互花米草沼渣二次发酵特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
互花米草(Spartina alteriflora)是分布在沿海潮间带的耐盐耐淹的多年生多碳草本植物,每年干物质产率高达3154.8g/m2,是一个丰富的资源库。通过厌氧发酵产沼气,将其转化为清洁能源对我国生物质能源的发展具有重大的现实意义。前期的研究表明,互花米草通过一次发酵后仍然有大量的有机物残留在沼渣中,未被微生物所降解。针对以上问题,本文对互花米草一次发酵后沼渣二次发酵特性进行了探讨。
     本文将取回的互花米草鲜样直接进行厌氧发酵,发现单位VS产气量285.27 mL/g,仅为理论产气量的40%,CH4含量在65%左右波动,沼渣中仍含有较高的纤维素和半纤维素,两者之和为59.56%,表明厌氧发酵后的互花米草沼渣仍具有较大的产气潜力。对沼渣用不同浓度的NaOH溶液碱处理后进行二次发酵,结果表明,4%、6%、8%的NaOH溶液处理后,均能很好的产气,单位TS产气量分别为:262、276、282mL/gTS,甲烷总含量相差不大,分别为72%、72%、69%,随着NaOH浓度的增加,产气速率有不同程度的提高。pH值均在微生物适应生长范围内波动,VFAs也保持在较低水平,未出现酸抑制现象。综合经济方面因素考虑,选取6%的NaOH溶液为沼渣处理的合适浓度。
     在6%的NaOH溶液处理后,考察不同TS浓度的互花米草沼渣二次发酵特性。在TS浓度为8%、10%、12%的条件下,单位TS产气量分别为217、227、228 mL/g,甲烷含量均在65%以上,最高达79%。随着TS浓度的增大,产气率呈增大趋势。系统的pH值相对稳定,丙酸、丁酸浓度较低,未出现酸积累现象。由此可知,沼渣二次发酵不易出现酸化,可适当的提高TS负荷。
     比较了NaOH碱处理、添加土豆以及二者联合作用对沼渣二次发酵特性的影响。结果表明,不同处理下均能产生沼气,其中累积产气量为:联合处理>NaOH碱处理>添加土豆处理,最大值为287mL/g,最小值仅为91mL/g。其中联合处理造成一定程度的酸抑制。接着比较了沼渣经6%的NaOH处理后,土豆添加比例对其二次发酵特性的影响。当混合比例为3:1,4:1,6:1时,产气量分别为:278,287,175mL/g。随土豆添加比例的提高,酸化现象越明显,混合比例为4:1时单位TS产气量最大。
     一次发酵利用的是互花米草中易生物降解的有机物,而二次发酵原料为互花米草一次发酵沼渣,利用的是互花米草中难生物降解的有机物。两次发酵过程中,单位TS产气量相当,CH4含量二次发酵略高于一次发酵。经过一次发酵和二次发酵,互花米草生物转化率大大提高,沼渣产生量减少,降低了后续处理的难度,对工程化应用具有重大意义。
As a perennial salt marsh grass, S. alterniflora is native to the Atlantic and Gulf Coasts of North America.The average net primary production (NPP) of S. alterniflora exceeds 3154.8g dry mass m-2year-1 which become an abundant biomass resource.Considering the growing shortage of firewood and rising cost of fossil fuels, anaerobic digestion is an attractive technique for biosolids treatment in order to get the byproducts biogas and biofertilizer. Early study showed that anaerobic digestion of S. alterniflora was feasible,but for the high content lignocellulose inhibitory factor, the biotransformation rate was only 40% under mesophilic conditions.Most of organic substances were still remained to biogas residue.To improve digestion efficiency and biogas yield, digestion of biogas residue was researched in this paper. The pH value, theVFA (volatile fatty acid), and the biogas yield have been analyzed under the complete mixture anaerobic digestion condition.
     In order to improve the gas yield of Spartina alterniflora anaerobic digestion and confirm the ideal dosage of NaOH, the NaOH solutions in different concentration of 4%,6%,8% were used to treat the fermented Spartina alterniflora. The results showed that the anaerobic digestion capability of the Spartina alterniflora was enhanced remarkably by NaOH treatment,the rate of the second anaerobic digestion were 262mL/gTS,276 mL/gTS,282 mL/gTS and the methane content were 72%,72%,69% respectively. Considered the economic factor, NaOH concentration of 6% was selected.
     After Spartina alterniflora's biogas residue being treated by NaOH solution of 6% for 48h at room temperature, the effect of different loading rates for secondary anaerobic digestion was studied. Efficient biogas production was observed at TS loading rates of 8%,10%,12% at (35±1)℃.The peaks of daily gas production were 10,14,13 mL/g and the rates of cumulate gas production were 217,227,228 mL/g respectively. With the increasing of loading rate, the cumulate gas production improved. The methane content exceeded 65%. The lowest pH value was 7.04, acid accumulation was not observed for fermented material as non-degradation organic compound decomposing slowly. For anaerobic digestion of Spartina alterniflora's biogas residue, TS loading rate can increase to over 12%.
     Secondary anaerobic digestion were performed for mono-digestion of fermented S. alterniflora and co-digestion at fermented S. alterniflora to potato ratio (SA:P) of 6:1,4:1 and 3:1 (based on TS) after NaOH solution treatment. Co-digestion at SA:P of 4:1 without NaOH solution treatment was also evaluated. Optimal conditions for gas production of secondary anaerobic digestion were combined NaOH solution treatment and potato addition at SA:P of 4:1 while the highest gas yield was 288mL/gTS.The results showed that combined NaOH treatment and addition of potato to fermented S. alterniflora followed by secondary anaerobic digestion break complex organic material into simpler and more biodegradable constituents to enhance biogas production.
     Readily biodegradable organic matter was decomposed by microorganisms in first anaerobic digestion while the secondary fermentation of raw materials was Spartina's biogas residue which was inbiodegradable organic matter. After secondary fermentation, the amount of residue was decreased and reduced the difficulty of subsequent processing, biotransformation was greatly increased. Gas production of first and secondary anaerobic anaerobic digestion was about the same while CH4 concentration of the secondary anaerobic digestion was slightly higher. Secondary anaerobic digestion is of great significance to engineering applications.
引文
[1]Mohan S.V., Bhaskar Y.V., Krishna P.M., et al... Biohydrogen production from chemical wastewater assubstrate by selectively enriched anaerobic mixed consortia:Influence of fermeniation pH and substrate composition [J] Int J Hydrogen Energ,2007,32(13):2286-2295.
    [2]Levin D.B., Pitt L., Love M. Biohydrogen production:prospects and limitations to practical application [J].Int J Hydrogen Energ,2004,29(2):173-185.
    [3]Boekris J.OM...The origin of ideas on hydrogen economy and its solution to the decay of the environment [J].Int J Hydrogen Energ,2002,27(7-8):731-740.
    [4]Gregorio M., Teresa V.S...Towards the hydrogen economy [J].Int J Hydrogen Energ,2007, 32(12):1625-1637.
    [5]Rostrup-Nielsen J.R...Making fuels from biomass [J].Science,2005,308:1421-1422.
    [6]Bak J.S., Ko J.K.,Choi In-Geol, et al.. Fungal pretreatment of lignocellulose by phanerochaete chrysosporium to produce ethanol from rice straw [J].Biotechnology and Bioengieering,2009, 104(3):471-482.
    [7]Butchaiah G.., Sebastien B., Christoph M., et al.Air pollutant emissions from rice straw open field burning in India, Thailand and the Philippines [J]. Environment Pollution 2009,157:1554-1558.
    [8]Chou C.S., Lin S.H., Lu W.C., Preparation and characterization of solid biomass fuel made from rice sraw and rice bran [J]. Fuel processing technology,2009,90(7-8):980-987.
    [9]Huang C., Zong M.H., Wu H., et al...Microbial oil production from rice straw hydrolysate by trichosporon fermentants [J].Bioresource Technology,2009,100(19):4535-4538.
    [10]钦佩,仲崇信.米草的应用研究[M].北京:海洋出版社,1992:3-15.
    [11]朱洪光,陈小华,唐集兴.以互花米草为原料生产沼气的初步研究[J].农业工程学报,2007,23(5):201-204.
    [12]杨世关,李继红,郑正,等.互花米草厌氧生物转化可行性分析与试验研究[J].农业工程学报,2008,24(5):196-199.
    [13]李继红,杨世关,郑正,等.互花米草厌氧发酵产沼气初步试验研究[J].农业环境科学学报,2008,27(3):1254-1258..
    [14]Cammarota M.C., Freire D.M.G... A review on hydrolytic enzylmes in the treatment of wastewater with high oil and grease content [J]. Bioresour Teehnol,2006,97(17):2195-2210.
    [15]Mosier N., Wyman C.E., Dale B.E., et al... Features of promising technologies for pretreatment of lignocellulosic biomass [J]. BioresoureeTeehnol,2005,96:673-686.
    [16]NishiyamaY., Paul L., Henri C... Crystal structure and hydrogen bonding system in cellulose Iβ from synchrotron X-ray and neutron fiber diffraction[J].J Am Chem Soc,2002,124:9074-9082.
    [17]中国科学院植物研究所.草类纤维[M].北京:科学出版社,1973.
    [18]Boudet A.M., Kajita S., Pettenati J.G., et al. Lignins and lignocellulosics:a better control of synthesis for new and improved uses[J].Trends in plant Seience,2003,8(12)576-581.
    [19]SunYe, Cheng Jiayang, Hydrolysis of lignocellulosic materials for ethanol produetion:A review [J].Bioresource Technol,2002,83(1):1-11.
    [20]陈立祥,章怀云.木质素生物降解及其应用研究进展[J].中国林学院学报,2003,23(1):79-85.
    [21]Cowling E.B., Kirk T.K... Properties of cellulose and lignocellulosic materials as substrates for enzymatic conversion processes [J].Biotechnol Bioeng Symp,1976,(6),95-123.
    [22]Chang V.S., Holtzapple M.T... Fundamental factors affecting biomass enzymatic reactively [J].Appl Biochen Biotechnol,2000,84-86:5-37.
    [23]Nathan Mosier. Features of promising technologies for pretreatment of lignocellulosic bomass [J]. Bioresource Technol,2005,96:673-686.
    [24]赵志刚.木质纤维原料预处理及酶解的研究[D].太原:硕士论文,2007.
    [25]Saha B.C... Hemicellulose bioconversion [J]. Ind Microbiol Biotechnol,2003,30(5):279-291.
    [26]Palmowski L. M., Mueller J.A.. Influence of the size reduction of organic waste on their anaerobic digestion [J]. Water Sci Technol,2000,41(3):155-162.
    [27]Weemaes M., Grootaerd H., Simoens F... Anaerobic digestion of ozonized biosolids [J]. Water Res 2000, 34(8):2330-2336.
    [28]Kapdan I. K., Kargi F.. Bio-hydrogen production from waste materials [J].Enzyme Microb Technol, 2006,38:569-82.
    [29]Levin D.B., Pitt L., Love M... Biohydrogen production:prospects and limitations to practical application [J] Int J Hydrogen Energy,2004,29:173-85.
    [30]Kitchaiya P., Intakul P., Krairish M... Enhancement of enzymatic hydrolysis of lignocellulosic waste by microwave pretreatment under atmospheric pressure [J]. J Wood Chem Technol,2003,23(2):217-225
    [31]Chakraborty Nilanjan, Sarkar G M, Lahiri S C.Biomethanation of plant materials and agricultural residues using dung samples as wild population of microbes and also with isolated methanogens [J]. The Enviromnentalist,2002,22:173-182.
    [32]陈育如,夏黎明,吴绵斌.植物纤维素原料预处理技术的研究[J].化工进展,1999,4:24-26.
    [33]Delgenes, J.P., Penaud, V., Moletta, R., Pretreatments for the enhancement of anaerobic digestion of solid wastes [J].Biomethanization of the Organic Fraction of Municipal Solid Wastes,2002,8:201-228.
    [34]Hartmann, H., Angelidaki, I., Ahring, B.K., Increase of anaerobic degradation of particulate organic matter in full-scale biogas plants by mechanical maceration [J]. Proceedings of the Second International Symposium on Anaerobic Digestion of Solid Wastes,1999,1:129-136.
    [35]Chang, V.S., Holtzapple, M.T., Fundamental factors affecting enzymatic reactivity [J].Biochem. Biotechnol,2000,5-37.
    [36]Zhang Ruihong, Zhang Zhiqin. Biogasification of rice straw with an anaerobic-phased solids digester system [J]. Bioresource Technology,1999,68:235-245
    [37]Salerno, M.B., Park, W., Zuo, Y., et al... Inhibition of biohydrogen production by ammonia [J]. Water Res,2006,40:1167-1172
    [38]Cao Guangli, Ren Nanqi, Wang Aijie et al... Acid hydrolysis of corn stover for biohydrogen production using thermosaccharolyticum [J]. Int J Hydrogen Energ,2009,37(14):7182-7188
    [39]Zimbardi F., Viola E., Nanna F., et al.. Acid impregnation and steam explosion of corn stover in batch processes [J]. Ind Crop Prod,2007,26:195-206
    [40]Ueno Y., Kawai T., Sato S., et al.. Biological production of hydrogem from cellulose by mixed anaerobic microflora [J]. J Ferment Bioeng,1995,79(4):395-397
    [41]Silverstein R.A., Chen Y., Ratna R.S., et al.. A comparison of chemical pretreatment methods for improving saccharification of cotton stalks [J]. Bioresour Technol,2007,98(16):3000-3011
    [42]Xiao, W., Clarkson, W.W.,1997. Acid solubilization of lignin and bioconversion of treated newsprint to methane. Biodegradation 8,61-66.
    [43]朱跃钊,卢定强,万红贵,等.木质纤维素预处理技术研究进展[J].生物加工过程,2004,2,4:11-16
    [44]Gossett, J.M., Stuckey, D.C., Owen, W.F., Mccarty, P.L., Heat treatment and anaerobic digestion of refuse[J]. J. Environ. Eng. Div.1982,108,437-454.
    [45]Pavlostathis, S.G., Gossett, J.M.,Alkaline treatment of wheat straw for increasing anaerobic biodegradability[J]. Biotechnol. Bioeng,1985,27,334-344.
    [46]Habib G., Hassan M. F., Siddiqui M. M.. Degradation characteristics of straw from different wheat genotypes and their response tourea-ammoniation treatment [J].Anim Feed Sci Tech,1998,72:373-386
    [47]Eriksson T., Borjesson J., Tjerneld F... Mechanism of surfactant effect in enzymatic hydrolysis of lignocellulose [J].Enzyme Microb Technol,2002,31:353-364
    [48]Adsul M G., Ghule J. E., Shaikh H., et al., Enzymatic hydrolysis of delignified bagasse polysaccharides [J]. Carbohydr Polym,2005,62:6-10
    [49]Kivaisi A K, Gijzen J H, Opden Camp H J M,et al. Conversion of cereal residues into biogas in a rumen derived process [J]. Worla J. Microbiol Biotechnol,1992,8:428-433
    [50]Bobleter, O., Hydrothermal degradation of polymers derived from plants[J]. Prog. Polym. Sci.1994, 19:797-841.
    [51]Garrote, G., Dominguez, H., Parajo, J.C., Hydrothermal processing of lignocellulosic materials. Holz Roh Werkst.1999,57:191-202.
    [52]Gregg, D., Saddler, J.N., A techno-economic assessment of the pretreatment and fractionation steps of a biomass-to-ethanol process [J]. Appl. Biochem.Biotechnol.,1996,711-727.
    [53]Liu, C., Wyman, C.E., The effect of flow rate of compressed hot water on xylan, lignin and total mass removal from corn stover. Ind. Eng.Chem. Res.2003,42:5409-5416.
    [54]Zhu, Y., Lee, Y.Y., Elander, R.T., Dilute-acid pretreatment of corn stover using a high-solids percolation reactor [J]. Appl. Biochem. Biotechnol.2004,117,103-114.
    [55]Lora, J.H., Wayman, M., Delignification of hardwoods by autohydrolysis and extraction [J].1978, Tappi 61,47-50.
    [56]Negro, M.J., Manzanares, P., Oliva, J.M., Ballesteros, I., Ballesteros, M., Changes in various physical chemical parameters of Pinus Pinaster wood after steam explosion pretreatment[J]. Biomass Bioenergy, 2003.25,301-308.
    [57]Weimer, P.J., Hackney, J.M., French, A.D., Effects of chemical treatments and heating on the crystallinity of celluloses and their implications for evaluating the effect of crystallinity on cellulose biodegradation. Biotechnol. Bioeng.1995,48,169-178.
    [58]Teixeira, L.C., Linden, J.C., Schroeder, H.A.,1999. Alkaline and peracetic acid pretreatments of biomass for ethanol production. Appl. Biochem. Biotechnol,19-34.
    [59]杨世关,李继红,郑正等.互花米草厌氧生物转化可行性分析与试验研究[J].农业工程学报,2008,24(5):196-199.
    [60]Yang S.G., Li J.H., Zheng z., et al...Characterization of spartina alterniflora as feedstock to anaerobic digestion, Biomass and Bioenergy,2008,33(4):597-602.
    [61]陈广银,郑正,邹星星等.光照对互花米草厌氧消化过程的影响研究,环境化学,2009,28(5):640-644.
    [62]朱洪光,陈小华,唐集兴.以互花米草为原料生产沼气的研究.农业工程学报,2007,23(5):201-204.
    [63]陈广银,郑正,邹星星等.互花米草厌氧消化产沼气的试验研究.中国环境科学,2009,29(8):861-866.
    [64]邹星星,郑正,杨世关等.气爆预处理对互花米草厌氧发酵产气特性影响.中国环境科学,2009,29(10):1117-1120.
    [65]李继红,杨世关,郑正等.互花米草厌氧发酵产沼气初步试验研究.农业环境科学学报,2008,27(3):1254-1258.
    [66]孟卓.氨液浸泡及真空处理对互花米草厌氧发酵特性影响研究.南京大学硕士学位论文,南京,2008
    [67]李继红.互花米草与土豆混合发酵试验研究.南京大学博士学位论文,南京,2008.
    [68]陈广银,郑正,邹星星等.牛粪对互花米草混合厌氧发酵过程的影响研究.环境科学,2009,30(7):2130-2135.
    [69]陈广银,郑正,邹星星等.牛粪与互花米草混合厌氧消化产沼气的试验.农业工程学报,2009,25(3):179-183.
    [70]陈广银.NaOH处理对互花米草厌氧发酵影响机制研究.南京大学博士学位论文,南京,2010.
    [1]钦佩,谢民,陈素玲,等.苏北滨海废黄河口互花米草人工植被贮能动态[J].南京大学学报,1994,7(3):488-493.
    [2]钦佩,安树青,颜京松.生态工程学[M].2版.南京:南京大学出版社,2002.
    [3]Mack R N, Simberloff D, Lonsdale W M, et al. Biotic invasions:causes, epidemiology, global consequences, and control [J]. Ecol.Appl,2000,10:689-710.
    [4]Malcolm G M, Bush D S, Rice S K, Soil nitrogen conditions approach preinvasion levels following restoration of nitrogen-fixing black locust (Robiniapseudoacacia) stands in a pine-oak ecosystem [J]. Restor Ecol,2008,16:70-78.
    [5]Tassin J, Riviere J N, Clergeau P, Reproductive versus vegetative recruitment of the invasive tree Schinus terebenthifolius:implications for restoration on reunion island [J]. Restor Ecol, 2007,15:412-419.
    [6]朱洪光,陈小华,唐集兴.以互花米草为原料生产沼气的初步研究[J].农业工程学报,2007,23(5):201-204.
    [7]杨世关,李继红,郑正,等.互花米草厌氧生物转化可行性分析与试验研究[J].农业工程学报,2008,24(5):196-199.
    [8]孟卓.氨液浸泡及真空处理对互花米草厌氧发酵特性影响研究[D].南京:南京大学,2008.
    [9]朱洪光,陈小华,王彪.发酵液循环对互花米草沼气发酵的影响[J].中国沼气,2007,25(3):19-22.
    [10]李继红,杨世关,郑正,等.互花米草厌氧发酵产沼气初步试验研究[J].农业环境科学学报,2008,27(3):1254-1258.
    [11]陈广银,郑正,邹星星,等.牛粪对互花米草混合厌氧消化过程的影响研究[J],环境科学,2009,30(7):2130-2135
    [12]朱洪光,陈小华,唐集兴.以互花米草为原料生产沼气的初步研究[J].农业工程学报,2007,23(5):201-204.
    [13]Shiguan Yang, Jihong Li, Zheng Zheng. Characterization of Spartina alterniflora as feedstock for anaerobic digestion [J]. biomass and bioenergy,2009,33:597-602
    [14]Rettmann B E,McCarty P L著,文湘华,王建龙等译,环境生物技术原理与应用[M].北京:清华大学出版社,2004
    [15]Symons G E, Bushwell A M. The Methane Fermentation of Carbohydrate[J]. Journal of The American Chemical Society,1933,55:2028-2039
    [16]陈广银,郑正,邹星星,等.稻草与猪粪混合厌氧消化特性研究[J].农业环境科学学报,2009,28(1):185-188
    [1]钦佩,安树青,颜京松.生态工程学[M].2版.南京:南京大学出版社,2002
    [2]朱洪光,陈小华,唐集兴.2007.以互花米草为原料生产沼气的初步研究[J].农业工程学报,23(5):201-204
    [3]杨世关,李继红,郑正,等.2008.互花米草厌氧生物转化可行性分析与试验研究[J].农业工程学报,24(5):196-199.
    [4]李继红,杨世关,郑正,等.2008.互花米草厌氧发酵产沼气初步试验研究[J].农业环境科学学报,27(3):1254-1258
    [5]吴江,徐龙君,谢金连.2006.碱浸泡预处理对固体有机物厌氧消化的影响研究[J].环境科学学报,26(2):252-255
    [6]邹星星,郑正,杨世关等.2009.汽爆预处理对互花米草厌氧发酵产气特性的影响[J].中国环境科学, 29(10):1117-1120
    [7]贺延龄.1999.废水的厌氧生物处理[M].北京:中国轻工业出版社
    [8]Thanakoses P, Black AS, Holtzapple MT.2003. Fermentation of corn stover to carboxylic acids. Biotechnol Bioeng,83:191-200.
    [9]Chandler J A, Jewell W J, Gossett J M, et al.1980. Predicting methane fermentation biodegradability [M]. Biothechnology and Bioengineering Symposium No.10. John Wiley & Sons, New York
    [10]Ghosh A, Bhattacharyya B C.1999.Biomethanation of white rotted and brown rotted rice straw[J]. Bioprocess Engineering,20:297-302
    [11]Xiao B, Sun X F, Sun Run Cang.2001. Chemical, structural, and thermal characterizations of alkali-soluble lignins and hemicelluloses, and cel-lulose from maize stems, rye straw, and rice straw[J]. Polymer Degrada-tion and Stability,74(2):307-319
    [12]Clarkson W W, Xiao W.2000. Bench-scale anaerobic bioconversion of newsprint and office paper[J]. Water Science and Technology,41(3):93-100.
    [13]Shiguan Yang,Jihong Li, Zheng Zheng, et al.2009.Characterization of Spartina alterniflora as feedstock for anaerobic digestion[J]. biomass and bioenergy 33:597-602
    [1]陈广银,郑正,罗艳,等.碱处理对秸秆厌氧消化的影响[J].环境科学,2010,31(9):2208-2213
    [2]罗艳,陈广银,罗兴章,等NaOH溶液间歇式处理对互花米草厌氧发酵特性的影响[J].环境科学学报,2010,30(10):2017-2021
    [3]贺延龄.1999.废水的厌氧生物处理[M].北京:中国轻工业出版社
    [4]Mosey, F.E., Fernandes, X.A.,1989. Patterns of hydrogen in biogas from the anaerobic-digestion of milk-sugars. Water Science and Technology,21:187-196.
    [5]Sandberg, M., Ahring, B.K.,1992. Anaerobic treatment of fish-meal process wastewater in a UASB reactor at high pH. Applied Microbiology and Biotechnology,36:800-804.
    [6]陈广银,郑正,邹星星等.光照对互花米草厌氧消化过程的影响[J],环境化学,2009,28(5):640-644
    [7]邹星星,郑正,杨世关等.汽爆预处理对互花米草厌氧发酵产气特性的影响[J].中国环境科学2009,29(10):1117-1120
    [8]Siegert, I., Banks, C.,2005. The effect of volatile fatty acid additions on the anaerobic digestion of cellulose and glucose in batch reactors. Process Biochemistry,40:3412-3418.
    [9]Wang, Q.H., Kuninobu, M., Ogawa, H.I., Kato, Y.,1999. Degradation of volatile fatty acids in highly efficient anaerobic digestion. Biomass & Bioenergy,16:407-416.
    [10]Boone, D.R., Xun, L.Y.,1987. Effects of pH, temperature, and nutrients on propionate degradation by a methanogenic enrichment culture. Applied and Environmental Microbiology,53:1589-1592.
    [11]Ahring, B.K., Sandberg, M., Angelidaki, I.,1995. Volatile fatty-acids as indicators of process imbalance in anaerobic digesters. Applied Microbiology and Biotechnology,43:559-565.
    [12]李继红,杨世关,郑正,等.互花米草厌氧发酵产沼气初步试验研究[J],农业环境科学学报2008,27(3):1254-1258
    [13]Shiguan Yang,Jihong Li, Zheng Zheng, et al.2009.Characterization of Spartina alterniflora as feedstock for anaerobic digestion[J]. biomass and bioenergy,33:597—602
    [1]张婷.超声波与稀碱法联合预处理对秸秆厌氧发酵产沼气的影响,湖北工业大学硕士论文,湖北,2009.
    [2]何艳峰,李秀金,方文杰等.NaOH固态预处理对稻草中纤维素结构特性的影响[J],可再生能源,2007,25(5):31-34.
    [3]Qingming Luo, Xiujin Li. Anaerobic biogasification of NaOH-treated corn stalk [J]. Transactions of CSAE,2005,21 (2):111-115.
    [4]Rushbrook PE. Co-disposal of industrial wastes with municipal solid wastes. Resources Conserv Recyc 1990,4:33-49.
    [5]Tafdrup S. Centralized biogas plants combine agricultural and environmental beneFts with energy production. Water Science Technology 1994,30:133-41.
    [6]Ahring, B.,Angelidaki,I.,Johansen,K.,1992.Anaerobic treatment of manure together with industrial waste.Water Science and Technology 25,311-318.
    [7]Parawira,W.,Murto,M.,Zvauya,R.,Mattiasson,B.,2004.Anaerobic batch digestion of solid potato waste alone and in combination with sugar beet leaves. Renewable Energy 29,1811-1823.
    [8]Agdag, N.O., Sponza, D.T.,2007.Co-digestion of mixed industrial sludge with municipal solid wastes in anaerobic simulated landfilling bioreactors.Journal of Hazardous Materials 140,75-85.
    [9]Parawira,W.,Read,J.S.,Mattiasson,B.,Bjornsson,L.,2008.Energy production from agricultural residues:high methane yields in pilot-scale two-stage anaerobic digestion.Biomass and Bioenergy 32,44-50.
    [10]Wang,H.,Lehtom?ki,A.,Tolvanen,K.,Puhakka,J.,Rintala,J.,2009.Impact of crop species on bacterial community structure during anaerobic co-digestion of crops and cow manure.Bioresource Technology 100,2311-2315.
    [11]APHA,1995.Standard Methods for the Examination of Water and Wastewater,19th ed.American Public Health Association, Washington DC,USA.
    [12]Buyukkamaci N, Filibeli A. Volatile fatty acid formation in an anaerobic hybrid reactor. Process Biochem 2004,39:1491-4.
    [13]Siegert,I.,Banks,C.,2005.The effect of volatile fatty acid additions on the anaerobic digestion of cellulose and glucose in batch reactors.Process Biochemistry 40,3412-3418.
    [14]Zhao,J.H.,Zhang,B.,Cai,W.M.,2005.Research progress on propionic acid accumulation and control in anaerobic digestion system.China Water and Wastewater 21(3),25-27(in Chinese).
    [15]Ahring,B.K.,Sandberg,I.,Angelidaki,I.,1995.Volatile fatty acids as indicators of process imbalance in anaerobic digestors. Applied Microbiology and Biotechnology 43,559-565.
    [16]Yu, Y, Park, B., Hwang, S.,2004. Co-digestion of lignocellulosics with glucose using thermophilic acidogens. Biochemical Engineering Journal 18,225-229.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700