光折变高阶衍射特性与相位编码复用全息存储
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
光折变效应(photorefractive effect)是贝尔实验室的Ashkin等人于1966年发现的一种光学效应。他们将激光束聚焦在铁电材料(LiNbO_3和LiTaO_3)上进行光倍频实验时发现材料的折射率会发生改变。随着研究的深入,人们发现这种效应在全息数据存储与处理方面有着重要的应用价值。
     本文对光折变材料的高阶衍射特性进行了深入研究,从Raman-Nath衍射理论出发,给出小角度入射下二波耦合中的折射率最大变化值与衍射光相对强度的关系。给出存在和不存在相位转移时,不同波长的探测光在正入射和斜入射情况下各阶衍射光的衍射角度及相对光强分布。在忽略吸收的情况下,给出二波耦合各阶衍射光的强度分布。从理论上解释了高阶衍射光强度发生震荡的原因,在实验上验证了薄光折变材料在小角度二波耦合中形成的光栅衍射为Raman-Nath衍射。
     利用光折变聚合物(PVK:5CB:C_(60))样品实现小角度全息存储实验,分别给出了样品置于焦平面前、焦平面后、焦平面上三种情况下的实验结果。实验结果表明信号光图像的高阶衍射图像相对于信号光图像分别被放大、缩小和旋转。利用掺杂甲基红(MR)的液晶(5CB)样品,实现了小角度存储实验,并记录了永久光栅,用不同波长的探测光垂直样品表面入射,再现了高阶衍射图像。建立了光折变材料中小角度二波耦合存储及再现高阶衍射理论,理论与实验符合很好,表明了光折变高阶衍射用于图像处理是可行的。观察到了高阶衍射图像的叠加、耦合及高阶衍射光与入射光之间的耦合。
     从光折变材料的高阶衍射特性出发设计了一种全新的光折变高阶衍射分束器。利用He-Ne激光器通过小角度二波耦合方法在光折变晶体LiNbO_3上制作了一维光折变高阶衍射分束器,利用半导体激光器通过小角度多波耦合方法在光折变聚合物材料上制作了二维光折变高阶衍射分束器。利用三种不同波长(632.8 nm, 432.0 nm和488.0 nm)携带图像信息的入射光进行了分束实验,给出了不同波长下的分束实验结果,实验表明高阶衍射分束器可以把携带图像信息的入射光分成多个等大且等间距的出射光,实验效果良好,并对不同波长入射光的分束结果进行了比较。对分束器置于焦平面前、焦平面后及焦平面上的分束结果进行了研究,并在理论上讨论了高阶衍射光束的光强分布和位置分布。讨论了光折变材料厚度和读出光的入射角度对高阶衍射光强度分布的影响,理论和实验结果都表明光折变高阶衍射分束器是一种实用的光学分束器。
     提出了旋转柱面透镜相位编码复用全息存储方法。从理论和实验两方面分析了这种方法的交扰问题,给出了柱面透镜旋转最小角度的实验值,提出了一种减小柱面透镜旋转角度提高存储密度与相关识别准确度的方法,实验验证了这种方法的正确性。实验上把旋转柱面透镜相位编码复用与角度复用结合,在Zn:Fe:LiNbO_3晶体的同一位置存储了36幅全息图,并进行了相关识别,识别率达到100%。同其它相位编码复用技术相比,旋转柱面透镜相位编码全息存储的优点是在存储的同时实现相关识别。最后,讨论了高阶衍射光在相关识别中的应用。
Photorefractive effect was discovered in 1966 by A. Ashkin et al in Bell Laboratory when frequency double experiments was done with the inorganic crystals LiNbO_3 and LiTaO_3. The refractive index of the crystal was changed by the incident light. After analyzing it more deeply, the Photorefractive effect is recognized to be significant for holographic data storage and information process.
     In this thesis, we study the higher-order diffraction properties of photorefractive materials. The relationship between the changes of refractive index and diffraction light intensity is given. The maximum variation of the refractive index versus the relative intensity of diffraction light is discussed using Raman-Nath theory in two-wave coupling experiment at small incident angle With and without the phase transfer, the distributions of diffraction light intensity and angle position are presented when the probe light illuminates the photorefractive materials with different input angles and wavelengths. In two-wave coupling, the intensity of higher-order diffraction is derived with ignoring the absorption. The fluctuation of higher-order diffraction intensity is discussed theoretically. In thin photorefractive materials, it is confirmed experimentally that the diffraction of higher-order diffraction is belong to Raman-Nath diffraction in two-wave coupling at small incident angle.
     In PVK:5CB:C_(60), the holographic storage results were given with small input angle when the film was placed behind the focal plane, in front of the focal plane and in the focal plane. It is found that higher-order diffraction images were amplified, reduced and rotated images compared with signal image. The permanent grating was recorded in MR doped 5CB at small incident angle. The higher-order diffraction images were reconstructed when different wavelength probe light input with direction perpendicular to the surface of the sample. A theory of higher-order diffraction images storage and reconstruction is developed. The theory is in good agreement with the experimental results. It is proved that higher-order diffraction images can be used in optical image processing. The superposition of higher-order diffraction images, the energy transfer between the higher-order diffraction images, the energy transfer between higher-order diffraction lights and incident beams were observed.
     A photorefractive higher-order diffraction optical beam splitter has been designed based on the higher-order diffraction of photorefractive materials. The one-dimension splitter was produced by two-wave coupling in photorefractive crystal at a small incident angle with He-Ne laser. The two-dimension splitter was produced by four-wave coupling in photorefractive polymer at a small incident angle with semiconductor laser. Three different wavelength signal lights (632.8 nm, 532.0 nm and 488.0 nm) were split into multi-output beams by the splitter. The experimental results indicate that the splitter can split signal beam into several diffraction beams with equal size and distance very well. We discuss the position and intensity distribution of higher-order diffraction beams when the film was placed in front of the focal plane, behind the focal plane and in the focal plane. The effect of photorefractive material thickness and the incident angle on the higher-order diffraction beam position and intensity distribution are discussed. The theoretical and experimental results show that the photorefractive higher-order diffraction optical beam splitter can provide a practical way to split the signal beam.
     A new phase-code multiplexed holographic storage method has been realized by using a rotated cylindrical-collimating lens system. The cross-talk is discussed theoretically and experimentally. The minimum value of angular selectivity is given experimentally. A method is proposed and the experimental results testified the validity to decrease the angular selectivity and increase the correlation accuracy. In Zn:Fe:LiNbO_3 (0.03 wt. % Fe, 3 mol. % Zn), 36 holograms have been successfully stored with phase-coded and angular multiplexing. The correlation recognition was finished for 36 holograms. The correlation accuracy was 100%. The advantage of rotationally phase-code multiplexed storage is used for correlation recognition, but the other phase-code multiplexed storage can’t realize correlation recognition. Finally, the using of higher-order diffraction in correlation recognition was discussed.
引文
1 A. Ashkin, D. Boyd, J. M. Diedzic, R. G. Smith, A. A. Ballman, J. J. Levinsstein, K. Nassau. Optically-induced Refractive Index in Homogeneities in LiNbO_3. Appl. Phys. Lett. 1966, 9: 72~74
    2 F. S. Chen, A Laser-induced Inhomogeneity of Refractive Indices KTN. J. Appl. Phys. 1967, 38(8): 3418~3420
    3 S. Fang, B. Wang, T. Zhang, F. Ling, R. Wang. Growth and Photorefractive Properties of Zn, Fe Double-doped LiTaO_3 Crystal. Opt. Materials. 2006, 28: 207~211
    4 B. Liang, Q. Guo, G. Fu, Z. Wang. Fidelity Holographic Recording in a Ce:KNSBN Crystal with Incoherent Erasing Technique. Optik. 2003, 114(11): 515~517
    5 K. Shcherbin, V. Danylyuk, Z. Zakharuk, I. Rarenko, M.B. Klein. Photorefractive Recording in Ac-biased Cadmium Telluride. J. Alloys and Compounds. 2004, 371: 191~194
    6 D. Wolfersberger, N. Khelfaoui, G. Kugel, N. Fressengeas, M. Chauvet. Fast Self-induced Waveguides in Photorefractive Semiconductor InP: Fe for Reconfigurable Optical Switching. Proc. of SPIE. 2006, 6187: 61870Q
    7 P. Yu, S. Balasubramanian, T. Z. Ward, M. Chandrasekhar, H. R. Chandrasekhar. Optimisation of Photorefractive Multiple Quantum Wells for Biomedical Imaging. Synthetic Metals. 2005, 155: 406~409
    8 C. H. Yang, Y. J. Gu, B. Wang. Photorefractive Properties of Mn Doped K3Li2Nb5O15 Crystal. Opt. Commun. 2003, 225: 383~386
    9 N. Korneev, D. Meyorga, S. Stepanov, H. Veenhuuis, K. Buse, C. Kuper, H. Hesse, E. Kratzig. Holographic and Non-steady-state Photocurrent Characterization of Photorefractive Barium-calcium Titanate. Opt. Commun.1999, 160: 98~102
    10 Y. Fan, H. Li, L. Zhao. Investigation on Structure and Photorefractive Properties of Mg:Ce:Cu:LiNbO_3 Crystals with Various [Li]/[Nb] Ratios. Optical Materials. 2007, 30: 492~496
    11 V. Marinova, D. Petrova, S. Huei Lin, K. Hsu. Optical and HolographicProperties of Fe+Mn co-doped Bi4Ge3O12 Crystals. Opt. Commun. 2008, 281(1), 37~43
    12 K. Sutter, P.Z Gutter. Photorefractive Gratings in the Organic Crystal 2-cyclooctlamino-5-nitropyridine Doped with 7,7,8,8-tetracyanoquino Dime- thane. J. Opt. Soc. Am. B.1990, 7(12):2274~2278
    13 O. Kwon, S. Kwon, M. Jazbinsek, P. Günter, S. Lee. Layered Photoconductive Polymers: Anisotropic Morphology and Correlation with Photorefractive Reflection Grating Response. J. Chem. Phys. 2006, 124(10): 104705
    14 J. A. Quintana. P. G. Boj, J. M. Villalvilla, J. Ortíz, F. Fernández-Lázaro, á. Sastre-Santos, M. A. Díaz-Garcíaa. Photorefractive Properties of an Unsensitized Polymer Composite Based on a Dicyanostyrene Derivative as Nonlinear Optical Chromophore. Appl. Phys. Lett. 2005, 87: 261111
    15 S. Tay, J. Thomas, M. Eralp, G. Li, R. A. Norwood, A. Schülzgen, M. Yamamoto, S. Barlow, G. A. Walker, S. R. Marder, N. Peyghambarian. High-performance Photorefractive Polymer Operating at 1550 nm with Near-video-rate Response Time. Appl. Phys. Lett. 2005. 87: 171105
    16 K. Sutter, J. Hullinger, P. Z. Giunter. Photorefractive Effects Observed in the Organic-crystal 2-cyclooctylamino-5-nitropyridine Doped with 7, 7, 8, 8-tetracyanoquinodimethane. Solid State Commun. 1990, 74(8): 867~870
    17 J. C. Ribierre, L. Mager, F. Gillot, A. Fort. Influence of the average molecular weight and the concentration of plasticizer on the orientational dynamics of chromophores in guest-host polymers. J. Appl. Phys. 2006, 100(4): 043103
    18 石军,曹少魁.全功能光折变聚合物的分子设计及进展.化学研究与应用.2003,15(4): 451~455
    19 F. Gallego-Gomez, M. Salvador, S. K?ber, K. Meerholz. High-performance Reflection Gratings in Photorefractive Polymers. Appl. Phys. Lett. 2007, 90(25): 251113
    20 H. Ono, T. Sasaki, A. Emoto, E. Uchida, N. Kawatsuki. Twisted Phase Gratings Induced by Photoregulated Mesogenic Molecules on the Surface of Photoreactive Polymer Liquid Crystal Film. Appl. Phys. Lett. 2006, 69(26): 221918
    21 S. Mansurova, S. Stepanov, V. Camacho-Pernas, R. Ramos-Garcia, F.Gallego-Gomez, E. Mecher, K. Meerholz. Measurements of Deviation from Einstein Relation in PVK-based Photorefractive Polymers by Photoelectromotive- force Technique. Phys. Rev. B. 2004, 69(19): 193203
    22 O-Pil Kwon, G. Montemezzani, P. Günter, S. Lee. High-gain Photorefractive Reflection Gratings in Layered Photoconductive Polymers. Appl. Phys. Lett. 2004, 84(1): 43~45
    23 L. Brillouin. Diffusion de la Lumi`ere et des rayons X par un corps Transparent Homog`ene. Ann. Phys. (Paris). 1922, 17: 88~122
    24 R. Lucas, P. Biquard. Propri′et′es Optiques des Milieux Solides et Liquides Soumis aux Vibrations ′elastiques Ultra-sonores. J. Phys. Rad. 3. 1932, 71(10): 464~477
    25 P. Debye, F. W.Sears. On the Scattering of Light by Supersonic Waves. Proc. Natl. Acad. Sci.1932, 18: 409~414
    26 J. W. S. Rayleigh. The Theory of Sound, Dover Publications, NewYork.1945: 89~90
    27 C. V. Raman, N. S. Nagendra. Nath. The Diffraction of Light by High Frequency Sound Waves: PartⅠ.Proc Ind Acad Sci.1935, A2: 406~412
    28 C. V. Raman, N. S. Nagendra. Nath. The Diffraction of Light by High Frequency Sound Waves: part Ⅱ. Proc Ind Acad Sci.1935, A2: 413~420
    29 C. V. Raman, N. S. Nagendra. Nath. The Diffraction of Light by High Frequency Sound Waves: part Ⅲ. Proc Ind Acad Sci.1936, A3: 75~84
    30 C. V. Raman, N. S. Nagendra. Nath. The Diffraction of Light by High Frequency Sound Waves: Part Ⅳ. Proc Ind Acad Sci.1936, A3: 119~125
    31 C. V. Raman, N. S. Nagendra. Nath. The Diffraction of Light by High Frequency Sound Waves:partⅤ. Proc Ind Acad Sci.1936, A3: 459~465
    32 N. S. Nagendra. Nath. The Diffraction of Light by High Frequency Sound Waves: generalised theory. Proc Ind Acad Sci.1936, A3: 222~242
    33 L. Solymar, D. J. Cooke. Volume Holography and Volume Grating. Academic Press. 1981: 114~144
    34 R. Magnusson, T. K. Gaylord. Analysis of Multi-wave Diffracting of Thick Grating. J. Opt. Soc. Am. 1977, 67(6): 1165~1170
    35 L. B. Au, L. Solymar. Space-charge Field in Photorefractive Materials at Large Modulation. Opt. Lett. 1988, 13(8): 660~662
    36 P. Refregier, L. Solymar, H. Rajbenbach , J. P. Huignard. Two-beam Coupling in Photorefractive Bi12SiO20 Crystal with Moving Grating: Theory and experiments. J. Appl. Phy. B. 1985, 58(1): 660~662
    37 L. B. Au, L. Solymar. Higher Diffraction Order in Photorefractive Material. IEEE. J. Quantum. Elect. 1988, 24(2): 162~168
    38 R. A. Syms, L. Solymar. Comparison of the Optical Path and Differential Equation Mathod for Optically Thin Phase Grating. Opt. Quant. Election. 1980, 12(2): 383~393
    39 孙万钧,周忠祥,张景文, 许克彬.掺杂 LiNbO_3 晶体高阶衍射效应.哈尔滨工业大学学报.1995, 27(4): 35~38
    40 D. A. Temple, C. Warde. High-order Anisotropic Diffraction in Photorefractive Crystal. J. Soc. Am. B. 1988, 5(8): 1800~1805
    41 E. Serrano, M. Carrascosa, F. Agulló-López. Analytical and Numerical Study of Photorefractive Kinetics at Large Modulation Depth. J. Opt. Soc. Am. B. 1996, 13(11): 2587~2594
    42 郭儒,刘思敏,凌振芳,门丽秋,孙骞,张光寅.在局部响应的 LiNbO_3: Fe 晶体的多波混合.物理学报.1996, 45(12): 1975~1978
    43 D. R. Erbschloe, L. Solymar, J. Takacs, T. Wilson.Higher Diffracted Order in A BSO Crystal: An Experiment Study of Transients. Appl. Phys. B. 1989, 49(5): 431~433
    44 Z. Zhou, X. Sun, Y. Li, Y.Jiang, H. Zhao, K. Xu. Kinetics of the Higher-order Response of Photorefractive Materials. J. Opt. Soc. Am. B. 1996,13(11): 2580~2586
    45 N. Korneev, A. Apolinar-Iribe, and J. J. Sanchez-Mondragon. Theory of Multiple-wave Interaction in Photorefractive Media. J. Opt. Soc. Am. B. 1999, 16(4): 580~586
    46 L. B. Au, L. Solymar. Higher Harmonic Grating in Photorefractive Material at Large Modulation with Moving Fringes. J. Opt. Soc. Am. A. 1990, 7(8): 1554~1561
    47 L. B. Au, L. Solymar. Higher Diffraction Order in Photorefractive Material. IEEE. J. Quant. Elect .1988, 24(2): 162~168
    48 Y. H. Lee, R. W.Hellwarth. Spatial Harmonics of Photorefractive Grating in a Barium Titanate Crystal. J. Appl. Phys. 1992,71(2): 916~923
    49 D. A. Temple, C. Warde. Higher-order Anisotropic Diffraction in Photorefractive Crystal. J. Opt. Soc. Am. B. 1988, 5(8): 1800~1806
    50 X. Shen, J. Zhao, R. Wang, X. Yi, P. Yeh, H. Chen. Recording of Second-hamonic Index Grating in Photorefractive (K0.5Na0.5)0.2 (Sr0.75Ba0.25)0.9Nb2O6 Crystals. Opt. Lett. 1999, 24(5): 312~314
    51 A. Petris, M. J. Damzen, V. I. Vlad. Enhanced Wave mixing in Photorefractive Rhodium-doped Barium Titanate Crystal. Opt. Communication. 2000, 176: 223~229
    52 P. Petrov, V. M. Petrov, V. V. Bryksin, A. Gerwens, S. Wevering, E. Kr?tzig. Grating Oscillations and Nonlinear Effects in Photorefractive Crystal. J. Opt. Soc. Am. B. 1998,15(7): 1880~1888
    53 X. Wei, X. Z. Yan, D. R. Zhu, D. Mo, W. Z. Lin. Stable Optical Storage and High-order Diffraction in a Liquid-crystal Polymer Film by Two-wave Mixing. Appl. Phys. Lett.1996, 68(14): 1913~1914
    54 Z. zhou, Y. Jiang, C. Hou, B. Yuan, X. Sun. Image Rotation and Amplification Based on the Photorefractive Higher-order Grating. Opt. Laser. Eng. 2001, 35, 233~238
    55 F. H. Mok, M. C. Tackitt, H. M. Stoll. Storage of 500 High-resolution Hologram in a LiNbO_3 Crystal. Opt. Lett. 1991, 16: 605~607
    56 F. H. Mok. Angle-multiplexed Storage of 5,000 Holograms in LiNbO_3. Opt. Lett. 1993, 18(11): 915~917
    57 G. W. Burr, F. H. Mok, D. Psaltis. Storage of 10,000 Holograms in LiNbO_3:Fe. Conf. On Laser and Electro-optics(CLEO), Anaheim CA.1994, 8: 3463~3467
    58 J. F. Heanue, M. C. Bashaw, L. Hesselink. Volume Holographic Storage and Retrieval of Digital Data. Science. 1994, 265(8): 749~752
    59 L. Hesselink,M. C. Bashaw.Digital holographic data storage looks ahead. Photonics Spectra. 1996, 30(3): 44~46
    60 J. J. P. Drolet, E. Chuang, G.. Barbastathis, D. Psaltis. Opt. Lett. 1997, 22(8): 552~555
    61 K. Buse, A. Adibi, D. Psaltis. Non-volatile Holographic Storage in Doubly Doped Lithium Niobate Crystals. Nature. 1998. 393(18). 665~668
    62 L. Hesselink, S. S. Orlov, A. Liu, A. Akella, D. Lande, R. R. Neurgaonkar. Photorefractive materials for nonvolatile volume holographic data storage.Science.1998, 282(6):1089~1093
    63 G. W. Burr, C. M. Jefferson, H. Coufal, M. Jurich, J. A. Hoffnagle, R. M. Macfarlane, R. M. Shelby. Volume Holographic Data Storage at an areal Density of 250 Gigapixels/in2. Opt. Lett. 2001, 26(7): 444~446
    64 S. S. Orlov, W. Phillips, E. Bjornson, L. Hesselink, R. Okas. High Data Rate (10Gbit/s) Demonstration in Holographic Disk Digital Data Storage System. Pacific Rim Conference on Laser and Electro-optics (CLEO-Technical Digest), 2002: 70~71
    65 Q. S. He, J. N. Wang, P. K. Zhang, J. G. Wang, M. X. Wu, G. F. Jin. Dyanmic Speckle Multiplexing Scheme in Volume Holographic Data Storage and Its Realization. Opt. Express. 2003. 11(4): 366~370
    66 Y. B. Guo, Y. Liao, L. C. Cao, G. D. Liu, Q. S. He, G. F. Jin. Improvement of Photorefractive Properties and Holographic Applications of Lithium Niobate Crystal. Opt. Express. 2004, 12(22): 5556~5561
    67 Y. Wan, S. Tao, D. Wang, W. Yuan, G. Liu, X. Ding, Z. Jiang, C. Liu. Holographic Disk Data Storage at a High Area Density of 33.7bit/μm2. Proc of SPIE. 2003, 5069: 294~299
    68 王凤涛, 何庆声, 王建岗, 邬敏贤, 金国藩.大容量高密度体全息数据存储.光学技术.2002,28(1):6~8
    69 Z. Jiang, X. Li, Y. Sun, S. Tao. Multiplexed Recording of Holograms in Doubly Doped LiNbO_3 Crystals. Proc. of SPIE. 2007, 6827
    70 Y. Zhang, Q. Meng, S.Luo, X. Sun. Miniaturization of Holographic Data Storage System. Proc. of SPIE. 2007, 5966
    71 Mei-Li Hsieh. Versatile Holographic Data Storage System for Angular Multiplexing with no Upper Limit of the Angular Sweep of the Reference Beam. Opt. Eng. 2005, 44(9) 090504
    72 张伊.球面波体全息存储系统小型化设计与研究.哈尔滨工业大学硕士学位论文.2005: 30~36
    73 G. A. Rakuljic, V. Levya, A. Yariv. Optical Data Storage by Using Orthogonal Wavelength-multiplexed Volume Holograms. Opt. Lett. 1992, 17: 1471~1473
    74 F. Guattari, G. Maire, K. Contreras, C. Arnaud, G. Pauliat, G. Roosen, S. Jradi, C. Carré. Balanced Homodyne Detection of Bragg Microholograms in Photopolymer for Data Storage. Opt. Express. 2007, 15(5): 2234~2243
    75 周朴, 贾辉, 方靖岳, 何焰兰.一种新的光信息加密方法. 激光杂志. 2005,26(2): 45~46
    76 C. C. Chang, J. P. Liu, H. Y. Lee, C. Y. Lin. Decryption of a Random-phase Multiplexing Recording System. Opt. Commun. 2006, 259: 78~81
    77 M. Singh, A. Kumar, K. Singh. Secure Optical System That Uses Fully Phase-based Encryption and Lithium Niobate Crystal as Phase Contrast Filter for Decryption. Opt. Laser. Technol. doi: 10.1016/j.optlastec. 2007. 09. 007
    78 C. C. Sun, R. H. Tsou, W. Chang, J. Y. Chang, M. W. Chang. Random Phase-coded Multiplexing of Hologram Volumes Using Ground Glass. Optical and Quantum Elect. 1996, 28: 1551~1561
    79 C. Denz, G. Pauliat, G. Roosen, T. Tschudi. Volume Hologram Multiplexing Using a Deterministic Phase Encoding Method. Opt. Comm. 1991, 85: 171~176
    80 K.-O. Müller, C.Denz, T .Rauch, T .Heimann,T. Tschudi. High Capacity Holographic Data Storage Based on Phase-coded Multiplexing. Optical Memory and Neural Networks. 1998, 7: 1~10
    81 C. Denz, K.-O. Müller, T. Heimann, T. Tschudi. Volume Holographic Storage Demonstrator Based on Phase-coded Multiplexing. IEEE J. of Selec. Top. in Quant. Elec. 1998, 4: 832~839
    82 C. C. Chang, K. L. Russell, G. W. Hu. Optical Holographic Memory Using Angular-Rotationally Phase-coded Multiplexing in a LiNbO_3:Fe Crystal. Appl. Phys. B. 2001, 72: 307~310
    83 J. Zhao, Q. Xu, W. Zhou, D. Yang, S. Kapphan. Photorefractive edge-enhancement joint transform correlator. Opt. Commun. 2002, 212: 287~292
    84 C. Iemmi, C. La Mela. Phase-only Photorefractive Joint Transform Correlator. Opt. Commun. 2002, 209: 255~263
    85 W. Feng, Y. Yan, G. Jin, M. Wu, Q. He,. Volume Holographic Wave Let Correlation Processor. Opt. Eng. 2000, 39(9): 2444~2450
    86 J. Khoury, M. Cronin-Golomb, P. Gianino, C. Woods. Photorefractive Two-beam-coupling Nonlinear Joint-transform Correlator. J. Opt. Soc. Am (B) 1994, 11(11): 2167~2174
    87 G. Asimellis, J. Khoury, J. Kane, C. Woods. Two-port Photorefractive Joint-transform Correlator. Opt. Lett, 1995, 20(24): 2517~2519
    88 赵建林, 许其推, 杨德兴, 谢良平, 杨东升.基于 KNSBN∶Cu 晶体的光折变联合变换相关器.光子学报.2002, 31(5): 557-560
    89 H. Kogelnik. Coupled Wave Theory for Thick Hologram Gratings. Bell Syst Tech J. 1969, 48(9): 2909~2947
    90 J. H. Hong, R. Saxena. Diffraction Efficiency of Volume Holograms Written by Coupled Beams. Opt. Lett. 1991, 16(3): 180~182
    91 M. G.. Moharam, T. K. Gaylord, R. Magnusson. Criteria for Bragg Diffraction by Phase Gratings. Opt. Commun. 1980, 32: 14~18
    92 M. G.. Moharam, T. K. Gaylord, R. Magnusson. Criteria for Raman-Nath Diffraction by Phase Gratings. Opt. Commun. 1980, 32: 19~23
    93 B. Yuan, X. Sun, Y. Jiang, Z. Zhou, F. Yao, Y. Li. Influence of Intensity on the Steady and Transient State Space-charge Fields in Photorefractive Polymers. Chinese Phys. 2002, 11(1) 21~29
    94 L. Lucchetti, M. Gentili, F. Simoni. Effects Leading to Colossal Optical Nonlinearity in Dye-doped Liquid Crystals. IEEE. Journal of Selected Topics in Quantum Electronics. 2006, 12(3): 422~ 430
    95 L. Song, W. -K. Lee, X. Wang. AC Electric Field Assisted Photo-induced High Efficiency Orientational Diffractive Grating in Nematic Liquid Crystals. Opt. Express. 2006, 14(6): 2197~2202
    96 Y. Pei, F. Yao, C. Hou, X. Sun, Z. Zhou. High Diffraction Efficiency and a Quasi-permanent Grating in Photorefractive Nematic Liquid Crystal at Low Temperature. Opt. Lett. 2005,30: 631~633
    97 O. Francescangeli, L. Lucchetti, F. Simoni, V. Stanic. Light-induced Molecular Adsorption and Reorientation at Polyvinylcinnamate-fluorinated/liquid-crystal Interface. Phys. Rev E. 2005, 71: 011702
    98 H. Gao, Y. Jiang, Z. Zhou, K. Gu, D. Gong. The Dependence of Orientational Optical Nonlinearity in Dye-Doped Liquid-Crystal Films on the Polarization Direction of the Recording Beams. IEEE. J. Quantum Elect. 2006, 42(7): 651~656
    99 Y. Wang, M. Pei, G. O. Carlisle. Polarization-independent Photochromic Diffraction in a Dye-doped Liquid Crystal. Opt. Lett. 2003, 28(10): 840~842
    100 H. Gao, K. Gu, Z. Zhou, Y. Jiang, D. Gong. Diffraction Behavior of an Azo-dye-doped Nematic Liquid Crystal without Applied Electric Field. Curr.Appl. Phys. 2008, 8: 31~35
    101 S. Lin, P. Chen, Y. Hsiao, W. Whang. Fabrication and Characterization of Poly(methyl methacrylate) Photopolymer Doped with 9,10-phenanthrenequinone (PQ) Based Derivatives for Volume Holographic Data Storage. Opt. Commun. (2007), doi:10.1016/j.optcom.2007.10.039
    102 S. H. Lin, J. H. Lin, Y. N. Hsiao, Ken Y. Hsu, Doped photopolymers for volume holographic applications. Proc. of SPIE. 2006, 6314
    103 K. Y. Hsu, S. H. Lin. Holographic Data Storage Using Photopolymer. Proc of SPIE. 2003, 5206 0277-786X: 142~148
    104 K. Y. Hsu, S. H. Lin, Y. Hsiao, W. T. Whang. Experimental Characterization of Phenanthrenequinone-doped Polymethyl Methacrylate. Photopolymer for Volume Holographic Storage. Opt. Eng. 2003, 42(5): 1390~1396
    105 T. Volk, M. W?hlecke. Thermal Fixation of the Photorefractive Holograms Recorded in Lithium Niobate and Related Crystals. Crit. Rev. Solid. State. 2005, 30(3): 125~151
    106 Y. Guo, L. Liu, D. Liu, S. Deng, Y. Zhi. Absorption Characteristic and Nonvolatile Holographic Recording in LiNbO_3:Cr:Cu Crystals. Appl. Opt. 2005; 44: 7106~7111
    107 F. R. Ling, B. Wang, T. Geng, S. Q. Fang,W. Yuan, D. D. Teng, C. X. Guan. Nonvolatile Photorefractive Holographic Recording in Sc:Ce:Cu:LiNbO_3. Opt. Laser. Technol. 2004, 36: 541~544
    108 J. H. Hong, I. McMichael, T. Y. Chang, W. Christian, E. G. Paek. Volume Holographic Memory Systems: Techniques and Architectures. Opt. Eng. 1995, 34(8): 2193~2203
    109 A. Kewitsch, M. Segev, A. Yariv. Electric-field Multiplexing/Demultiplexing of Volume Holograms in Photorefractive Media. Opt. Lett.1993, 18: 534~536
    110 V. M. Petrov, C. Denz, A.V. Shamray, M. P. Petrov, T. Tschudi. Electric Field Selectivity and Multiplexing of Volume Holograms in LiNbO_3. Appl. Phys. B. 2000, 71: 43~46
    111 M. Balberg, M. Razvag, E. Refaeli, A. J. Agranat. Electric-field Multiplexing of Volume Holograms in Paraelectric Crystals. Appl. Opt. 1998, 37(5): 841~847
    112 J. Y. Fu, Z. Zhou, Francis. T. S. Yu. Phase-coded Multiplexing Using a Crossed Cylindrical-collimating Lens System for Volume Hologram Stage in LiNbO_3.Proc. of SPIE. 2002, 4803, 185~189
    113 H. Kogelnik. Coupled Wave Theory for Thick Hologram Gratings. Bell Syst. Tech. J. 1968, 48: 2909~2947
    114 J. M Heaton, P. A Mills, E. G.. S. Paige, L. Solymar, and T. Wilson. Diffraction Efficiency and Angular Selectivity of Volume Phase Holograms Recorded in Photorefractive Materials. Opt. Acta. 1984, 31: 885~901
    115 S. Tao. Spatioangularly Multiplexed Holographic Storage in Photorefractive Crystals. PhD. dissertation, University of London, London U K, 1993, 128-134
    116 Y. Quan, T. Shiquan, J. Zhuqing, Y. Xingchang. The Vertical Angular Selectivity and Grating Degeneracy of Volume Holographic Gratings. Chinese Journal of Lasers. 1997,24(4): 337~341
    117 E. C. Maniloff, K. M. Johnson. Maximized Photorefractive Holographic Storage. J. Appl. Phys. 1991, 70(9): 4702~4707
    118 刘继芳, 允智省, 李育林.光折变晶体多重全息存储衍射效率均匀性的研究. 光子学报.1997, 26(5):428~433
    119 E. G. Paek, J. R. Wullert II, M. Jain, A. Von Lehmen, A. Scherer, J, Harbison, L. T. Florez, H. J. Yoo, R. Martin. Compact and Ultrafast Holographic Memory Using a Surface Emmiting Microlaser Diode Array. Opt. Lett. 1990, 15(6): 341~343
    120 Y. Taketom, J. E. Ford, J. Ma, Y. Fainman, S. H. Lee. Incremental Recording for Photorefractive Hologram Multiplexing. Opt. Lett. 1991, 16(22): 1774~1776
    121 A. Pu, K. Curtis, D. Psaltis. Exposure Schedule for Multiplexing Holograms in Photopolymer Films. Opt. Eng. 1996, 35(10): 2824~2829

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700