electrode based on Polyimide (PI) substrate and plane metal electrode. The fabricated 3D electrode has an array of 10×10 grid, with the diameters of microneedles being 50μm, 60μm and 80μm. There are two groups of plane electrodes based on PI substrate, the first of which has microneedle sizes of 250μm(l)×50μm(w), 300μm(l)×60μm(w) and 350μm(l)×80μm(w), with height of 40μm, the second of which has microneedle sizes of 300μm(l)×150μm(w) and 500μm(l)×200μm(w), with height of 60μm. There are also two groups of plane metal electrodes, one with straight needles and another with tilted needles. Those with straight needles have the same sizes of needles as the second plane electrodes based on PI substrate while those with tilted needles, the size of which is 350μm(l)×150μm(w), with height of 60μm, also include a base with side length of 500μm beneath the needle. The angle between needle/base and electrode is 60°.
     In our study, we used standard MEMS fabrication technology which involves sputtering, photolithography, etching, and electroplating. We also realized three different fabrication processes, analyzed and optimized the process. The general impedance of a single plane electrode tested in 0.9% saline solution is 100 k? ~ 100 ?, at the frequency from 0.1Hz to 1000 Hz. In the following vivo human experiment, the effects of the plane electrode and conventional wet electrode have been compared. The comparison among various types of plane electrodes has also been made. It has been proved that EEG signals can be recorded by every type of electrodes, of which the second batch of plane electrodes based on PI substrate as well as plane metal electrodes can achieve better recordings, especially those assembled by 6-10 pieces.
引文
[1] Chi YM, Jung TP, Cauwenberghs G. Dry-Contact and Noncontact Biopotential Electrodes: Methodological Review [J]. IEEE Reviews in Biomedical Engineering, 2010, 3: 106-119.
    [2] Phillips JW, Leahy RM, Mosher HC, et al. Imaging Neural Activity Using MEG and EEG [J]. IEEE Engineering in Medicine and Biology, 1997, 16(3): 34-42.
    [3] Nikulin VV, Kegeles J, Curio G. Miniaturized electro- encephalographic scalp electrode for optimal wearing comfort [J]. Clinical Neurophysiology, 2010, 121: 1007-1014.
    [4] Boyle LN, Tippin J, Paul A, et al. Driver performance in the moments surrounding a microsleep [J]. Transportation Research Part F, 2008, 11: 126-136.
    [5] Dobbins HD, Marvit P, Ji Y, et al. Chronically recording with a multi-electrode array device in the auditory cortex of an awake ferret [J]. Journal of Neuroscience Methods, 2007, 161: 101-111.
    [6] Sumiyoshi A, et al. A mini-cap for simultaneous EEG and fMRI recording in rodents [J]. NeuroImage (2010), doi: 10.1016/j.neuroimage.2010.09.056
    [7] Griss P, Enoksson P, Tolvanen-Laakso HK, et al. Micromachined Electrodes for Biopotential Measurements [J]. Journal of Microelectro- mechanical Systems, 2001, 10(1): 10-16.
    [8]傅佳伟,石立臣,吕宝粮.基于EEG的警觉度分析与估计研究综述[J].中国生物医学工程学报,2009,28(4):589-596.
    [9] http://www.mingru.cn/knowledge0044.html
    [10] Zhao J, Sclabassi RJ, Sun M. Biopotential Electrodes Based on Hydrogel [C]. In 0-7803-9105-5/05/$20.00?2005 IEEE
    [11] Matteucci M, Carabalona R, Casella M, et al. Micropatterned dry electrodes for brain-computer interface [J]. Microelectronic Engineering, 2007, 84: 1737-1740.
    [12] Yu LM, Tay FEH, Guo DG, et al. A MEMS-based Bioelectrode for ECG measurement [C]. In IEEE Sensors 2008 Conference: 1068-1071.
    [13] Fonseca C, Vaz F, Barbosa MA. Electrochemical behaviour of titanium coated stainless steel by r.f. sputtering in synthetic sweat solutions for electrode applications [J]. Corrosion Science, 2004, 46: 3005-3018.
    [14] Richard E, Chan ADC. Design of a Gel-less Two–Electrode ECG Monitor [C]. In 978-1-4244-6290-2/10/$26.00 ?2010 IEEE
    [15] Campbell PK, Jones KE, Huber RJ, et al. A silicon-based, three-dimensional neural interface: manufacturing processes for an intracortical electrode array [J]. IEEE Transactions on Biomedical Engineering, 1991, 38(8): 758-768.
    [16] Bai Q, Wise KD, Anderson DJ. A High-Yield Microassembly Structure For Three-Dimensional Microelectrode Arrays [J]. IEEE Transactions on Biomedical Engineering, 2000, 47(3): 281-289.
    [17] Spelman FA. Cochlear Electrode Arrays: Past, Present and Future [J]. Audiology and Neurotology, 2006, 11: 77-85.
    [18] Yu LM, Tay FEH, Guo DG, et al. A microfabricated electrode with hollow microneedles for ECG measurement [J]. Sensor and Actuators A, 2009, 151: 17-22.
    [19] Lin CT, Ko LW, Chiou JC, et al. Noninvasive Neural Prosthesis Using mobile and Wireless EEG [J]. Proceedings of the IEEE, 2008, 96(7): 1167-1183.
    [20] Dias NS, Carmo JP, da Silva AF, et al. New dry electrodes based on iridium oxide (IrO) for non-invasive biopotential recordings and stimulation [J]. Sensors and Actuators A, 2010, 164: 28-34.
    [21] Ruffini G, Dunne S, Farrés E, et al. A dry electrophysiology electrode using CNT arrays [J]. Sensor and Actuators A, 2006, 132: 34-41.
    [22] Ruffini G, Dunne S, Fuentemilla L, et al. First human trials of a dry electro- physiology sensor using a carbon nanotube array interface [J]. Sensor and Actuators A, 2008, 144: 275-279.
    [23] Ng WC, Seet HL, Lee KS, et al. Micro-spike EEG electrode and the vacuum-casting technology for mass production [J]. Journal of material processing Technology, 2009, 209: 4434-4438.
    [24] Luttge R, Bystrova SN, van Putten MJAM. Microneedle array electrode for human EEG recording [J]. IFMBE Proceedings, 2008, 22: 1246-1249.
    [25] Hoffmann KP, Ruff R. Flexible dry surface-electrodes for ECG long-term monitoring [C]. In Proceedings of the 29th Annual International Conference of the IEEE EMBS, CitéInternationale, Lyon, France, 2007: 5739-5742.
    [26] Baek JY, An JH, Choi JM, et al. Flexible polymeric dry electrodes for the long-term monitoring of ECG [J]. Sensors and Actuators A, 2008, 143: 423-429.
    [27] Mestrovic MA, Helmer RJN, Kyratzis L, et al. Preliminary study of dry knitted fabric electrodes for physiological monitoring [C]. In ISSNIP 2007: 601-606.
    [28] Yoo J, Yan L, Lee S, et al. A Wearable ECG Acquisition System With Compact Planar-Fashionable Circuit Board-Based Shirt [J]. IEEE Transactions on Information Technology in Biomedicine, 2009, 13(6): 897-902.
    [29] Clippingdale AJ, Prance RJ, Clark TD, et al. Ultrahigh impedance capacitively coupled heart imaging array [J]. Review of Scientific Instruments, 1994, 65(1): 269-270.
    [30] Prance RJ, Debray A, Clark TD, et al. An ultra-low-noise electrical-potential probe for human-body scanning [J]. Measurement Science & Technology, 2000 , 11(3): 291.
    [31] Gebrial W, Prance RJ, Harland CJ, et al. Noninvasive imaging using an array of electric potential sensors [J]. Review of Scientific Instruments, 2006, 77(6): 063708.
    [32] Winter BB, Webster JG. Driven-right-leg circuit design [J]. IEEE Transactions on Biomedical Engineering, 1983, BME-30(1): 62-66.
    [33] Kim KK, Park KS. Effective Coupling Impedance for Power Line Interference in Capacitive-Coupled ECG Measurement System [C]. In Proceedings of the 5th International Conference on Information Technology and Application in Biomedicine, in conjunction with the 2nd International Symposium & Summer School on Biomedical and Health Engineering, Shenzhen, China, 2008: 256-258.
    [34] Matthews R, McDonald NJ, Hervieux P, et al. A Wearable Physiological Sensor Suite for Unobtrusive Monitoring of Physiological and Cognitive State [C]. In Proceedings of the 29th Annual International Conference of the IEEE EMBS, CitéInternationale, Lyon, France, 2007: 5276-5281.
    [35] Ottenbacher J, Heuer S. Motion artefacts in capacitively coupled ECG electrodes [J]. IFMBE Proceedings, 2009, 25(4): 1059-1062.
    [36] Grayson ACR, Shawgo RS, Johnson AM, et al. A BioMEMS Review: MEMS Technology for Physiologically Integrated Devices [J]. Proceedings of the IEEE, 2004, 92 (1): 6-21.
    [37]俞耀庭,张兴栋.生物医用材料[M].天津:天津大学出版社,2000.
    [38]章吉良,杨春生,等.微机电系统及其相关技术[M].上海:上海交通大学出版社,2000.
    [39] Nadim Maluf, Kirt Williams. An Introduction to Microelectromechanical Systems Engineering [M]. 2nd Edition. Boston, London: Artech House, 2004.
    [40] Sami Franssila.微加工导论[M].陈迪,刘景全,朱军,等译.北京:电子工业出版社,2006.
    [41] Gregory T. A. Kovacs.微传感器与微执行器全书[M].张文栋等译.北京:科学出版社,2003.
    [42]李永海,丁桂甫,毛海平,等.LIGA/准LIGA技术微电铸工艺研究进展[J].电子工艺技术,2005,26(1):1-5.
    [43]刘仁志.实用电铸技术[M].北京:化学工业出版社,2006.
    [44]庞梅,李洪友,李哲煜,等.双向脉冲电铸镍的研究[J].电镀与环保,2010,30(1):11-14.
    [45] Chin DT. Mass Transfer and Current-Potential Relation in Pulse Electrolysis [J]. Journal of the Electrochemical Society, 1983, 130(8): 1657-1667.
    [46] Chandrasekar MS, Pushpavanam M. Pulse and pulse reverse plating-Conceptual, advantages and applications [J]. Electrochimica Acta, 2008, 53: 3313-3322.
    [47]梁时骏,梁启民.电镀层厚度的简便计算[J].电镀与精饰,1994,12(6):22-25.
    [48]杨士勇.聚酰亚胺材料在微电子工业中的应用[J].半导体情报,1998,35(2):51-54.
    [49] Metz S, Oppliger F, Holzer R, et al. Fabrication and Test of Implantable Thin-Film Electrodes for Stimulation and Recording of Biological Signals [C]. In 1st Annual International IEEE-EMBS Special Topic Conference on Microtechnologies in Medicine & Biology, 2000, Lyon, France: 619-623.
    [50]徐旻,陈迪,周然,等.新型聚酰亚胺图形化工艺制备视网膜电极[J].微纳电子技术,2010,47(2):105-109.
    [51] Zaporojtchenko V, Strunskus T, Behnke K, et al. Formation of Metal-Polymer Interfaces by Metal Evaporation: Influence of Deposition Parameters and Defects [J]. Microelectronic Engineer, 2000, 50: 465-471.
    [52] Akin T, Ziaie B, Nikles SA, et al. A Modular Micromachined High-Density Connector System for Biomedical Applications [J]. IEEE Transactions on Biomedical Engineering, 1999, 46(4): 471-480.
    [53]肖素艳,车录锋,李昕欣,等.基于柔性MEMS皮肤技术温度传感器阵列的研究[J].光学精密工程,2005,13(6):674-680.
    [54] MacCarthy N, Wood T, Ameri H, et al. A Laser Release Method for Producing Prototype Flexible Retinal Implant Devices [J]. Sensors and Actuators A, 2006, 132(1): 296-301.
    [55] Quake SR, Scherer A. From Micro- to Nanofabrication with Soft Materials [J]. Science, 2000, 290(5496): 1536-1540.
    [56]王亮,陈红,宋巍,等.有机硅弹性体表面生物相容性的研究进展[J].高分子通报,2007,10:21-25.
    [57]林伟欣,田作华,王晓萍.一种基于三电极体系的人工电子舌的实现方法[J].测控技术,2007,26(6):9-11.
    [58]杨颂,梁磊,郭鹏义,等.介绍一种新型电容器——双电层电容器[C].自:中国电工技术学会电力电子学会第八届学术年会论文集,2002.
    [59] Bard AJ, Faulkner LR. Electrochemical Methods, Fundamental and Applications [M]. New York: John Wiley and Sons, 1980.
    [60]王晓韡,石立臣,吕宝粮.干电极脑电采集技术[J].中国生物医学工程学报,2010,29(5):777-784.
    [61] Ji J, Yu MS, Z YB, et al. A Wireless EEG Sensors System for Computer Assisted Detection of Alpha Wave in Sleep [C]. In Proceedings of the 2005 IEEE, Engineering in Medicine and Biology 27th Annual Conference, Shanghai, China, 2005: 5351-5353.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700