基于卟啉及罗丹明内酰胺的新型阳离子荧光分子探针的设计与合成
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
分子识别作为超分子化学的重要领域,最早是由有机化学家和生物化学家在分子水平上研究生物体系中的化学问题而提出的。分子识别本质上是指主体分子(受体)对客体分子(底物)选择性结合并产生某种特定功能的过程。而它们之间的这种特定功能的过程即识别,以及伴随产生的微观环境的变化,需要借助特殊的工具才能转换成为外界所感知的信号。荧光作为这种所感知的信号具有以下优点:最高可达单分子检测的高灵敏度、能够实现开关操作、对亚微粒具有可视的亚纳米空间分辨能力和亚毫秒时间分辨能力、原位检测(荧光成像技术)以及利用光纤进行远距离检测等等。荧光分子经过特殊的设计,能够选择性识别待测物,再将这种识别信息转换成荧光信号传递给外界,具有这种功能的分子就是荧光分子探针。
     卟啉(H2TPP)化合物具有非常好的光学性质,是一种理想的荧光物质,具有高的荧光量子产率、大的Stokes位移、相对长的激发(> 400 nm)和发射(> 600 nm)波长,而相对长的激发和发射波长能够减少背景荧光的干扰,所以卟啉化合物是一种值得进行深入研究的荧光染料。四苯基卟啉主要用来识别汞离子,我们以四苯基卟啉为母体进行设计,合成出了一个铜离子探针—5-(2, 3, 4-三羟基苯基)-10, 15, 20-三苯基卟啉。其它离子特别是汞离子对铜离子的测定不产生干扰,从而成功地改变了其识别性能。铜离子在1.9×10~(-6)–5×10~(-5)mol/L,荧光强度的变化与铜离子的浓度呈函数关系。同时,我们设计出了N-甲基四苯基卟啉,它是在四苯基卟啉空间吡咯环上的氮修饰了一个甲基,从而又一次成功的改变了其识别性能,成为了荧光增强型的锌离子探针。除了Cu(II)和Hg(II)外,大部分的碱金属,碱土金属,和过渡金属离子对锌离子的测量几乎没什么干扰。在锌离子浓度5.0×10~(-7)–1.0×10~(-5) mol/L范围内成线性关系。
     罗丹明的内酰胺螺环状结构,在长波长没有吸收,无色,无荧光;破坏内酰胺螺环状结构,在长波长有吸收,有颜色,强荧光。由于此结构上的优势,罗丹明内酰胺类化合物具有形成OFF-ON型荧光探针的潜能。在2006年,段春迎等在罗丹明6G酰肼上连接吡啶醛实现了选择性检测汞离子。基于该文提出的作用机制,我们注意到,汞离子主要与罗丹明6G吡啶醛亚胺上的N和吡啶醛上N原子络合开环,而罗丹明6G吡啶醛1-位及4-位的N,O原子贡献很少。在1997年,Czarnik等合成了铜离子选择性试剂罗丹明B酰肼。铜离子的加入,催化其水解,生成罗丹明B,铜离子主要与罗丹明B酰肼1-位及4-位的N,O原子络合,基于此,我们猜想,有可能只改变一个键,就能显著的改变识别选择性,从而实现对铜离子的选择性检测。依据上述讨论,我们设计了一个新型的罗丹明类荧光探针3。我们成功实现了改变一个键,其它都没变,显著的改变了化合物的识别选择性。且50μM的铜,荧光净增长66倍。线性范围:2.0×10~(-6)–1.0×10~(-5) ,检测限:5.3×10~(-7)。
Molecular recognition is the main field of Supramolecular chemistry, first advanced by organic chemist and biologic chemist when they investigate chemical problem. It in nature is the process that the host molecular integrates with guest molecular and produces a special function at this process. We need special tool to detect the process of molecular recognition and the changes of microcosmic environment during the sensing event. Fluorescent probes can transfer molecular recognition events into fluorescence signals and then make a bridge between man and molecule. The advantages of molecular fluorescence for sensing can be summarized: high sensitivity of detection down to the single molecule, "on-off' switchability, subnanometer spatial resolution and submillisecond temporal resolution, observation in situ, remote sensing by using optical fibres, et al. Fluorescence molecular is special designed and selective recognition events, then transfer molecular recognition events into fluorescence signals and at last make a bridge between man and molecule. This is fluorescence probe molecular.
     Porphyrins are attractive candidates of fluorescent probes owing to their good photophysical properties with strong fluorescence, large Stokes shifts and relatively long excitation (>400 nm) and emission (>600 nm) wavelengths that minimize the effects of the background fluorescence. Tetraphenylporphine shows high selectivity toward to Hg~(2+). It is a problem to switch in the recognition preference in Tetraphenylporphine throng modification. At last, we synthesize 5-(2, 3, 4-trihydroxylphenyl)-10, 15, 20-triphenylporphyrin as a new fluorescent probe for Cu~(2+). Other ions especial Hg~(2+) do not interfere with Cu~(2+)-induced fluorescence change. The probe exhibits a linear fluorescent response towards Cu~(2+) in the concentration range of 1.9×10~(-6)–5×10~(-5)mol/L. At the same time, we design and synthesize N-methyltetraphenylporphyrin throng modify a methyl in the pyrrolic nitrogens, and successfully switch in the recognition preference. The fluorescence emission intensity of N-methyltetraphenylporphyrin is remarkably enhanced upon the addition of Zn~(2+) which is attributed to the formation of 1:1 stoichiometry complexation for compound 1 with Zn~(2+). It shows a linear response toward Zn~(2+) in the concentration range of 5.0×10~(-7)–1.0×10~(-5) mol/L.
     Designing chemosensors based on rhodamine spirolactams has several advantages: they display not only great absorbance and fluorescence intensity enhancement toward some specific metal ions, but also a strong color development against the colorless blank during the sensing event. So, this is an ideal modal for the design of light“off-on”switch sensors. Recently an excellent job of opening the spiro ring of rhodamine spirlactam-based chemodosimeter was published. We noticed that N(py) and N (imine) is mainly coordinate to Hg~(2+) ion, however, one carboxyl and the other nitrate anion very weakly coordinate to the Hg~(2+) ion. And another splendid job of opening the spiro ring of rhodamine was reported via Cu~(2+) ion binding at the nitrate anion, carboxyl. Bearing this in mind, we envisaged that, by altering a bond, it may be possible to carry out a rhodamine spirolactam based fluorescent probe highly selective for Cu~(2+) ions by color/fluorescence changes. On the basis of above consideration, we design a new rhodamine-based fluorescent probe 3, which displays a selective and sensitive Cu~(2+) -amplified fluorescence in neutral buffered media. Cu~(2+) displayed a 66-fold enhancement at 50μM. It shows a linear response toward Cu~(2+) in the concentration range of 2.0×10~(-6)–1.0×10~(-5) mol/L.
引文
[1] Rurack k, Genger U R. Rigidization, preorientation and electronic decoupling-the ‘magic triangle’ for the design of highly efficient fluorescent sensors and switches. Chemical Society Reviews, 2002, 31: 116-127.
    [2] de Silva A P, Gunarature H Q, Gunnlangsson T, et al. Signaling recognition events with fluorescent sensor and switches. Chemical Reviews, 1997, 97(5): 1515-1566.
    [3] Valeur B, Leray I. Design principles of fluorescent molecular sensors for cation recognition. Coordination Chemistry Reviews, 2000, 205: 3-40.
    [4] Martinez-Manez R, Sancenon F. Fluorogenic and chromogenic chemosensors and reagents for anions. Chemical Reviews, 2003, 103(11): 4419-4476.
    [5] 刘育,尤长城,张衡益.超分子化学.天津:南开大学出版社,2001,131-131.
    [6] Banks C V, Bisque R E. Spectrophotometric determination of zinc and other metals with alpha-, beta-, gamrna-, delta-tetraphenylporphine. Analytical Chemistry, 1957, 29(4): 522-526.
    [7] Fack J E. Porphyrins & MetalloPorPhyrins, Elsevier, 1964.
    [8] Biesaga M, Pyrzynska K, Trojanowicz M. Porphyrin in analytical chemistry. A review. Talanta, 2000, 51(2): 209-224.
    [9] Czolk R, Reichert J. An optical sensor for the detection of Cd(II) ions. Sensors and Actuators A, 1991, 26(1-3): 439-441.
    [10] Plaschke M, Czolk R, Ache H J. Fluorimetric determination of mercury with a water-soluble porphyrin and porphyrin-doped sol-gel films. Analytica Chimica Acta, 1995, 304(1): 107-113.
    [11] Delmarre D, Meallet R, Bied-Charreton C, et al. Heavy metal ions detection in solution, in sol-gel and with grafted porphyrin monolayers. Journal of Photobiology A, 1999, 124(1-2): 23-28.
    [12] Chan W H, Yang R H, Wang K M. Development of a mercury ion-selective optical sensor based on fluorescence quenching of 5,10,15, 20-tetraphenylporphyrin. Analytica Chimica Acta, 2001, 444(2): 261-269.
    [13] Zhang X B, Guo C C, Li Z Z, et al. An optical fiber chemica1 sensor for mercury Ions based on a porphyrin dimer. Analytical Chemistry, 2002, 74(4): 821-825.
    [14] Yang X H, Wang K M, Guo C C, et al. Development of a fluorescent optode membrane for sodium ion based on the calix[4]arene and tetraphenylporphine. Talanta, 2000, 52(6): 1033-1039.
    [15] 仲敬荣, 刘妙根, 敖冰云等. 基于荧光内滤效应的锂离子荧光化学传感器研究. 高等化学学报, 2001, 22(2): 191-196.
    [16] Yang R H, Li K A, Wang K M, et al. Porphyrin assembly on beta-cyclodextrin for selective sensing and detection of a zinc ion based on the dual emission fluorescence ratio. Analytical Chemistry, 2003, 75(3): 612-621.
    [17] Yang R H, Li K A, Wang K M, et al. Cyclodextrin-porphyrin supramolecular sensitizer for mercury(II) ion. Analytica Chimica Acta, 2002, 469(2): 285-293.
    [18] Shao N, Zhang Y, Cheung S, et al. Copper ion-selective fluorescent sensor based on the inner filter effect using a spiropyran derivative. Analytical Chemistry, 2005, 77(22): 7294-7303.
    [19] Igarashi S, Nagoshi T, Kotake T. Properties of water-soluble porphyrin as a sensitizer in peroxyoxalate-hydrogen peroxide chemiluminescence system and its application to the quenching fluorometric determination of copper(II). Analytical Letters, 2000, 33(15): 3271-3283.
    [20] Yatsimirsky A K, Nelen M I, Savitsky A P, et al. Kinetic fluorometric-determination of Cu(II) and Zn(II) by their incorporation reactions into a water-soluble porphyrin. Talanta, 1994, 41(10): 1699-1706.
    [21] Li Z J, Zhu Z Z, Jan T, et al. Synthesis of meso-tetra-(3,5-di bromo-4-hydroxylphenyl)-porphyrin and its application to second-derivative spectrophotometric determination of lead in clinical samples. The Analyst, 1999, 124(8): 1227-1231.
    [22] Gao H W, Yang J X, Ye Q S. Property of cadmium and zinc complex with meso-tetra(3,5-dibrorno-4-hydroxyphenyl)porphyrin and simultaneous determination of cadmium and zinc by spectral correction method. Journal of the indian Chemica1Society, 2001, 78(5): 246-249.
    [23] Fang Y J, Chen H, Gao Z X, et al. Studies on the determination of palladium(II) by fluorescence quenching method with meso-tetra[4- (carboxymethylenoxy)-phenyl]porphyrin. Indian Journal of Chemistry Section A-Inorganic Bio-Inorganic Physical Theoretical & Analytical Chemistry, 2002, 41(3): 521-524.
    [24] Blair T L, Allen J R, Daunert S, et al. Potentiometric and fiber optic sensorsfor pH based on an electropolymerized cobalt porphyrin. Ana1ytical Chemistry, 1993, 65(13-15): 2156-2158.
    [25] Igrashi S, Kuwae K, Yotsuyanagi T. Optical pH sensor of electrostatically immobilized porphyrin on the surface of sulfonated polystyrene. Analytical Science, 1994, 10(5): 821-822.
    [26] Niu C G, Gui X Q, Zeng G M, et al. A ratiometric fluorescence sensor with broad dynamic range based on two pH-sensitive fluorophores. The Analyst, 2005, 130(11): 1551-1556.
    [27] Czolk R. Studies on the anion sensitivity of immobilized metalloporphyrins for application as optochemical sensors. Sensors and Actuators B, 1996, 30(1): 61-63.
    [28] Freeman M K, Bachas L G. Fiber-optic probes for cyanide using metalloporhyrins and a corrin. Analytica Chimica Acta, 1990, 241(1): 119-125.
    [29] Barker S L R, Shortreed M R, Kopelman R. Utilization of lipophilic ionic additives in liquid polymer film optodes for selective anion activity measurements. Analytical Chemistry, 1997, 69(6): 990-995.
    [30] Zhang W, Rozniecka E, Malinowska E, et al. Optical chloride sensor based on dimer-monomer equilibrium of indium(II) octaethylporphyrin in polymeric film. Analytical Chemistry, 2002, 74(17): 4548-4557.
    [31] Badr I H A, Meyerhoff M E. Fluoride-selective optical sensor based on aluminium(III)-octaethylporphyrin in thin polymeric film: further characterization and practical application. Analytical Chemistry, 2005, 77(20): 6719-6728.
    [32] Lee C, Lee D H, Hong J I. Colorimetric anion sensing by porphyrin-based anion receptors. Tetrahedron Letters, 2001, 42(49): 8665-8668.
    [33] Zhang Y, Li M X, Lü M Y, et al. Anion chelation-induced porphyrin protonation and its application for chloride anion sensing. The Journal of Physical Chemistry A, 2005, 109(33): 7442-7448.
    [34] Sessler J L, Camiolo S, Gale P A. Pyrrolic and polypyrrolic anion binding agents. Coordination Chemistry Reviews, 2003, 240(1-2): 17-55.
    [35] Sessler J L, Davis J M. Sapphyrins: Versatile anion binding agents. Account Chemical Research, 2001, 34(12): 989-997.
    [36] Shionoya M, Furuta H, Lynch V, et al. Diprotonated sapphyrin: A fluoride selective halide anion receptor. Journal of the American Chemical Society,1994, 114(14): 5714-5722.
    [37] Král V, Sessler J L, Furuta H. Synthetic sapphyrin-cytosine conjugates: Carriers for selective nucleotide transport at neutral pH. Journal of the American Chemical Society, 1992, 114(22): 8704-8705.
    [38] Král V, Andrievsky A, Sessler J L. A covalently linked sapphyrin dimer. A new receptor for dicarboxylate anions. Journal of the American Chemical Society, 1995, 117(10): 2953-2954.
    [39] Dujols V, Ford F, and Czarnik A W. Long-wavelength fluorescent chemodosimeter selective for Cu(II) ion in water. Journal of the American Chemical Society, 1997, 119(31): 7386-7387.
    [40] Xiang Y, Tong A J, Jin P Y, et al. New fluorescent rhodamine hydrazone chemosensor for Cu(II) with high selectivity and sensitivity. Organic letters, 2006, 8(13): 2863-2866.
    [41] Zhang X, Shiraishi Y, and Hirai T. Cu(II)-selective green fluorescence of a rhodamine-diacetic acid conjugate. Organic letters, 2007, 9(24): 5039-5042.
    [42] Zheng H, Qian Z-H, Xu L, et al. Switching the recognition preference of rhodamine B spirolactam by replacing one atom: design of rhodamine B thiohydrazide for recognition of Hg(II) in aqueous solution. Organic letters, 2006, 8(5): 859-861.
    [43] Yang Y-K, Yook K-J, and Tae J. A rhodamine-based fluorescent and colorimetric chemodosimeter for the rapid detection of Hg2+ ions in aqueous media. Journal of the American Chemical Society, 2005, 127(48): 16760-16761.
    [44] Wu D, Huang W, Duan C, et al. Highly sensitive fluorescent probe for selective detection of Hg2+ in DMF aqueous media. Inorganic Chemistry, 2007, 46(5): 1538-1540.
    [45] Wu J-S, Hwang I-C, Kim K S, et al. Rhodamine-based Hg2+-selective chemodosimeter in aqueous solution: fluorescent OFF-ON. Organic letters, 2007, 9(5): 907-910.
    [46] Lee M H, Wu J-S, Lee J W, et al. highly sensitive and selective chemosensor for Hg2+ based on the rhodamine fluorophore. Organic letters, 2007, 9(13): 2501-2504.
    [47] Xiang Y and Tong A J. A new rhodamine-based chemosensor exhibiting selective FeIII-amplified fluorescence. Organic letters, 2006, 8(8): 1549-1552.
    [48] Kwon J Y, Jang Y J, Lee Y J, et al. A highly selective fluorescentchemosensor for Pb2+. Journal of the American Chemical Society, 2005, 127(28): 10107-10111.
    [49] Pourreza N, Hoveizavi R. Simultaneous preconcentration of Cu, Fe and Pb as methylthymol blue complexes on naphthalene adsorbent and flame atomic absorption determination. Analytica Chimica Acta, 2005, 549(1): 124-128.
    [50] Becker J S, Zoriy M V, Pickhardt C, et al. Imaging of copper, zinc, and other elements in thin section of human brain samples (hippocampus) by laser ablation inductively coupled plasma mass spectrometry. Analytical Chemistry, 2005, 77(10): 3208-3216.
    [51] Romani J O, Moreda A P, Barrera A B, et al. Evaluation of commercial C18 cartridges for trace elements solid phase extraction from seawater followed by inductively coupled plasma-optical emission spectrometry determination. Analytica Chimica Acta, 2005, 536(2): 213-218.
    [52] Pinto J J, Moreno C, Garcia-Vargas M. A very sensitive flow system for the direct determination of copper in natural waters based on spectrophotometric detection. Talanta, 2004, 64 (22): 562-565.
    [53] Beni V, Ogurtsov V I, Bakunin N V, et al. Development of a portable electroanalytical system for the stripping voltammetry of metals: determination of copper in acetic acid soil extracts. Analytica Chimica Acta, 2005, 552(1): 190-200.
    [54] Pina F, Bernardo M A, García-Espa?a E. Fluorescent Chemosensors Containing Polyamine Receptors. European Journal of Inorganic Chemistry, 2000, 2143-2157.
    [55] Xu Z, Xiao Y, Qian X, et al. Ratiometric and selective fluorescent sensor for CuII based on internal charge transfer (ICT). Organic letters, 2005, 7(5): 889-892.
    [56] Zheng Y, Cao X, Orbulescu J, et al. Peptidyl fluorescent chemosensors for the detection of divalent copper. Analytical Chemistry, 2003, 75(7): 1706-1712.
    [57] Amendola V, Fabbrizzi L, Mangano C, et al. Signal Amplification by a Fluorescent Indicator of a pH-Driven Intramolecular Translocation of a Copper(II) Ion. Angewandte Chemie International Edition, 2002, 41(14): 2553-2556.
    [58] Wolf C, Mei X. Synthesis of conformationally stable 1,8-diarylnaphthalenes: development of new photoluminescent sensors for ion-selective recognition. Journal of the American Chemical Society, 2003, 125(35): 10651-10658.
    [59] Meallet-Renault R, Pansu R, Amigoni-Gerbier S, et al. Metal-chelating nanoparticles as selective fluorescent sensor for Cu2+. Chemical Communications, 2004, 2344-2345.
    [60] Wu Q, Anslyn E V. Catalytic signal amplification using a heck reaction. An example in the fluorescence sensing of Cu(II). Journal of the American Chemical Society, 2004, 126(45): 14682-14683.
    [61] Royzen M, Dai Z, Canary J W. Ratiometric displacement approach to Cu(II) sensing by fluorescence. Journal of the American Chemical Society, 2005, 127(6): 1612-1613.
    [62] William J, Kruper J, Thomas A, et al. Regiospecific aryl nitration of meso-substituted tetraarylporphyrins: a simple route to bifunctional porphyrins. The Journal of Organic Chemistry, 1989, 54(11): 2753-2756.
    [63] Gabrielsson A, Hartl F, Zhang H, et al. Ultrafast charge separation in a photoreactive rhenium-appended porphyrin assembly monitored by picosecond transient infrared spectroscopy. Journal of the American Chemical Society, 2006, 128(13): 4253-4266.
    [64] Liu W H, Wang Y, Tang J H, et al. An optical fiber sensor for berberine based on immobilized 1,4-bis(naphth[2,1-d]oxazole-2-yl)benzene in a new copolymer. Talanta, 1998, 46(4): 679-688.
    [65] Jiang P J, Chen L Z, Lin J. Novel zinc fluorescent probe bearing dansyl and aminoquinoline groups. Chemical Communications, 2002, 1424-1425.
    [66] Berg J M, Shi Y. The Galvanization of Biology: A Growing Appreciation for the Roles of Zinc. Science, 1996, 271(5252): 1081-1085.
    [67] Cuajungco M P, Lees G J. Zinc Metabolism in the Brain: relevance to human neurodegenerative disorders. Neurobiology of Disease, 1997, 4: 137-169.
    [68] Voegelin A, Pfister S, Scheinost A C, et al. Changes in zinc speciation in field soil after contamination with zinc oxide. Environmental Science and Technology, 2005, 39(17): 6616-6623.
    [69] Mertens J, Degryse F, Springael D, et al. Zinc toxicity to nitrification in soil and soilless culture can be predicted with the same biotic ligand model. Environmental Science and Technology, 2007, 41(8): 2992-2997.
    [70] Banks C V, Bisque R E. Spectrophotometric deterrriination of zinc and other metals with alpha-, beta-, gamma-, delta-tetraphenylporphine. Analytical Chemistry, 1957, 29(4): 522-526.
    [71] Fakhari A R, Shamsipur M, Ghanbari Kh. Zn(II)-selective membraneelectrode based on tetra(2-aminophenyl) porphyrin. Analytica Chimica Acta, 2002, 460(2): 177-183.
    [72] Li Q, Zhao X H, Lv Q Z, et al. The determination of zinc in water by flame atomic absorption spectrometry after its separation and preconcentration by malachite green loaded microcrystalline triphenylmethane. Separation Purification Technology, 2007, 55: 76-81.
    [73] Budde T, Minta A, White J A, et al. Imagine free zinc in synaptic terminals in live hippocampal slices. Neuroscience, 1997, 79(2): 347-358.
    [74] Wang H, Gan Q, Wang X, et al. A water-soluble, small molecular fluorescent sensor with femtomolar sensitivity for zinc ion. Organic Letters, 2007, 9(24): 4995-4998.
    [75] Zhang Y, Guo X F, Si W X, et al. Ratiometric and water-soluble fluorescent zinc sensor of carboxamidoquinoline with an alkoxyethylamino Chain as receptor. Organic Letters, 2008, 10(3): 473-476.
    [76] Nolan E M, Jaworski J, Okamoto K, et al. QZ1 and QZ2: rapid, reversible quinoline-derivatized fuoresceins for sensing biological Zn(II). Journal of the American Chemical Society, 2005, 127(48): 16812-16823.
    [77] Walkup G K, Burdette S C, Lippard S J, et al. A new cell-permeable fluorescent probe for Zn2+. Journal of the American Chemical Society, 2000, 122(23): 5644-5645.
    [78] Burdette S C, Walkup G K, Spingler B, et al. Fluorescent sensors for Zn2+ based on a fluorescein platform: synthesis, properties and intracellular distribution. Journal of the American Chemical Society, 2001, 123(32): 7831-7841.
    [79] Hirano T, Kikuchi K, Urano Y, et al. Improvement and biological applications of fluorescent probes for zinc, ZnAFs. Journal of the American Chemical Society, 2002, 124(23): 6555-6562.
    [80] Burdette S C, Frederickson C J, Bu W, et al. ZP4, an improved neuronal Zn2+ sensor of the zinpyr family. Journal of the American Chemical Society, 2003, 125(7): 1778-1787.
    [81] Lim N C, Brückner C. DPA-substituted coumarins as chemosensors for zinc(II): modulation of the chemosensory characteristics by variation of the position of the chelate on the coumarin. Chemical Communications, 2004, 1094-1095.
    [82] Goldsmith C R, Lippard S J. 6-methylpyridyl for pyridyl substitution tunes theproperties of fluorescent zinc sensors of the zinpyr family. Inorganic Chemistry, 2006, 45(2): 555-561.
    [83] Koike T, Watanabe T, Aoki S, et al. A novel biomimetic Zinc(II)-fluorophore, dansylamidoethyl-pendant macrocyclic tetraamine 1,4,7,10- tetraazacyclododecane (cyclen). Journal of the American Chemical Society, 1996, 118(50): 12696-12703.
    [84] Hirano T, Kikuchi K, Urano Y, et al. Novel zinc fluorescent probes excitable with visible light for biological applications. Angewandte Chemie International Edition, 2000, 39(6): 1052-1054.
    [85] Aoki S, Kaido S, Fujioka H, et al. A new zinc(II) fluorophore 2-(9-Anthrylmethylamino)ethyl-Appended 1,4,7,10-Tetraazacyclododecane. Inorganic Chemistry, 2003, 42(4): 1023-1030.
    [86] Bencini A, Berni E, Bianchi A, et al. A fluorescent chemosensor for Zn(II). Exciplex formation in solution and the solid state. The Royal Society of Chemistry, Dalton Transaction, 2004, 2180-2187.
    [87] Lim N C, Schuster J V, Porto M C, et al. Coumarin-based chemosensors for zinc(II): toward the determination of the design algorithm for CHEF-type and ratiometric probes. Inorganic Chemistry, 2005, 44(6): 2018-2030.
    [88] Yunus S, Charles S, Dubois F, et al. Simultaneous determination of cadmium (II) and zinc (II) by molecular fluorescence spectroscopy and multiple linear regression using an anthrylpentaazamacrocycle chemosensor. Journal of Fluorescence, 2008, 18:499-506.
    [89] Majzoub A E, Cadiou C, Déchamps-Olivier I, et all. (Benzimidazolylmethyl) cyclen: a potential sensitive fluorescent PET chemosensor for zinc. European Journal of Inorganic Chemistry, 2007, 32: 5087-5097.
    [90] Goodall W, Williams J A G. A new, highly fluorescent terpyridine which responds to zinc ions with a large red-shift in emission. Chemical Communications, 2001, 2514-2515.
    [91] Goze C, Ulrich G, Charbonnière L, et al. Cation sensors based on terpyridine-functionalized boradiazaindacene. Chemistry-A European Journal, 2003, 9: 3748-3755.
    [92] Reany O, Gunnlaugsson T, Parker D. Selective signalling of zinc ions by modulation of terbium luminescence. Chemical Communications, 2000, 473-474.
    [93] Reany O, Gunnlaugsson T, Parker D. A model system using modulation oflanthanide luminescence to signal Zn2+ in competitive aqueous media. Journal of the American Chemical Society, Perkin Transactions, 2000, 2: 1819-1831.
    [94] Parkesh R, Lee T C, Gunnlaugsson T. Highly selective 4-amino-1,8- naphthalimide based fluorescent photoinduced electron transfer (PET) chemosensors for Zn(II) under physiological pH conditions. Organic & Biomolecular Chemistry, 2007, 5: 310-317.
    [95] Maruyama S, Kikuchi K, Hirano T, et al. A novel, cell-permeable, fluorescent probe for ratiometric imaging of zinc ion. Journal of the American Chemical Society, 2002, 124(36): 10650-10651.
    [96] Shults M D, Pearce D A, Imperiali B. Modular and tunable chemosensor scaffold for divalent zinc. Journal of the American Chemical Society, 2003, 125(35): 10591-10597.
    [97] Taki M, Wolford J L, O'Halloran T V. Emission ratiometric imaging of intracellular zinc: design of a benzoxazole fluorescent sensor and its application in two-photon microscopy. Journal of the American Chemical Society, 2004, 126(3): 712-713.
    [98] Hirano T, Kikuchi K, Urano Y, et al. Highly zinc-selective fluorescent sensor molecules suitable for biological applications. Journal of the American Chemical Society, 2000, 122(49): 12399-12400.
    [99] Ngwendson J N, Banerjee A. A Zn(II) ion selective fluorescence sensor that is not affected by Cd(II). Tetrahedron Letters, 2007, 48: 7316-7319.
    [100] Chen Y, Han K, Liu Y. Effective switch-on fluorescence sensing of zinc(II) ion by 8-aminoquinolino-b-cyclodextrin/adamantaneacetic acid system in water. Bioorganic and Medicinal Chemistry, 2007, 15: 4537-4542.
    [101] Xu X, Zhang H, Zhang C, et al. Separation and determination of copper, zinc, palladium, iron, and manganese with meso-tetrakis (3-bromo-4- sulfophenyl) porphine and reversed-phase ion-pair liquid chromatography. Analytical Chemistry, 1991, 63(21): 2529-2532.
    [102] Tabata M, Kumamoto M, Nishimoto J. Ion-pair extraction of metalloporphyrins into acetonitrile for determination of copper(II). Analytical Chemistry, 1996, 68(5): 758-762.
    [103] Hu Q F, Yang G Y, Yin J Y, et al. Determination of trace lead, cadmium and mercury by on-line column enrichment followed by RP-HPLC as metal-tetra-(4-bromophenyl)-porphyrin chelates. Talanta, 2002, 57(4): 751-756.
    [104] Grant C, Hambright P. Kinetics of electrophilic substitution reactions involving metal ions in metalloporphyrins. Journal of the American Chemical Society, 1969, 91(15): 4195-4198.
    [105] Tabata M, Tanaka M. Importance of hydrophobic interaction in metalloporphyrin formation. Inorganic Chemistry, 1988, 27(1): 203-205.
    [106] Zhang Y, Xiang W, Yang R, et al. Highly selective sensing of lead ion based on α-, β-, γ-, and δ-tetrakis(3,5-dibromo-2-hydroxylphenyl)porphyrin/β-CD inclusion complex. Journal of Photochemistry and Photobiology A: Chemistry, 2005, 173: 264-270.
    [107] Bellacchio E, Gurrieri S, Lauceri R, et al. Nanomolar determination of copper(II)and zinc(II) using supramolecular complexes of meso-tetrakis(4-N-methylpyridyl)porphine on polyglutamate. Chemical Communications, 1998, 1333-1334.
    [108] Yang R H, Li K A, Wang K M, et al. Porphyrin assembly on β-cyclodextrin for selective sensing and detection of a zinc ion based on the dual emission fluorescence ratio. Analytical Chemistry, 2003, 75(3): 612-621.
    [109] Lavallee D K, Gebala A E. Facile dissociation of a copper porphyrin. Chlorocopper(II) N-methyltetraphenylporphine. Inorganic Chemistry, 1974, 13(8): 2004-2008.
    [110] Bain-Ackerman M J, Lavallee D K. Kinetics of metal-ion complexation with N-methyltetraphenylporphyrin. Evidence concerning a general mechanism of porphyrin metalation. Inorganic Chemistry, 1979, 18(12): 3358-3364.
    [111] Lavallee D K. Visible absorption spectra of N-methyltetraphenylporphyrin Complexes. Bioinorganic Chemistry, 1976, 6: 219-227.
    [112] Lavallee D K, Bain-Ackerman M J. Visible absorption and luminescence spectra of N-methyldeuteroporphyrin complexes and the question of “sitting-atop” compIexes. Bioinorganic Chemistry, 1978, 9: 311-321.
    [113] Lavallee D K, T. J. Mcdonough, Cioffi L. Fluorometric properties of N-methyltetraphenylporphine and several derivatives: evaluation as standards for determination of chlorophyll concentrations. Applied Spectroscopy, 1982, 36(4): 431-435.
    [114] Funahashi S, Ito Y, Kakito H, et al. Metal ion incorporation into N-methyl-5,10,15,20-tetrakis (4-sulfonatophenyl) porphine and its differential rates as applied to the kinetic determination of copper(II) and zinc(II) in serum. Mikrochimica Acta, 1986, 88: 33-47.
    [115] Adler A D, Longo F R, Finarelli J D. A simplified synthesis for meso-tetraphenylporphin. Journal of Organic Chemistry, 1967, 32: 476-476.
    [116] de Silva A P, Gunaratne H Q N, Gunnlaugsson, T, et al. Signaling recognition events with fluorescent sensors and switches. Chemical reviews, 1997, 97, 1515-1566.
    [117] de Silva A P, McCaughan B, McKinney B O F, et al. Newer optical-based molecular devices from older coordination chemistry. Dalton Transactions, 2003, 1902-1913.
    [118] Barceloux D G. Copper. Journal of Toxicology: Clinical Toxicology, 1999, 37(2): 217-230.
    [119] Barranguet C, van den Ende F P, Rutgers M, et al. Copper-induced modifications of the trophic relations in riverine algal-bacterial biofilms. Environmental Toxicology and Chemistry, 2003, 22(6): 1340-1349.
    [120] Wu Q, Anslyn E V. Catalytic signal amplification using a heck reaction. An example in the fluorescence sensing of Cu(II). Journal of the American Chemical Society, 2004, 126(45): 14682-14683.
    [121] Gunnlaugsson T, Leonard J P, Murray N S. Highly selective colorimetric Naked-Eye Cu(II) detection using an azobenzene chemosensor. Organic letters, 2004, 6(10): 1557-1560.
    [122] Mokhir A, Kr?mer R. Double discrimination by binding and reactivity in fluorescent metal ion detection. Chemical Communications, 2005, 2244-2246.
    [123] Royzen M, Dai Z, Canary J W. Ratiometric displacement approach to Cu(II) sensing by fluorescence. Journal of the American Chemical Society, 2005, 127(6): 1612-1613.
    [124] Zeng L, Miller E W, Pralle A, et al. A selective Turn-On fluorescent sensor for imaging copper in living cells. Journal of the American Chemical Society, 2006, 128(1): 10-11.
    [125] Yang X F, Guo X Q, Zhao Y B. Development of a novel rhodamine-type fluorescent probe to determine peroxynitrite. Talanta, 2002, 57(5): 883-890.
    [126] Benesi H A, Hildebrand J H. A spectrophotometric investigation of the interaction of iodine with aromatic hydrocarbons. Journal of the American Chemical Society, 1949, 71(8): 2703-2707.
    [127] Barra M, Bohne C, Scaiano J C. Effect of cyclodextrin complexation on the photochemistry of xanthone. Absolute measurement of the kinetics for triplet-state exit. Journal of the American Chemical Society, 1990, 112(22): 8075-8079.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700