在石英和多孔α-Al_2O_3基体上制备碳纳米管膜
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
Sholl等人采用原子模拟法计算出气体在碳纳米管中的传递速率要比在具有相同孔径的分子筛等微孔材料中的速率高几个数量级。由此推测,具有均一孔径的碳纳米管膜将具有高的选择性和高渗透通量。本文分别在α-Al_2O_3和石英基体上制备了碳纳米管膜,并对得到的碳纳米管膜进行了表征和研究。
     采用浮动催化热裂解法,以二茂铁为催化剂,乙炔为碳源在多孔α-Al_2O_3基底上制备碳纳米管膜。碳纳米管的生长受到很多因素的影响,鉴于此,本文考察了工艺条件对碳纳米管膜生长的影响。详细考察了催化剂用量、反应温度等工艺参数对碳纳米管生长情况的影响。二茂铁的用量过大,催化剂颗粒过大,起催化作用的颗粒数目相对减少,催化活性大为降低;减少二茂铁的用量,铁颗粒减少,颗粒尺寸变小,铁催化剂颗粒间的间距增大,从而陶瓷基体表面铁颗粒的分布密度降低,催化剂活性提高。温度升高,碳纳米管的生长速度加快,但催化剂失活快,碳纳米管的产量减少。分别考察了上述几个工艺参数后,得出催化剂用量为0.25 g,反应温度为750℃,反应时间为10 min,乙炔流量为100 sccm时能够制备出有一定取向性的碳纳米管阵列。得到的碳纳米管外径小于40 nm。
     通过dip-coating的方法在石英片上沉积了较小尺寸、均匀分布的纳米级Co/Mo双金属催化剂颗粒。石英片预处理、添加乙二醇有利于获得直径较小、分布均匀的催化剂。然后采用CVD法在石英片上制备了直径较小的碳纳米管阵列。密实均匀的催化剂能保证生长出来的碳纳米管具有足够的密度,从而彼此限制生长的方向,达到准直定向的效果。优化后的工艺条件:在300 sccm的N_2/H_2(3 vol% H_2)气氛下加热还原,反应温度为750℃,乙炔气体流量为30 sccm,反应时间为10 min。
Sholl and coworkers found that the transport rates in nanotubes were magnitude of orders faster than in zeolites with comparable pore size calculated by atomic simulation method. One-dimensional pore of carbon nanotubes can improve the Selective separation of gas mixtures. Thus, we predict that carbon nanotubes film with a uniform pore size will have a high selectivity and high permeation flux. In this paper, films of carbon nanotubes were prepared on quartz and porousα-Al_2O_3 substrates, and carbon nanotube films obtained were characterized and studied.
     A floating catalytic pyrolysis method, with ferrocene as the precursor of catalyst and acetylene as a carbon source, was employed in the growth of CNTs on the porousα-Al_2O_3 substrate. The CNT growth is affected by many factors. In view of this, this paper examined the process conditions on the growth of carbon nanotube films. The parameters in the CNT growth process, including the amount of catalyst, temperature, were examined in details. It was found that the catalyst particles become larger with the amount of catalyst increase, leading to the substantially reduction of the catalytic activity. The amount of iron particles drastically reduced and the size become smaller with the amount of ferrocene reduction. Consequently, the space between the iron catalyst particles increases and the density of iron catalyst particles decrease. As the reaction temperature increasing, the carbon nanotube growth is accelerated. Less carbon deposited due to the quick deactivation of the catalyst. An optimum condition for the growth of the aligned carbon nanotube arrays is given as follows: the amount of catalyst is 0.25 g; reaction temperature is 750 o C; reaction time is 10 min; the flow rate of acetylene is 100 sccm. The outer diameter of carbon nanotubes prepared are smaller than 40 nm.
     Nano-scale Co/Mo bimetallic catalyst particles were prepared and deposited on the quartz substrate with smaller sizes and uniform distribution by dip-coating method. Hydroxylation treatment of quartz surfaces and addition of viscous agent ethylene glycol in the acetate ethanol solution is preferred to small, evenly distributed catalyst particles preparation. Then by using CVD method we prepare carbon nanotubes with smaller size on quartz. The optimum conditions are as follows: the catalysts are reduced in 300 sccm N_2/H_2 (3 vol% H_2); the reaction temperature is 750o C; acetylene gas flow rate is 30 sccm; and reaction time is
引文
[1] Iijima, Helical microtubules of graphitic carbon, Nature, 1991, 354: 56-58
    [2] Noriaki-Hamada, Shin-ehisawada, and Atsushi oshiyama, New one-dimensional conductors: graphite microtubules, Phys. Rev. Lett., 1992, 68: 1579-1581
    [3] J. W. Mintmire, B. I. Dunlap, and C. T. White, Are fullerene tubules metallic, Phys. Rev. Lett., 1992, 68: 631-634
    [4] Iijima, Helical microtubules of graphitic carbon, Nature, 1991, 354: 56-58
    [5] T. W. Ebbesen, P. M. Ajayan, Large scale synthesis of carbon nanotubes, Nature, 1992, 358: 220-222
    [6] Iijima, T. Ichihashi, Single shell carbon nanotubes of 1 nm diameter, Nature, 1993, 363: 603-605
    [7] D. S. Bethune, C. H. Kiang, M. S. Devries, et al., Cobalt catalyzed growth of carbon nanotubes with single atomic layer walls, Nature, 1993, 363: 605-607
    [8] Andreas Thess, Roland Lee, Pavel Nikolaev, et al., Crystalline ropes of metallic carbon nanotubes, Science, 1996, 273: 483-487
    [9] C. Journet, W. K. Maser, P. Bemier, et al., Large scale production of single walled carbon nanotubes by the electric arc technique, Nature, 1997, 388: 756-758
    [10] H. M. Cheng, F. Li, G. Su, et al., Large-scale and low-cost synthesis of single-walled carbon nanotubes by the catalytic pyrolysis of hydrocarbons. Appl. Phys. Lett., 1998, 72: 3282-3284.
    [11] Y. Ando, M. Ohkohchi and M. Wang, Regrowth of carbon nanotubes and nanoparticles, Journal of Crystal Growth, 1999, 166: 888
    [12] S. Iijima, Growth of carbon nanotubes, Materials Science and Engineering B, 1993, 19: 172
    [13]程大典,余荣清,刘朝阳,碳纳米管的激光溅射产生,高等学校化学学报,1995, 16(6): 948-949
    [14]陈萍,王培峰,林国栋,低温催化裂解烷烃法制备碳纳米管,高等学校化学学报,1995, 16(11): 1783-1784
    [15]孙晓刚,曾效舒,化学气相沉积法制备多壁碳纳米管研究,中国粉体技术,2002, 8(5): 34-36
    [16]徐东升,郭国霖,桂琳琳等,以多孔硅为模板制备取向碳纳米管,中国科学(B辑),2000, 30(4): 280-293
    [17] Yoon Y J, Baik H K, Catalytic growth mechanism of carbon nanofibers through chemical vapor deposition, Diamond and Related Materials, 2001, 10: 1214-1217
    [18] Hongjie Dai, Andrew G.Rinzler, Pasha Nikolaev, et al. Single-wall nanotubes produced by metal-catalyzed disproportionation of carbon monoxide. Chem. Phys. Lett, 1996, 260(3-4): 471-475
    [19] Kukovitsky E F, Lvov S G, Sainov N A, VLS-growth of carbon nanotubes from the vapor, Chem. Phys. Lett., 2000, 317(1-2): 65-7
    [20] Lee C J, Park J, Growth model of bamboo-shaped carbon nanotubes by thermal chemical vapor deposition, Appl. Phys. Lett., 2000, 77(21): 3397-3399
    [21] Yang R T, Chen J P, Mechanism of carbon-filament growth on metal-catalysts, J Catal, 1989, 115: 52-64
    [22] Cho W S, Hamada E, Kondo Y, Synthesis of carbon nanotubes from bulk polymer, Appl. Phys. Lett., 1996, 69: 278-279
    [23] Choi Y C, Kim D W, Lee T J, et al, Growth mechanism of vertically aligned carbon nanotubes on silicon substrates, Synthetic Metals, 2001, 117: 81-86
    [24] Jung M, Eum K Y, Baik Y J, et al, Effect of NH3 environmental gas on the growth of aligned carbon nanotube in catalytically paralyzing C2H2, Thin Solid Films, 2001, 398: 150-155
    [25] Wang X B, Liu Y Q, Zhu D B, Honeycomb-like alignments of carbon nanotubes synthesized by pyrolysis of a metal phthalocyanine, Appl. Phys. A, Materials Science and Processing, 2000, 71: 347-348
    [26] Tsai S H, Chiang F K, Tsai T G, et al, Synthesis and characterization of the aligned hydrogenated amorphous carbon nanotubes by electron cyclotron resonance excitation, Thin Solid Films, 2000, 366: 11-15
    [27] Yang Q, Xiao C, Chen W, et al, Growth mechanism and orientation control of well-aligned carbon nanotubes, Diamond and Related Materials, 2003, 12: 1482-1487
    [28] Walters D A, Casavant M J, Qin X C, et al, In-plane-aligned membranes of carbon nanotubes, Chemical Physics Letters, 2001, 338: 14-20
    [29] Shimoda H, Fleming L, Horton K, et al, Formation of macroscopically ordered carbon nanotube membranes by self-assembly, Physics B, 2002, 323: 135-136
    [30] Ajayan P M, Stephan O, Colliex C, et al, Aligned carbon nanotube arrays formed by cutting a polymer resin-nanotube composite, Science, 1994, 265: 1212-1214
    [31]陈飞,CVD法制备定向纳米碳管及其表征:[硕士学位论文]。杭州:浙江大学材料与化工学院,2004
    [32] Z H Yuan, H Huang, H Y Dang, et al. Field emission property of highly orderedmono-dispersed carbon nanotube arrays. Appl. Phys. Lett., 2001, 79(20): 3127-3129
    [33] Jung Sang Suh, Jin Seung Lee. Highly ordered two-dimensional carbon nanotube arrays. Appl. Phys. Lett., 1999, 75(14): 2047-2049
    [34] Shoushan Fan, Michael G Chapline, Nathan R Franklin, et al. Self-Oriented Regular Arrays of Carbon Nanotubes and Their Emission Properties. Science, 1999, 283: 512-514
    [35] Dongsheng Xu, Gulin Guo, Linlin Gui, et al. Controlling growth and field emission property of aligned carbon nanotubes on porous silicon substrates. Appl. Phys. Lett., 1999, 75: 481-483
    [36] M Terrones, N Grobert, J Olivares, et al. Controlled production of aligned nanotube bundles. Nature, 1997, 388: 52-55
    [37] Gao J S, Umeda K, Uchino K, et al. Plasma breaking of thin films into nano-size catalysts for carbon nanotube synthesis. Materials Science and Engineering A, 2003, 352: 308-313
    [38] Lance Delzeit, Cattien V Nguyen, Bin Chen, et al. Multi-walled Carbon Nanotubes by Chemical Vapor Deposition Using Multilayered Metal Catalysts. J. Phys. Chem. B, 2002, 106: 5629-5635
    [39] Shoushan Fan, Weijie Liang, Haiyan Dang, et al. Carbon nanotube arrays on silicon substrates and their possible application. Physics E, 2000, 8: 179-183
    [40] R Andrews,D Jacques, A M Rao, et al. Continuous production of aligned carbon nanotubes: a step closer to commercial realization. Chem. Phys. Lett, 1999, 303: 467-474
    [41] M Mayne, N Grobert, M Terrones, et al. Paralytic production of aligned carbon nanotubes from homogeneously dispersed benzene-based aerosols. Chem. Phys. Lett, 2001, 338: 01-107
    [42] Anyuan Cao, Lijie Ci, Dajie Li, et al. Vertical aligned carbon nanotubes grown on Au film and reduction of threshold field in field emission. Chem. Phys. Lett., 2001, 335: 150-154
    [43] B C Satishkumar, A Govindara, C N R Rao. Bundles of aligned carbon nanotubes obtained by the pyrolysis of ferrocene-hydrocarbon mixtures: role of the metal nanoparticles produced in situ. Chem. Phys. Lett., 1999, 307: 158-162
    [44] Z J Zhang, B Q Wei, G Ramanath, et al. Substrate-site selective growth of aligned carbon nanotubes. Appl. Phys. Lett., 2000, 77: 3764-3766
    [45]刘长虹,程国安,艾云龙。热化学气相沉积法制备定向碳纳米管薄膜,南昌大学学报(理科版),2005, 29(1): 5
    [46] Chhowalla M, Teo K B K, Ducati, et al. Growth process conditions of vertically aligned carbon-nanotubes using plasma enhanced chemical vapor deposition [J].Appl. Phys., 2001, 90(10): 5308
    [47]于慕楠,周英,王波等,影响碳纳米管生长与结构的参数研究[J],微细加工技术,2005, (1): 67
    [48] Minjae J, K wang YE, Young-Joon B, et al. Effect of NH3 environmental gas on the growth of aligned carbon nanotube in catalytically pyrolizing C2H2. Thin Solid Films, 2001, 398: 150
    [49] Choi GS, Cho Y.S., Hong S.Y., et al. Carbon nanotubes synthesized by Ni-assisted atmospheric pressure thermal chemical vapor deposition [J]. J. App. Phys., 2002, 91(6): 3847-3854
    [50]郑瑞廷,程国安,彭宜斌等。单晶硅基底上制备定向生长碳纳米管阵列的研究,中国科学E辑,2004, 34(9): 969
    [51]朱宏伟,吴德海等著,碳纳米管,北京:机械工业出版社,2005
    [52] [52] Jirage K B, Hulteen J C, Martin C R, Nanotube-based molecular-filtration membranes, Science, 1997, 278: 655-658
    [53] wang Q H, Corigan T D, Dai J Y, et al. Field emission from nanotube bundle emitters at low field [J]. Appl. Phys. Lett., 1997, 70(24): 3308
    [54]柴扬,于利刚,王鸣声等,掺氮碳纳米管阵列的制备及其场发射特性[J],北京大学学报(自然科学版),2006, 42(l): 89
    [55]宋教花,张耿民,张兆祥等。多壁碳纳米管阵列场发射研究[J],物理学报,2004, 53(l2): 4392
    [56] Dongsheng Xu, Guolin Guo, Linlin Gui, et al. controlling growth and field emission property of aligned carbon nanotubes on porous silicon substrates. Appl. Phys. Lett., 1999, 75: 481-483
    [57] S. Fan, M. Chapline, N. Franklin. Self-Oriented Regular Arrays of Carbon Nanotubes and Their Functional Devices.Science, 1999, 283: 512-514
    [58] D. N. Davydov, P. A. Sattari, D. Mawlawi. Field emitters based on porous aluminum oxide templates. Journal of Applied Physics, 1999, 86: 3983-3987
    [59] Z. W. Pan, C. K. Au, H. L. Lai, W.丫Zhou, L. E. Sun,Z. Q. Liu,S. S. Xie. Very Low Field Emission from Aligned and Opened Carbon Nanotube Arrays. J. Phys. Chem. B, 2001, 105: 1519-1522
    [60] Yan Chen, Sushil Patel, David T. Field emission from aligned high-density graphitic nanofibers. Applied Physics Letters, 1998, 73: 2119-2121
    [61] Jin Seung Lee, Jung Sang Suh. Uniform field emission from aligned carbon nanotubes prepared by CO disproportionation. Journal of Applied Physics, 2002, 92: 7519-7522
    [62] Z. H. Yuan, H. Huang, H. Y. Dang, J. E. Cao, B. H. Hu, S. S. Fan. Field emission Property of highly ordered mono-dispersed carbon nanotube arrays. Applied Physics Letters, 2001, 79(20): 3127-3129
    [63] Soo-Hwan Jeong, Hee-Young Hwang, Kun-Hong Lee, Yongsoo Jeong. Template-based carbon nanotubes and their application to a field emitter. Appl. Phys. Lett., 2001, 78: 2052-2054
    [64] Han Gao, Cheng Mu, Fan Wang, Dongsheng Xu, Kai Wu, Youchang Xie, Shuang Liu, Enge Wang, Jun Xu. Field emission of large-area and graphitized carbon nanotube array on anodic aluminum oxide template. Journal of Applied Physics, 2003, 93: 5602-5605
    [65] Ok-Joo Lee, Kun-Hong Lee. Fabrication of flexible field emitter arrays of carbon nanotubes using self-assembly mono-layers. Applied Physics Letters, 2003, 82: 3770-3772
    [66] Y. Shiratori, H. Hiraoka, Y. Takeuehi. One-step formation of aligned carbon nanotube field emitters at 400℃. Applied Physics Letters, 2003, 82: 2485-2487
    [67] J. T. L. Thong, D. Zhang, L. M. Gan. High-current field emission from a vertically aligned carbon nanotube field emitter array. Applied Physics Letters, 2001, 79: 2811-2813
    [68] Yan Chen, David T. Shaw, X. D. Bai, E. G.. Wang, C. Lund, W. M. Lu. Hydrogen storage in aligned carbon nanotubes. Applied Physics Letters, 2001, 78: 2128-2130
    [69] Anyuan Cao, Hongwei Zhu, Xiaofeng Zhang, Xuesong Li. Hydrogen storage of dense-aligned carbon nanotubes. Chemical Physics Letters, 2001, 342: 510-514
    [70] Nikolas A. Chaniotakis. Carbon nanotube array-based biosensor. Anal. Bioanal. Chem., 2003, 375: 103-105
    [71]陈巧玲,薛宽宏,陶菲菲,沈伟,尹寿银,徐雯,多壁碳纳米管阵列及其聚毗咯复合电极的电容性能研究,南京师范大学学报(工程技术版),2002, 2(4): 18-20
    [72] Lijie Ci, Bingqing Wei, et al. Journal of Crystal Growth, 2001, 233: 823-828
    [73]朱宏伟等,碳纳米管制备[M],北京:机械工业出版社,2003
    [74] Dai L M, Mau A W H, Controlled synthesis and modification of carbon nanotubes and C-60: Carbon nanostructures for advanced polymer composite materials, Adv. Mater., 2001, 13(12-13): 899-913
    [75] Huang S, Growing carbon nanotubes on patterned submicron-size SiO2 spheres, Carbon, 2003, 41: 2347-2352
    [76] Huang S, Dai L, Mau A W H, Patterned growth and contact transfer of well-aligned carbon nanotube films, J. Phys. Chem. B 1999, 103: 4223-4227
    [77] Li D C, Dai L, Huang S, Mau A W H, et al, Structure and growth of aligned carbon nanotube films by pyrolysis, Chemical Physics Letters, 2000, 316: 349-355
    [78] Kim N S, Lee Y T, Park J, et al, Vertically aligned carbon nanotubes grown bypyrolysis of iron, cobalt, and nickel phthalocyanines, J. Phys. Chem. B 2003, 107: 9249-9255
    [79] Hafner J H, Bronikowski M J, Azamian B R, et al, Catalytic growth of single-wall carbon nanotubes from metal particles, Chem. Phys. Lett., 1998, 296: 195-202
    [80] Rohmund F, Falk L K L, A simple method for the production of large arrays of aligned carbon nanotubes, Chem. Phys. Lett., 2000, 328(4-6): 369-373
    [81] Satishkumar B C, Sen R, et al, Single-walled nanotubes by the pyrolysis of acetylene-organometallic mixtures, Chem. Phys. Lett., 1998, 293: 47-52
    [82] Van der Waals R L, Ticich T M, Curtis V E, Flame synthesis of metal-catalyzed single-wall carbon nanotubes, J. Phys. Chem. A, 2000, 104: 7209-7217
    [83] Smiljanic O, Stansfield B L, Dodelet J P, et al, Gas-phase synthesis of SWNT by an atmospheric pressure plasma jet, Chem. Phys. Lett., 2002, 356: 189-193
    [84] Pradhan B K, Toba T, Kyotani T, et al, Inclusion of crystalline iron oxide nanoparticles in uniform carbon nanotubes prepared by a template carbonization method, Chem. Mater., 1998, 10(9): 2510-2515
    [85] Deepak F L, Govindaraj A, Rao C N R, Synthetic strategies for Y-junction carbon nanotubes, Chem. Phys. Lett., 2001, 345(1-2): 5-10
    [86] Kamalakaran R, Terrones M, Seeger T, et al, Synthesis of thick and crystalline nanotube arrays by spray pyrolysis, Appl. Phys. Lett., 2000, 77(21): 3385-3387
    [87] Mayne M, Grobert N, Terrones M, et al, Pyrolytic production of aligned carbon nanotubes from homogeneously dispersed benzene-based aerosols, Chem. Phys. Lett., 2001, 338: 101-107
    [88] Endo M, Kim Y M, Takeda T, et al, Structural characterization of carbon nanofibers obtained by hydrocarbon pyrolysis, Carbon, 2001, 39: 2003-2010
    [89] Andrews R, Jacques D, Rao A M, et al, Continuous production of aligned carbon nanotubes: a step closer to commercial realization, Chem. Phys. Lett., 1999, 303: 467-474
    [90] Zhang Z J, Wei B Q, Ramanath G, et al, Substrate-site selective growth of aligned carbon nanotubes, Appl. Phys. Lett., 2000, 77: 3764-3766
    [91] Cao A Y, Zhang X, Xu C, et al, Grapevine-like growth of single walled carbon nanotubes among vertically aligned multi-walled nanotube arrays, Appl. Phys. Lett., 2001, 79: 1252-1254
    [92] Cao A Y, Zhang X F, Wei J Q, et al, Macroscopic three-dimensional arrays of Fe nanoparticles supported in aligned carbon nanotubes, J. Phys. Chem. B, 2001, 105: 11937-11940
    [93] Cao A Y, Ci L J, Wu G W, et al, An effective way to lower catalyst content in well-aligned carbon nanotube films, Carbon, 2001, 39: 152-155
    [94] Hou H, Schaper A K, Weller F, et al, Carbon nanotubes and spheres produced by modified ferrocene pyrolysis, Chem. Mater., 2002, 14: 3990-3994
    [95]刘得利,不收缩石英陶瓷,佛山陶瓷,2002, 12(8): 42-42
    [96] Mayne M, Grobert N, Terrones M, Pyrolytic production of aligned carbon nanotubes from homogeneously dispersed benzene-based aerosols, Chem. Phys. Lett., 2001, 338: 101-107
    [97] Takenaka S, Serizawa M, Otsuka K, Formation of filamentous carbons over supported Fe catalysts through methane decomposition, Journal of Catalysis., 2004, 222: 520-531
    [98]米万良,Y. S. LIN,李永丹等,化学气相沉积法制备碳纳米管过程中NH3对其微观结构和石墨化程度的影响,化工学报,2006, 57(4): 964-969
    [99] Alvarez W E, Kitiyanan B, Borgna A, et al, Carbon, 2001, 39: 547
    [100] Kitiyanan B, Alvarez W E, Harwell J H, et al, Chem. Phys. Lett., 2000, 317: 497
    [101] Li W Z, Xie S SS , Qian L X, et al, Large-scale synthesis of aligned carbon nanotubes, Science, 1996, 74: 1701-1703
    [102] Cassell, A.M., Franklin, N.R., Tombler, Directed Growth of Free-Standing Single-Walled Carbon Nanotubes, J. Am. Chem. Soc., 1999, 121: 7975-7976
    [103] Li, Kim, Rolandi, Growth of Single-Walled Carbon Nanotubes from Discrete Catalytic Nano-particles of Various Sizes, J. Phys. Chem. B, 2001, 105: 11424-11431
    [104] Fan S S, Chapline M G, Franklin N R, et al, self-oriented regular arrays of carbon nanotubes and their field emission Properties, Science, 1999, 283: 512-514
    [105] Delzeit, L., Chen, B., Cassell, A., Stevens, Multilayered Metal Catalysts for Controlling the Density of Single-Walled Carbon Nanotube Growth, Chem. Phys. Lett, 2001, 348:368-374

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700