ZK60镁合金高温变形行为研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
镁合金是所有金属结构材料中最轻的,其密度通常在1.75×10~3~1.85×10~3kg/m~3,是铝的2/3 ,钢的3/4。镁合金具有很高的比强度和比刚度,己被誉为21世纪的金属。
     但由于镁合金的晶体结构为密排六方,塑性不及较常用的面心立方结构金属,塑性成形能力差,因而镁合金在压铸成形领域优先得到重视和发展。变形镁合金与铸造镁合金相比,有更优良的综合性能,因而为了推动镁合金在航空、航天、汽车、摩托车等领域内的大量应用,发展我国的镁工业,必须大力开发变形镁合金及其生产工艺。
     本研究是在全球轻量化、大力发展镁合金的背景下,以镁合金ZK60为研究对象,对ZK60镁合金的高温流动行为进行了系统研究,确定出了ZK60镁合金高温变形时的最佳工艺参数范围;以ZK60镁合金高温变形的应力-应变曲线的特征分析为基础,建立了ZK60镁合金高温变形时的流动应力模型。验证结果表明,ZK60镁合金高温变形时的流动应力模型能较好地描述合金的高温变形行为。同时研究分析了ZK60镁合金的组织变化及动态再结晶。
     应用有限元方法,对锻造充型实验进行了数值模拟。着重讨论了不同的凸模斜度、圆角半径对变形过程的影响。研究结果表明,采用合理的凸模斜度和圆角半径,可避免锻造过程中的应力集中现象;镁合金在凸模斜度为3°,圆角半径为2mm的条件下锻造时具有更好的流动性和较低的变形抗力。上述研究为ZK60镁合金锻造工艺的优化设计及质量控制提供了理论和技术上的支持。
Magnesium alloys is the most light in all of the metal construction materials,its density only contain 1.75×103~1.85×103kg/m3, its density is 2/3 than that of aluminum, 1/4 of steel.The magnesium alloy has high specific strength and specific rigidity.The magnesium alloy will display important roles in the 21st century.
     Because of close-packed hexagonal structure,its plasticity displays worse than aluminum, as a result magnesium alloy at die-casting forming realm are attached importance and develop. Forming magnesium alloy have the more synthetical capability than the casts magnesium alloy, as a result for pushing the magnesium alloy in aviation, car, motorcycle...etc realm more be applied, For developing the magnesium industry of our country, must strongly develop forming magnesium alloy and its production crafts.
     This background of research is global lightweight and developing the magnesium, choose ZK60 magnesium alloy proceeds the research, Based on the characteristics of the stress-strain curves of the ZK60 magnesium alloy during high temperature deformation, the flow stress model of ZK60 magnesium alloy during high temperature deformation has been established by the isothermal compression. Meanwhile, the present model is checked. It is proofed that present constitutive relationship has a good reliability. In addition, studying systematically the regulation of organize evolvement and dynamic recrystallization of ZK60 magnesium alloy during heat forming.
     The effects of parameters in forging like cavity die-filling have been numerically simulated by finite element method. The affect of emphatically the different inclination of drift and punch-nose radius for equivalent strain, stress and load-journey curves have been discussed. The results investigated show that when adoption of the inclination of drift is 3°and the punch-nose radius 3mm, the magnesium alloy has better flowing ability and lower forming resistance. This work provides the theory and technique foundation for implementing process optimized design and quality control scheme of ZK60 magnesium alloy connecting piece isothermal forging process.
引文
[1]附田之欣,齐藤研.轻金属.1997, 47(5)298-305
    [2]吴荣华.有色金属与稀有金属国内外动态.1997,(2),187.
    [3]赵鸿.铝在汽车上的应用.汽车工料.1997,No1
    [4] Mark P. Miller. Getting Started With MSC. NASTRAN. The MacNeal一Schwendler Corpotation
    [5]汪之清.国外镁铸技术的发展[7].铸造.1997(8):45~51
    [6] J. Enss, T. Evertz, T. Reier, P. Juchmann, S. Schumann, W. Sebastian, New magnesium rolled Productions for automobile applications[A]. Proceedings of the Second Israeli International Conference on magnesium Science&Technology[C]. Dead Sea,Israel, 2000, 19~34
    [7] H. Friedrich. s. Schumarn. research for a "New age of magnesium" in the automotive industry[J].Journey of Materials Processing Technology. 2002, 117 (3):276-281
    [8] N. Ogawa, M. Shiomi,K.Osakada. Forming limit of Magnesium alloy at elevated temperate for Precision Forging[J].Int .J. Machine Tools and Manufacture, 2002,42:607-614
    [9]张少卿.MB15镁合金的相组成及其微观形态.金属学报,1989,25(6):A346-A351.
    [10] Nussbaum. A I.52 Annual IMA World Magnesium Conference. Light Metal Age.1999,53 (7-8):58~69
    [11] Masers D M. A global review of Magnesium parts in automobiles. Light Metal Age, 1996.54 (9-10):58~69
    [12]杨映芬,齐洪亮.铝合金汽车轮毂的市场需求及发展趋势.有色金属设计.1999 vol. 26Nol
    [13] Andrew Currie. Structural Optimization Comes of Age: Wheel Evaluation YieldsReal-World Results. Msc Model of the month, March 1997
    [14]蒲正丽.美洲虎和沃尔沃轿车公司开发新镁合金部件[J].稀有金属快报. 2002 (11),22
    [15]陈吉华,陈振华,严红革等.快速凝固镁合金的研究进展[J].化工进展. 2004, 23 (8),816~821
    [16]翟秋亚等.挤压变形AZ31镁合金组织和性能的影响[J].西安理工大学学报. 2002, 18 (3):254~258.
    [17] Chen F X. Su J H. Yang Y L.et al. Research on superplasticity and superplastic extrusion of MB26 Magnesium alloy[J]. J. Mater. Sci. Technol. 2001,17 (1).147~148.
    [18]刘满平,马春江,王渠东,吴国华,朱燕萍,丁文江等.工业态az31镁合金的超塑性变形行为[J].有色金属学报, 2002(4): 797~781.
    [19]丁水,于彦东,张凯锋等,MB15镁合金板材的超塑性能研究[J].锻压技术,2003 (3):44~46
    [20]尉胤红等,轧制AZ91镁合金超塑性研究[J],高技术通讯,2002 (9): 51~55.
    [21]王祝堂.铝合金轮毂的发展.轻合金加工技术. 1994, Vol. 22, No3
    [22]薛克敏、郝南海等.MB15镁合金上机匣的等温精锻分析.中国有色金属学报.1998(3)
    [23]吕炎,徐福昌,薛克敏等,镁合金上机闸等温精锻工艺的研究[J].哈尔滨工业大学学报.2000 32 (4), 127~129.
    [24] S. Kobayashi, S.I.Oh, T.Altan, Metal Forming and the Finite Element Method. Oxford University Press.New York, 1989.
    [25]陈欣如,胡忠民.塑性有限元及其在金属成形领域中的应用.重庆:重庆大学出版社. 1989.
    [26]乔端,钱银根.非线性有限元及其在塑性加工中的应用.北京:冶金工业出版社, 1990.
    [27] S. Badrinayanan, N. Constaninescou, N.Zabaras. Preform Design of Metal Forming Processes. Compu.Methods Appl. Mech. Eng. .129(1996): 319~348.
    [28] G.Q. Zhao, R. Huff, A. Hutter, R.V.Grandi. Sensitivity Analysis Based PreformDie Shape Design using the Finite Element Method. Journal of Material Engineering and Performance, 6(1997):303-310.
    [29] J. kusiak. Sensitivity Analysis Based Preform Die Shape Design using the Finite Element Method. Journal of Material Processing Technology, 37(1996): 79~84.
    [30] H.J.McQueen, M.Myshlaev , M.Sauerborn. M,et al. Magnesium technology 2000[M]. Warrendale: T MMMS,2000.
    [31] Laasraoui A,Jonas J J. Recrvstallization of austenite after deformation at high temperature and strain rates analysis modeling[J]. Metallurgical transaction. 1991, A22: 151~160.
    [32]卢雅琳. Al-4Cu-Mg合金的半固态成形研究.西安:西北工业大学硕士学位论文.2004
    [33] Frost H J,Ashby M F. Deformation Mechanism Maps. New York: Pergam on Press, 1982
    [34]鲍俊瑶,徐超.TC 11钛合金高温塑性本构方程研究.安徽建筑工业学报.1999,7:4145
    [35] W.I.Zuzin, M.Y.Browman and A.F.Metallurgy. Moscow, 1964 (in Russian)
    [36]S .Q.Lu and B.Z.Shang.Establishment of the Constitutive Relationship for MP159 Alloy. J.Mater.Sci.Technol.1999,15(3): 239~244
    [37] C.Zener and J. H. Hollomon. Effect of Strain -rate upon the Plastic Flow of Steel. J. of Applied Physics, 1994, 15(1): 22~27
    [38] C. M. Sellars and W. J. McG. Tegart. On the Mechanism of Hot Deformation. Acta Metallurtica, 1966, 14(9):1136~1138
    [39] K. P.Rao and E . B.Hawbolt. Development of Constitutive Relationships Using Compression Testing of a Medium Carbon Steel. Transactions of the ASME J. of Engineering Material and Technoloy, 1992,114(1):116~123
    [40]周廉,邓炬.Ti40阻燃钛合金铸态的高温变形机制.机械工程材料.1996, 2:9~12
    [41]熊爱明.钛合金锻造过程变形-传热-微观组织演化的耦合模拟.西安:西北工业大学博士学位论文.2003
    [42]聂蕾,李付国,方勇.一种基于并联关系模型的TC4合金本构方程.航空学报.2002, 23(2): 190~192
    [43]胡守仁,余少波,戴葵.神经网络导论.长沙:国防科技大学出版社:1993,10
    [44]Φ.Grong,H .R Shercliff. Microstructural Modeling in Metals Processing. Progress in Materials Science.2002,47: 163~282
    [45] S .Horikawa,T. Furuhashi and Y. Uchikawa. On fuzzy modelling using fuzzy neural networks with the back-propagation algorithm. IEEE Transactions on Neural Networks,1992, 3 (5): 801~806
    [46] J. S.R. Jang. ANFIS:Adaptive-network-based fuzzy inference systems. IEEE Transactions on System Man and Cybernetics, 1993,23 (3):665~685
    [47] N. Kasabov, J. Kim, M. Watts and A. Gray. FuNN/2-a fuzzy neural network architecture for adaptive learning and knowledge acquisition. Information Science,1997,101 (3):155~175
    [48] Y. C. Lee,C.H. Hwang and Y. P. Shih. A combined approach to fuzzy model identification. IEEE Transactions on System Man and Cybernetics,1994,24 (5): 736~744
    [49] Y. Lin. A new approach to fuzzy-neural system modeling. IEEE Transactions on System, 1995,3 (2): 190~198
    [50] C .F. Juang and C.T. Lin. A on-line self-constructing neural fuzzy inference network for system modeling. IEEE Transactions on System, 1998,6 (2): 12~32
    [51] J. Kim and N. Kasabov. HYFIS: adaptive neural -fuzzy inference systems and their application to nonlinear dynamical systems. Neural Networks , 1999 ,12:1301~1319
    [52] C .T. Lin and C.S.G. Lee.Neural-networks-based fuzzy logic control and decision system. IEEE Transactions on Computers, 1991,40 (12): 1320~1366
    [53] T.Sheppard, Mater. Sci.Tech., 1993, Vo1.9:430
    [54]于翔. AZ61B镁合金热加工成形的数值模拟及组织预报.重庆:重庆大学硕士学位论文.2004
    [55] Myshlyaev M.M., McQueen H.J., Mwembela A., Konopleva E., Twinning, dynamic recovery and recrystallization in hot worked Mg-Al-Zn alloy, MaterialsScience and Engineering: A, 337(2002),121.
    [56] Mohri T., Mabuchi M., Nakamura M., Asahina T., Iwasaki H., Aizawa T., Higashi K.,Microstructural evolution and superplasticity of rolled Mg-9Al-1Zn, Materials Science and Engineering: A 290(2000), 139.
    [57] Mohri Takeshi, Nishiwaki Takeshi, Kinoshita Takehiko, Iwasaki Hajime, Mabuchi Mamoru, Nakamura Asahina Tadashi, Aizawa Tatsuhiko, Higashi Kenji, Microstructure and tensileproperties of rolled Mg-5.5 mass%Zn-0.6 mass%Zr alloy, MaterialsTransa -ctions, JIM, 41(2000),1154.
    [58] H.Watanabe, H.Tsutsui, T.Mukai, K.Ishikawa, Y.Okanda, M.Kohzu, K.Higashi, Grain size control of commercial wrought Mg-Al-Zn alloys utilizing dynamic recrystallization, Materials Transactions, 42 (2001): 1200~1205.
    [59] Kaibyshev R, Galiyev A. On the possibility of superplasticity enhanced by recrystallization[J].M aterials Science Forum, 1997, 243~245: 131~136.
    [60] Galiyev A, Kaibyshev R, Sakai T. Continuous dynamic recrystallization in magnesium alloy[ J].M ater Sci Forum,2003,419~422: 509~514 [20}
    [61]汪凌云,黄光胜,范永革等.变形AZ31镁合金的晶粒细化[[ J].中国有色金属学报,2003, 13(3): 594 ~59A.
    [62]王嘉,808弹体温挤成形工艺研究,太原:华北工学院,2002.3
    [63]王勖成,邵敏.有限元法基本原理和数值方法.北京:清华大学出版社,2001年1月(第二版)
    [64] Marcal P V, King I D. Elastic-plastic analysis of two-dimensional stress systems by the finite element method. Int. J. Mech. Sci., 1967; 8: 143~155
    [65] Lee C H, Kobayashi S. Elasto-plastic analysis of plane-strain and axisymmetric flat punch indentation by the finite element method. Int. J.Mech.Sci,1970;13:349~370
    [66] Lee C H, Kobayashi S. New solutions to rigid plastic deformation problems using a matrix method. Transaction of ASME, Journal of Engineering for industry, 1973;V95:865
    [67] Chen C C, Kobayashi S. Rigid plastic finite element analysis of ring compression. Application of Numerical Methods to Forming Processes, ASME,AMD,1978;V28: 163
    [68] Chen C C, Kobayashi S. Deformation analysis of multi-pass bar drawing
    [69] Oh S I, Rebelo N, Kobayashi S. Finite element formulation for the analysis of plastic deformation of rate-sensitive materials in metal forming. Metal Forming Plasticity, Ed. By H. Lippmann, Springer Verlen, 1979: 273
    [70] Li G J, Kobayashi S. Rigid plastic finite element analysis of plane strain rolling.Trans. ASME, J. Eng. Ind., 1982; V104
    [71] Zienkiewcz O C, Godbole P N. A penalty function approach to problems of plastic flow of metal with large surface deformations. J.Strain Analysis, 1975;V10: 180
    [72] Zienkiewcz O C, Jain P C. Onate E, Flow of solids during forming and extrusion: some aspects of numerical solutions. Int. J. Solids. Struct., 1978; V14: 15
    [73] Wu W T, Oh S I. ALPID: A general purpose FEM code for simulation of non-isothermal orming processes. Proc. 13th NAMRC, Univ. of CA., Berkeley:449
    [74] Oh S I, Wu W T, etc. Capabilities and applications of FEM code DEFORM: the perspective of developer. J. Mater. Process. Technol., 1991; V27: 25~42
    [75] Osakada K, Nakano J, Mori K. Finite element method of rigid plastic analysis of metal forming formulation for finite deformation. Int. J. Mech. Sci., 1982; V24,n8: 459
    [76] Kopp R, Becker M. A concept for dynamic remeshing at FEM simulation showed by the example of the forging process. Adv. Tech. of Plast., 1990; V1 :179
    [77] Yang D Y, Yoon Y h, Lee N K. Modular remeshing: a practical method of 3-D remeshing in forging of complicated parts. Adv. Tech. of Plast., 1990; V1: 171
    [78] Blacker T D, Stephenson M B. Paving: A new approach to automated quadrilateral mesh generation. Int. J, for Num. Methods in Eng, 1991;V32: 811
    [79] Yukawa N, Ishikawa T, etc. Adaptive remeshing method for thermo-rigid-plastic finite element analysis. Adv. Tech. of Plast., 1993; V3: 1071
    [80]李如生.非平衡态热力学和耗散结构.清华大学出版社,1986
    [81] Prasad Y V R K, Gegel H L, etc. Modeling of dynamic material behavior in hotdeformation: forging of Ti-6242. Metallurgical and materials transactions A,1984; V15A
    [82] Sellars C M, Whiteman J A. Computer modeling of hot working processes. Mater. Sci. & Tech. 1955; V1: 325
    [83] Yada H, Senuma T. Resistance to hot deformation of steel. J. JSTP, 1986; V27:33
    [84] Yada H. Accelerated cooling of rolled steels. Conf. of. Metallurgists, Pergam on Press, Canada: 105~120
    [85] Kopp R, Karnhausen K, Souza M M. Numerical simulation method for designing thermomechanical treatment. Illustrated by Bar Rolling, Scand. J. Metal., 1991;V20: 351
    [86] Shen G S, Semiatin S L, Shivpuri R. Modeling microstructural development during the forging of waspaloy. Metallurgical and Materials Transactions A, 1995;V26A:1796

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700