水位波动对鄱阳湖越冬白鹤及其他水鸟的影响研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水文过程及其对湿地功能影响的研究一直是湿地生态学研究的核心内容之一,对于理解湿地生态过程、生态系统组分和生态系统服务具有重要意义。鄱阳湖是我国最重要的迁徙水鸟越冬地,至少有14种濒危越冬水鸟在此越冬,并有27种以上的越冬水鸟超过其全球种群的1%,其中极危物种白鹤在此越冬的数量达到其全球种群数量的98%以上。三峡大坝的运行对下游河道及通江湖泊湿地生态系统产生了重大影响,引起了国内外各界的高度重视。关注的核心问题是水位变化对候鸟栖息地的影响。因此,正确认识水位变化对湿地及越冬候鸟的影响,以及越冬候鸟对环境变化的响应是鄱阳湖湿地保护迫切需要解决的关键科学问题。本文通过收集和整理1998-2013年鄱阳湖环湖鸟类调查数据,选择鄱阳湖栖息地、植被和水鸟特征等参数,建立了鄱阳湖水位-栖息地-越冬水鸟关系的耦合模型;并通过2010-2013年间对越冬候鸟的野外观察、对其食物资源的样方调查与样品分析、运用模型模拟分析等手段,揭示白鹤及其他越冬水鸟对鄱阳湖水位波动的响应,得到了以下主要结果:
     (1)不同的水位波动范围,对不同的越冬水鸟栖息地及其食物资源有不同的影响。维持鄱阳湖水鸟栖息地的冬季水位下限为8.2-8.8m(吴淞高程,下同),夏季的最高水位不能高于17.4m。鄱阳湖越冬水鸟五个不同取食集团(取食茎块组、取食草组、取食种子组、取食无脊椎动物组和取食鱼类组)的最优冬季水位下限分别为:>8.5m;>8.3m;7.2-8.4m;<8.8m;<8.4m,夏季最高水位分别为:-;-;<17.6m;<17.4m;<17.4m,其中最高水位对第一和第二集团没有影响。鄱阳湖的旗舰物种白鹤的最优水位在冬季为8.7-10.2m之间,夏季水位不能高于19.5m。影响五个取食集团水位的不同的原因并不一致。
     (2)以1983-2012年鄱阳湖国家级保护区白鹤越冬种群数据以及相对应的环境数据,建立了鄱阳湖白鹤的空间状态(SSM)模型,得出了全球白鹤东部种群近30年的种群增长率为4.08%,从1983-1984越冬季的840只到2011-2012年越冬季4315只,平均为2134±827(平均值±标准差)只。
     (3)不利的水位会显著降低白鹤食物资源苦草茎块密度。2011年1月调查到蚌湖和大湖池苦草冬芽密度分别为1.24个/m2和0.17个/m2。2011年5月和2012年5月调查苦草幼苗和芽的平均密度分别为18.2±13.6个和38.6±38.8个,两年密度显著不同(p<0.001)
     (4)本文首次报道了2010-2011年越冬季白鹤大规模上草洲觅食的现象。白鹤在鄱阳湖通常在浅水湖泊和泥滩中以苦草冬芽为主要食物。2010年冬,苦草冬芽资源短缺,白鹤从浅水湖泊和泥滩地转移至浅水湖泊间的苔草草洲取食下江委陵菜的直根,白鹤越冬行为与其在浅水湖泊中呈差异显著(p=0.008),其中觅食时间较在浅水湖泊里显著缩短(p<0.001),但是警戒行为显著增加(p<0.001)。而水位正常的2011年,并且没有大规模上草洲觅食的现象。白鹤主要食物苦草冬芽、老鸦瓣和下江委陵菜。对这三种食物资源各种营养成分分析表明,三者营养成分差异显著(p<0.001),但是营养物质的多少并不是白鹤取食的首要原因。白鹤在正常年份会选择最优栖息地栖息并取食苦草茎块,仅仅在苦草资源短缺情况下,才会改变其栖息地和食性来度过难关。
     本研究建议的高水位时期和低水位时期的最优水位是对白鹤及鄱阳湖水鸟群落的保护具有重要意义。广义加性模型的结果显示无论是低水位时期还是高水位时期,高的水位都可能对种群产生消极影响。长江水位和鄱阳湖支流水位之间的动态平衡是影响鄱阳湖水位波动的主要驱动力,尤其是在三峡大坝运行后江湖关系的变化,会对鄱阳湖越冬水鸟生存产生潜在的威胁。本研究的发现对拟修建的鄱阳湖水利枢纽工程,以及整个流域尺度上的大坝水位调度具有重要的参考价值。同时,还揭示了白鹤在不利环境下具有主动适应的能力,但是适应新的栖息地对于白鹤并非最佳选择,一旦条件改善白鹤会选择其最优栖息地进行觅食。
     本文的创新点为首次应用定量化数据来分析鄱阳湖水鸟与水位波动的关系,并且分别得出鄱阳湖不同取食集团和旗舰物种白鹤在夏季和冬季的水位需求,同时验证得到白鹤栖息地选择是符合最优觅食理论的。
Hydrologic process and its impact on wetland has always been one of the hot issues in ecological studies, which is crucial for understanding the relationship between ecological processes, ecological components and ecosystem services. Poyang Lake is one of the most important wintering grounds for migrating waterbirds in China. Over14endangered waterbird species wintering there. In addition, wintering population of27waterbird species exceeds1%of their global populations, amongst which, more than98%of the Critically Endangered Siberian cranes'(Grus leucogeranus) global population wintering here. Since the operation of the Three Gorges Dam, downstream rivers and lakes have been significantly affected, which become a great concern from conservation societies. The key issue concerned is the impact of water level on migrating birds and their habitats. Thus, assessing the impacts of water level on wintering birds and their adaptability to environmental changes are the most urgent task for Poyang Lake wetland protection. This dissertation collected and reviewed bird census data in the Poyang Lake area from1998to2013,identified key ecological characters of the Poyang Lake wetlands, vegetation and waterbirds, and established a coupling model that can project the relationship between water level, habitat and wintering waterbirds. Further studies focus on impact of water level fluctuation on food resources of the birds, and the responses of the birds to the environmental change, in particular, the Siberian cranes. The study revealed following findings:
     1. Water level fluctuation scale defines differentiated impacts on various habitats and food resources. For all water bird groups, the lowest accept water level range for waterbirds is between8.2and8.8m above sea level in winter, whereas the highest accept water level in summer17.4m above sea level. The lower limit water levels for the five foraging bird groups (Tuber feeders, Sedge foragers, Seed eaters, Invertebrate eaters and Fish eaters) in winter are>8.5m;>8.3m;7.2-8.4m;<8.8m;<8.4m respectively, and in summer are-;-;<17.6m;<17.4m; and<17.4m, respectively. The highest water level does not affect the first and the second diet group. For Siberian cranes, the optimal water level is between8.7-10.2m in winter and no higher than19.5m in summer.
     2. Based on the1983-2012population data of the wintering Siberian cranes in the Poyang Lake National Nature Reserve and related environmental data, this study builds a GAM model for Siberian cranes and revealed that the population growth rate for Siberian cranes has been4.08%per year over the past30years, with the total population grows from840in the1983-1984winter, to4315in the2011-2012winter.
     3. Adverse water level may significantly reduce the tuber density of V. spiralis that Siberian cranes mainly forage on. The tuber density of V. spiralis at Benghu Lake and Dahuchi Lake was1.24per m2and0.17per m2in Jan.,2011. The numbers of V. spiralis seedlings and sprouts was18.2±13.6and38.6±38.8, May2011and May2012, which was significantly difference in the two years (p<0.001). The nutrition contained in the tuber of V. spiralis, main root of P. limprichtii and Amana edulis that Siberian cranes foraged on varies considerably, but nutrition had no significant impact on the food choice for Siberian cranes.
     4. In2010, due to extreme low density of V. spiralis tubers, Siberian cranes shifted their habitat from shallow water area to grassland, and were found to feed the roots of P. limprichtii instead of V. spiralis tubers. Observation shown their overwintering behaviors changed significantly (p=0.008), compared to their behaviors in shallow water, where they normally forage. Their foraging time is shorter (p=0.00), while the alerting time is significantly increased (p=0.00). In2011, when water level fluctuate within the normal range, almost all Siberian cranes foraged at their normal habitat (shallow water and mudflats) spend more time foraging and less alerting on mudflats. This indicates that Siberian cranes choose the optimal habitats in normal years and survive bad conditions by changing their habits, which conforms to the Optimal Foraging theory.
     The upper and lower water level limits for the waterbirds suggested in this dissertation are important for the protection of Siberian cranes and other waterbird species. The GAM Model result shows that extreme high water level has significant negative impact on populations. The water levels of Yangtze River and Poyang Lake Inflow Rivers controls water level of the Poyang Lake. The operation of the Three Gorges Dam forges a potential threat to the wintering birds in this area. This study provided a reference for the proposed Poyang Lake Dam and its operation. The study also demonstrates that Siberian cranes prefer optimal habitats though they are able to adapt themselves to a new environment.
     In conclusion, this dissertation developed a model that builds on the long-term bird census data to analyze the relationship between water birds and water level in Poyang Lake, and revealed acceptable water levels for five different foraging groups and Siberian cranes in winter and summer, and verifies the optimal foraging theory of Siberian crane's habitat selection, which advanced our knowledge in the field.
引文
[1]Acreman M C, Dunbar M J. Defining environmental river flow requirements-a review[J]. Hydrology and Earth System Sciences,1999,8(5):861-876.
    [2]Akaike H. A new look at the statistical model identification[J]. Automatic Control, IEEE Transactions on,1974,19(6):716-723.
    [3]Almaraz P, Amat J A. Complex structural effects of two hemispheric climatic oscillators on the regional spatio-temporal expansion of a threatened bird[J]. Ecology letters,2004,7(7): 547-556.
    [4]Almaraz P, Green A J, Aguilera E, et al.. Estimating partial observability and nonlinear climate effects on stochastic community dynamics of migratory waterfowl [J]. Journal of Animal Ecology,2012,81(5):1113-1125.
    [5]Altmann J. Observational study of behavior:sampling methods[J]. Behaviour,1974,49(3-4): 227-267.
    [6]Amat J A, Green A J. Waterbirds as bioindicators of environmental conditions. Conservation Monitoring in Freshwater Habitats[M]:Springer,2010:45-52.
    [7]Andren H. Effects of habitat fragmentation on birds and mammals in landscapes with different proportions of suitable habitat:a review[J]. Oikos,1994:355-366.
    [8]Aviles J M. Time budget and habitat use of the Common Crane wintering in dehesas of southwestern Spain[J]. Canadian journal of zoology,2003,81(7):1233-1238.
    [9]Barrat-Segretain M. Germination and colonisation dynamics of Nuphar lutea Sm. in a former river channel[J]. Aquatic Botany,1996,55(1):31-38.
    [10]Barter M, Lei G, Cao L. Waterbird survey of the middle and lower Yangtze River floodplain (February 2005)[J]. World Wildlife Fund--China and Chinese Forestry Publishing House, Beijing, China,2006.
    [11]Baschuk M S, Koper N, Wrubleski D A, et al.. Effects of Water Depth, Cover and Food Resources on Habitat use of Marsh Birds and Waterfowl in Boreal Wetlands of Manitoba, Canada[J]. Waterbirds,2012,35(1):44-55.
    [12]Bence J R. Analysis of short time series:correcting for autocorrelation[J]. Ecology,1995: 628-639.
    [13]Besbeas P, Freeman S N, Morgan B, et al.. Integrating mark-recapture-recovery and census data to estimate animal abundance and demographic parameters[J]. Biometrics,2002,58(3): 540-547.
    [14]Blindow I, Hargeby A, Andersson G. Alternative Stable States in Shallow Lakes:What Causes a Shift? The structuring role of submerged macrophytes in lakes[M]:Springer,1998: 353-360.
    [15]Bolduc F, Afton A D. Monitoring waterbird abundance in wetlands:The importance of controlling results for variation in water depth[J]. Ecological Modelling,2008,216(3): 402-408.
    [16]Bolduc F, Afton A D. Relationships between wintering waterbirds and invertebrates, sediments and hydrology of coastal marsh ponds[J]. Waterbirds,2004,27(3):333-341.
    [17]Bolker B M. Ecological models and data in R[M]:Princeton University Press,2008.
    [18]Bolker B M, Brooks M E, Clark C J, et al.. Generalized linear mixed models:a practical guide for ecology and evolution[J]. Trends in ecology & evolution,2009,24(3):127-135.
    [19]Bragina E V, Beme I R. Siberian crane duet as an individual signature of a pair:comparison of visual and statistical classification techniques[J]. Acta ethologica,2010,13(1):39-48.
    [20]Bregnballe T, Amstrup O, Bak M. Responses of autumn staging waterbirds to wetland restoration and water levels in a Danish river delta[J]. Wildfowl,2009,2:143-157.
    [21]Brisbane Declaration. The Brisbane Declaration:Environmental flows are essential for freshwater ecosystem health and human well-being[C],2007.
    [22]Buckland S T, Burnham K P, Augustin N H. Model selection:an integral part of inference[J]. Biometrics,1997:603-618.
    [23]Buckland S T, Newman K B, Thomas L, et al.. State-space models for the dynamics of wild animal populations[J]. Ecological modelling,2004,171(1):157-175.
    [24]Burnham K P, Anderson D R. Model selection and multi-model inference:a practical information-theoretic approach[M]:Springer,2002.
    [25]Burnham K P, Anderson D R. Model selection and inference:a practical information-theoretic approach Springer-Verlag[M]. New York, USA,1998.
    [26]Bystrom P A R, Persson L, Wahlstrom E, et al.. Size-and density-dependent habitat use in predators:consequences for habitat shifts in young fish[J]. Journal of Animal Ecology, 2003,72(1):156-168.
    [27]Canepuccia A D, Isacch J P, Gagliardini D A, et al.. Waterbird response to changes in habitat area and diversity generated by rainfall in a SW Atlantic coastal lagoon[J]. Waterbirds, 2007,30(4):541-553.
    [28]Caroll R J, Ruppert D, Stefanski L A, et al.. Measurement error in nonlinear models:a modern perspective[J]. Chapman & Hall CRC,2006.
    [29]Casanova M T, Brock M A. How do depth, duration and frequency of flooding influence the establishment of wetland plant communities?[J]. Plant Ecology,2000,147(2):237-250.
    [30]Chambers J M, Hastie T, Others. Statistical models in S[M]. London:Chapman & Hall,1992.
    [31]Chavez-Ramirez F. Food availability, foraging ecology, and energetics of whooping cranes wintering in Texas[D]:Texas A\& M University,1996.
    [32]Colwell M A, Taft O W. Waterbird communities in managed wetlands of varying water depth[J]. Waterbirds,2000:45-55.
    [33]Cong P, Cao L, Fox A D, et al.. Changes in Tundra Swan Cygnus columbianus bewickii distribution and abundance in the Yangtze River floodplain[J]. Bird Conservation International,2011,21(03):260-265.
    [34]Cooling M P, Ganf G G, Walker K F. Leaf recruitment and elongation:an adaptive response to flooding in Villarsia reniformis[J]. Aquatic Botany,2001,70(4):281-294.
    [35]Creel S, Creel M. Density dependence and climate effects in Rocky Mountain elk:an application of regression with instrumental variables for population time series with sampling error[J]. Journal of Animal Ecology,2009,78(6):1291-1297.
    [36]Cui X, Zhong Y, Chen J. Influence of a catastrophic flood on densities and biomasses of three plant species in Poyang Lake, China[J]. Journal of Freshwater Ecology,2000,15(4): 537-541.
    [37]Cumming G S, Paxton M, King J, et al.. Foraging guild membership explains variation in waterbird responses to the hydrological regime of an arid-region flood-pulse river in Namibia[J]. Freshwater Biology,2012,57(6):1202-1213.
    [38]Darnell T M, Smith E H. Avian use of natural and created salt marsh in Texas, USA[J]. Waterbirds,2004,27(3):355-361.
    [39]Davis C A, Smith L M. Behavior of migrant shorebirds in playas of the Southern High Plains, Texas[J]. Condor,1998:266-276.
    [40]de Valpine P, Hastings A. Fitting population models incorporating process noise and observation error[J]. Ecological Monographs,2002,72(1):57-76.
    [41]Deegan B M, White S D, Ganf G G. The influence of water level fluctuations on the growth of four emergent macrophyte species[J]. Aquatic Botany,2007,86(4):309-315.
    [42]Degtyarev V G, Sleptsov S M, Pshennikov A E. Territoriality in the eastern population of the Siberian Crane, Grus leucogeranus[J]. Russian Journal of Ecology,2013,44(3):207-212.
    [43]Del Hoyo J, Elliot A, Sargatal J. Handbook of the Birds of the World [M]. Barcelona:Lynx Editions,1992.
    [44]Deng F, Wang X, Cai X, et al.. Analysis of the relationship between inundation frequency and wetland vegetation in Dongting Lake using remote sensing data[J]. Ecohydrology, 2013.
    [45]Dennis B, Munholland P L, Scott J M. Estimation of growth and extinction parameters for endangered species[J]. Ecological monographs,1991,61(2):115-143.
    [46]Dennis B, Ponciano J E M, Lele S R,et al. Estimating density dependence, process noise, and observation error[J]. Ecological Monographs,2006,76(3):323-341.
    [47]Dennis B, Taper M L. Density dependence in time series observations of natural populations: estimation and testing[J]. Ecological Monographs,1994,64(2):205-224.
    [48]Drickamer L C, Vessey S H, Jakob E. Animal Behavior. Mechanisms, Ecology[J]. Evolution, WC Brown Publishers, Dubuque, Iowa,1996.
    [49]Dyson M, Bergkamp G, Scanlon J. Flow:The essentials of environmental flows[J]. IUCN, Gland, Switzerland and Cambridge, UK,2003.
    [50]Ellis D H, Swengel S R, Archibald G W, et al. A sociogram for the cranes of the world[J]. Behavioural Processes,1998,43(2):125-151.
    [51]Fang J, Wang Z, Zhao S, et al. Biodiversity changes in the lakes of the Central Yangtze[J]. Frontiers in Ecology and the Environment,2006,4(7):369-377.
    [52]Farago S, Hangya K. Effects of water level on waterbird abundance and diversity along the middle section of the Danube River[J]. Hydrobiologia,2012,697(1):15-21.
    [53]Feng L, Hu C L G C, Chen X, et al. Dramatic inundation changes of China's two largest freshwater lakes linked to the Three Gorges Dam[J]. Environmental Science & Technology, 2013.
    [54]Fieberg J R, Shertzer K W, Conn P B, et al. Integrated population modeling of black bears in Minnesota:implications for monitoring and management J]. PLoS ONE,2010,5(8): el2114.
    [55]Forester J D, Ives A R, Turner M G, et al. State-space models link elk movement patterns to landscape characteristics in Yellowstone National Park[J]. Ecological Monographs,2007, 77(2):285-299.
    [56]Freckleton R P, Watkinson A R, Green R E, et al. Census error and the detection of density dependence[J]. Journal of Animal Ecology,2006,75(4):837-851.
    [57]Frederick P, Gawlik D E, Ogden J C, et al. The White Ibis and Wood Stork as indicators for restoration of the everglades ecosystem[J]. Ecological Indicators,2009,9(6):S83-S95.
    [58]Fuller W A. Measurement error models[M]:Wiley, com,2009.
    [59]Gaillard J, Festa-Bianchet M, Yoccoz N G. Population dynamics of large herbivores:variable recruitment with constant adult survival[J]. Trends in Ecology & Evolution,1998,13(2): 58-63.
    [60]Gawlik D E. The role of wildlife science in wetland ecosystem restoration:lessons from the Everglades[J]. Ecological Engineering,2006,26(1):70-83.
    [61]Ge C, Beauchamp G, Li Z. Coordination and synchronisation of anti-predation vigilance in two crane species[J]. PLoS ONE,2011,6(10):e26447.
    [62]Germogenov N I, Bysykatova I P, Degtyarev A G, et al. Current status of tundra cranes species populations in Yakutia[J]. Cryobiology,2012,65(3):358.
    [63]Gibson G J, Gilligan C A, Kleczkowski A. Predicting variability in biological control of a plant-pathogen system using stochastic models[J]. Proceedings of the Royal Society of London. Series B:Biological Sciences,1999,266(1430):1743-1753.
    [64]Gil De Weir K. Whooping crane(Grus americana) demography and environmental factors in a population growth simulation model[D]:Texas A&M University,2006.
    [65]Gonzalez-Gajardo A, Sepulveda P V, Schlatter R. Waterbird assemblages and habitat characteristics in wetlands:influence of temporal variability on species-habitat relationships[J]. Waterbirds,2009,32(2):225-233.
    [66]Guo H, Dong Z, Chen X, et al.. Impact Analysis of Poyang Lake after Three Gorges Project's Running by Using ANFIS[C],2008.
    [67]Guo H, Hu Q, Zhang Q, et al. Effects of the Three Gorges Dam on Yangtze River flow and river interaction with Poyang lake, China:2003-2008[J]. Journal of Hydrology,2012,416: 19-27.
    [68]Hastie T, Tibshirani R. Varying-coefficient models[J]. Journal of the Royal Statistical Society. Series B (Methodological),1993:757-796.
    [69]Hatfield J S, Reynolds M H, Seavy N E, et al. Population Dynamics of Hawaiian Seabird Colonies Vulnerable to Sea-Level Rise[J]. Conservation Biology,2012,26(4):667-678.
    [70]Havens K E. Submerged aquatic vegetation correlations with depth and light attenuating materials in a shallow subtropical lake[J]. Hydrobiologia,2003,493(1-3):173-186.
    [71]Henry C P, Amoros C. Restoration ecology of riverine wetlands. III. Vegetation survey and monitoring optimization[J]. Ecological Engineering,1996,7(1):35-58.
    [72]Holmes E E. Estimating risks in declining populations with poor data[J]. Proceedings of the National Academy of Sciences,2001,98(9):5072-5077.
    [73]Holmes E E, Fagan W F. Validating population viability analysis for corrupted data sets[J]. Ecology,2002,83(9):2379-2386.
    [74]Holmes E E, Ward E J, Scheuerell M D. Analysis of multivariate time-series using the MARSS package[Z].2012.
    [75]Hughes J M. Cranes:a natural history of a bird in crisis[M]:Firefly Books Limited,2008.
    [76]Isola C R, Colwell M A, Taft O W, et al. Interspecific differences in habitat use of shorebirds and waterfowl foraging in managed wetlands of California's San Joaquin Valley[J]. Waterbirds,2000:196-203.
    [77]Iucn. Redlist:Siberian Crane[EB/OL]. (2013-10-05)[10-5].http://www.iucnredlist.org/details/106002786/0
    [78]Iucn. IUCN Red List[EB/OL]. http://www.iucnredlist.org/
    [79]Janus C. The development of responses to naturally occurring odours in spiny mice (Acomys cahirinus)[J]. Animal behaviour,1988,36(5):1400-1406.
    [80]Ji W, Zeng N, Wang Y, et al.. Analysis on the waterbirds community survey of Poyang Lake in winter[J]. Geographic Information Sciences,2007,13(1-2):51-64.
    [81]Jia Y, Jiao S, Zhang Y, et al.. Diet Shift and Its Impact on Foraging Behavior of Siberian Crane (Grus Leucogeranus) in Poyang Lake[J]. PLos ONE,2013,8(6):e65843.
    [82]Jobin B, Robillard L, Latendresse C. Response of a Least Bittern (Ixobrychus exilis) Population to Interannual Water Level Fluctuations [J]. Waterbirds,2009,1(32):73-80.
    [83]Johnsgard P. Cranes of World[M]. Indiana:Bloomington,1983.
    [84]Kanai Y, Ueta M, Germogenov N, et al.. Migration routes and important resting areas of Siberian cranes (Grus leucogeranus) between northeastern Siberia and China as revealed by satellite tracking[J]. Biological Conservation,2002,106(3):339-346.
    [85]Keddy P A, Reznicek A A. Great Lakes vegetation dynamics:the role of fluctuating water levels and buried seeds[J]. Journal of Great Lakes Research,1986,12(1):25-36.
    [86]Kimber A, Owens J L, Crumpton W G. Light availability and growth of wildcelery (Vallisneria americana) in Upper Mississippi River backwaters[J]. Regulated Rivers: Research & Management,1995,11(2):167-174.
    [87]Kingsford R T, Jenkins K M, Porter J L. Imposed hydrological stability on lakes in arid Australia and effects on waterbirds[J]. Ecology,2004,85(9):2478-2492.
    [88]Kong D, Yang X, Liu Q, et al.. Winter habitat selection by the Vulnerable black-necked crane Grus nigricollis in Yunnan, China:implications for determining effective conservation actions[J]. Oryx,2011,45(2):258-264.
    [89]Krebs J R. Optimal foraging:decision rules for predators[J]. Behavioural Ecology:an evolutionary approach,1978:23-63.
    [90]Kushlan J A. Responses of Wading Birds to Seasonally Fluctuating Water Levels:Strategies and Their Limits[J]. Colonial Waterbirds,1986,9(2):155-162.
    [91]Lake P S, Bond N, Reich P. Linking ecological theory with stream restoration[J]. Freshwater Biology,2007,52(4):597-615.
    [92]Lande R, Engen S, S Ae Ther B. Stochastic population dynamics in ecology and conservation[M]. Oxford:Oxford University Press,2003.
    [93]Lantz S M, Gawlik D E, Cook M I. The effects of water depth and submerged aquatic vegetation on the selection of foraging habitat and foraging success of wading birds[J]. The Condor,2010,112(3):460-469.
    [94]Larned S T, Datry T, Arscott D B, et al.. Emerging concepts in temporary-river ecology[J]. Freshwater Biology,2010,55(4):717-738.
    [95]Lele S R, Dennis B, Lutscher F. Data cloning:easy maximum likelihood estimation for complex ecological models using bayesian markov chain monte carlo methods[J]. Ecology letters,2007,10(7):551-563.
    [96]Lewis A C. Memory constraints and flower choice in Pieris rapae[J]. Science,1986, 232(4752):863-865.
    [97]Li J. Scientists line up against dam that would alter protected wetlands[J]. Science,2009, 326(5952):508-509.
    [98]Li W C, Lian G H. Light demand for brood-bud germination of submerged plant[J]. Journal of Lake Sciences,1996,8(Suppl):25-29.
    [99]Li W, Liu G, Xiong B, et al. The restoration of aquatic vegetation in lakes of Poyang Lake Nature Reserve after catastrophic flooding in 1998[J]. Journal of Wuhan Botanical Research,2004,22(4):301-306.
    [100]Liu Z, Chen B. The wintering ecology of the Siberian crane[C]. Beijing:China Forestry Press,1991.
    [101]Ma R, Duan H, Hu C, et al. A half-century of changes in China's lakes:Global warming or human influence?[J]. Geophysical Research Letters,2010,37(24):L24106.
    [102]Ma Z, Li B, Jing K, et al. Effects of tidewater on the feeding ecology of hooded crane (Grus monacha) and conservation of their wintering habitats at Chongming Dongtan, China[J]. Ecological Research,2003,18(3):321-329.
    [103]Macarthur R H, Pianka E R. On optimal use of a patchy environment[J]. American Naturalist, 1966:603-609.
    [104]Macarthur R, Levins R. Competition, habitat selection, and character displacement in a patchy environment[J]. Proceedings of the National Academy of Sciences of the United States of America,1964,51(6):1207.
    [105]Macarthur R, Recher H, Cody M. On the relation between habitat selection and species diversity[J]. American Naturalist,1966:319-332.
    [106]Macek P, Rejmankova E, Houdkova K. The effect of long-term submergence on functional properties of Eleocharis cellulosa Torr.[J]. Aquatic Botany,2006,84(3):251-258.
    [107]Mascitti V, Bonaventura S M. Patterns of abundance, distribution and habitat use of flamingos in the high Andes, South America[J]. Waterbirds,2002,25(3):358-365.
    [108]Maynard S J. Models in ecology[M]. Cambridge:Cambridge UP,1974.
    [109]Meine C D, Archibald G W. The Cranes:Status survey and conservation action plan. IUCN, Gland, Switzerland, and Cambridge, UK 294pp. Northern Prairie Wildlife Research Center[Z]. Version,1996.
    [110]Millar R B, Meyer R. Bayesian state-space modeling of age-structured data:fitting a model is just the beginning[J]. Canadian Journal of Fisheries and Aquatic Sciences,2000,57(1): 43-50.
    [111]Millennium Ecosystem Assessment. Millennium Ecosystem Assessment. Ecosystems and Human Well-being[J]. Synthesis,2005.
    [112]Milliken G A, Johnson D E. Analysis of Messy Data:Designed Experiments[M]. London, UK:Chapman & Hall,1992.
    [113]Mitsch W J, Gosselink J G. Wetlands[M]. New Jersey:John Wiley & Sons, Inc,2007.
    [114]Morris D W, Dupuch A E L. Habitat change and the scale of habitat selection:shifting gradients used by coexisting Arctic rodents[J]. Oikos,2012,121(6):975-984.
    [115]Nebel S, Porter J L, Kingsford R T. Long-term trends of shorebird populations in eastern Australia and impacts of freshwater extraction[J]. Biological Conservation,2008,141(4): 971-980.
    [116]Nilsson C, Reidy C A, Dynesius M, et al.. Fragmentation and flow regulation of the world's large river systems[J]. Science,2005,308(5720):405-408.
    [117]Parker G A, Stuart R A. Animal behavior as a strategy optimizer:evolution of resource assessment strategies and optimal emigration thresholds[J]. American Naturalist,1976: 1055-1076.
    [118]Pasinelli G, Schaub M, H A Fliger G, et al.. Impact of density and environmental factors on population fluctuations in a migratory passerine[J]. Journal of Animal Ecology,2011,80(1): 225-234.
    [119]Poff N L, Allan J D, Bain M B, et al.. The natural flow regime[J]. BioScience,1997,47(11): 769-784.
    [120]Ponomarev A G, Tatarinova T D, Bubyakina V V, et al.. Genetic diversity in Siberian crane (Grus teucogeranus) based on mitochondrial DNA D-loop polymorphism[J]. Dokl Biol Sci, 2004,397:321-323.
    [121]Potapov E. Some breeding observations on the Siberian White Crane Grus leucogeranus in the Kolyma lowlands[J]. Bird Conservation International,1992,2:149-156.
    [122]Poysa H. Resource utilization pattern and guild structure in a waterfowl community [J]. Oikos,1983:295-307.
    [123]Praveena S M, Ahmed A, Radojevic M, et al.. Heavy metals in mangrove surface sediment of Mengkabong lagoon, Sabah:Multivariate and geo-accumulation index approaches[J]. International journal of environmental research,2008,2(2):139-148.
    [124]R Development. TEAM (2008):R:A language and environment for statistical computing. Vienna, Austria[J]. Internet:http://www.R-project.org,2012.
    [125]Ramsar Convention. A Conceptual Framework for the wise use of wetlands and the maintenance of their ecological character Resolution IX.1 Annex A. COP9, Kqampala, 2005.
    [126]Ranta E. Ecology of populations[M]:Cambridge University Press,2006.
    [127]Rees M, Paynter Q. Biological control of Scotch broom:modelling the determinants of abundance and the potential impact of introduced insect herbivores[J]. Journal of Applied Ecology,1997:1203-1221.
    [128]Richter B D, Thomas G A. Restoring environmental flows by modifying dam operations[J]. Ecology and society,2007,12(1):12.
    [129]Rigby R A, Stasinopoulos D M. Generalized additive models for location, scale and shape[J]. Journal of the Royal Statistical Society:Series C (Applied Statistics),2005,54(3):507-554.
    [130]Riis T, Hawes I. Relationships between water level fluctuations and vegetation diversity in shallow water of New Zealand lakes[J]. Aquatic Botany,2002,74(2):133-148.
    [131]Rolls R J, Leigh C, Sheldon F. Mechanistic effects of low-flow hydrology on riverine ecosystems:ecological principles and consequences of alteration[J]. Freshwater Science, 2012,31(4):1163-1186.
    [132]Rosenberger A, Angermeier P L. Ontogenetic shifts in habitat use by the endangered Roanoke logperch(Percina rex)[J]. Freshwater Biology,2003,48(9):1563-1577.
    [133]Saintilan N, Imgraben S. Principles for the monitoring and evaluation of wetland extent, condition and function in Australia[J]. Environmental monitoring and assessment,2012, 184(1):595-606.
    [134]Sauey R T. The range, status, and winter ecology of the Siberian Crane (Grus leucogeranus)[D]:Cornell University, June,1985.
    [135]Schaub M, Abadi F. Integrated population models:a novel analysis framework for deeper insights into population dynamics[J]. Journal of Ornithology,2011,152(1):227-237.
    [136]Seber G A F. The estimation of animal abundance[M]:Griffin,1982.
    [137]Sewell S, Koerselman W, Verhoeven J T. Biomass N:P ratios as indicators of nutrient limitation for plant populations in wetlands[J]. Ecological Applications,2003,13(2): 372-384.
    [138]Shankman D, Keim B D, Song J. Flood frequency in China's Poyang Lake region:trends and teleconnections[J]. International Journal of Climatology,2006,26(9):1255-1266.
    [139]Sibly R M, Barker D, Hone J, et al. On the stability of populations of mammals, birds, fish and insects[J]. Ecology Letters,2007,10(10):970-976.
    [140]Sih A, Christensen B. Optimal diet theory:when does it work, and when and why does it fail?[J]. Animal behaviour,2001,61(2):379-390.
    [141]Spencer K L, Harvey G L. Understanding system disturbance and ecosystem services in restored saltmarshes:Integrating physical and biogeochemical processes[J]. Estuarine, Coastal and Shelf Science,2012,106:23-32.
    [142]Stenseth N C, Mysterud A, Ottersen G, et al.. Ecological effects of climate fluctuations[J]. Science,2002,297(5585):1292-1296.
    [143]Stephens D W. Foraging theory[M]:Princeton University Press,1986.
    [144]Sun Z, Huang Q, Opp C, et al.. Impacts and Implications of major changes caused by the Three Gorges Dam in the middle reaches of the Yangtze River, China[J]. Water resources management,2012,26(12):3367-3378.
    [145]Sutherland W J. From individual behavior to population ecology[M]:Oxford University Press,1996.
    [146]Taft O W, Colwell M A, Isola C R, et al.. Waterbird responses to experimental drawdown: implications for the multispecies management of wetland mosaics[J]. Journal of Applied Ecology,2002,39(6):987-1001.
    [147]Tamisier A, Boudouresque C. Aquatic bird populations as possible indicators of seasonal nutrient flow at Ichkeul Lake, Tunisia. Aquatic Birds in the Trophic Web of Lakes[M]: Springer,1994:149-156.
    [148]Tavecchia G, Besbeas P, Coulson T, et al.. Estimating Population Size and Hidden Demographic Parameters with State-Space Modeling[J]. The American Naturalist,2009, 173(6):722-733.
    [149]Tokarskaya O N, Kalnin V V, Panchenko V G, et al.. Genetic differentiation in a captive population of the endangered Siberian crane (Grus leucogeranus Pall.)[J]. Mol Gen Genet, 1994,245(5):658-660.
    [150]Tokarskaya O N, Petrosyan V G, Kashentseva T, et al.. DNA fingerprinting in captive population of the endangered Siberian crane(Grus leucogeranus)[J]. Electrophoresis,1995, 16(9):1766-1770.
    [151]Urfi A J, Sen M, Kalam A, et al.. Counting birds in India:Methodologies and trends[J]. Current Science,2005,89(12):1997-2003.
    [152]Van Dijk J, Gustavsen L, Mysterud A, et al.. Diet shift of a facultative scavenger, the wolverine, following recolonization of wolves[J]. Journal of Animal Ecology,2008,77(6): 1183-1190.
    [153]Van Geest G J, Coops H, Roijackers R, et al.. Succession of aquatic vegetation driven by reduced water-level fluctuations in floodplain lakes[J]. Journal of Applied Ecology,2005, 42(2):251-260.
    [154]Van Geest G. Macrophyte succession in floodplain lakes. Spatio-temporal patterns in relation to hydrology, lake morphology and management[D]:Ph. D. thesis, Wageningen University, Wageningen,2005.
    [155]Velasquez C R. Managing artificial saltpans as a waterbird habitat:species'responses to water level manipulation[J]. Colonial Waterbirds,1992:43-55.
    [156]Viljugrein H, Stenseth N C, Smith G W, et al.. Density dependence in North American ducks[J]. Ecology,2005,86(1):245-254.
    [157]Wang G. On the latent state estimation of nonlinear population dynamics using Bayesian and non-Bayesian state-space models[J]. Ecological Modelling,2007,200(3):521-528.
    [158]Ward E J, Chirakkal H, Gonz A Lez-Su A Rez M, et al.. Inferring spatial structure from time-series data:using multivariate state-space models to detect metapopulation structure of California sea lions in the Gulf of California, Mexico[J]. Journal of Applied Ecology,2010, 47(1):47-56.
    [159]Wen L, Rogers K, Saintilan N, et al.. The influences of climate and hydrology on population dynamics of waterbirds in the lower Murrumbidgee River floodplains in Southeast Australia:Implications for environmental water management[J]. Ecological Modelling, 2011a,222(1):154-163.
    [160]Wen L, Rogers K, Saintilan N, et al.. The influences of climate and hydrology on population dynamics of waterbirds in the lower Murrumbidgee River floodplains in Southeast Australia:Implications for environmental water management[J]. Ecological Modelling, 2011b,222(1):154-163.
    [161]Wen L, Yang X, Saintilan N. Local climate determines the NDVI-based primary productivity and flooding creates heterogeneity in semi-arid floodplain ecosystem[J]. Ecological Modelling,2012,242:116-126.
    [162]Wetland International. Waterbird Population Estimates fifth edition[EB/OL]. (2013-10-05)[10-5].http://wpe.wetlands.org/
    [163]Williams C K, Ives A R, Applegate R D. Population dynamics across geographical ranges: time-series analyses of three small game species[J]. Ecology,2003,84(10):2654-2667.
    [164]Wires L R, Cuthbert F J. Historic populations of the double-crested cormorant (Phalacrocorax auritus):implications for conservation and management in the 21st century[J]. Waterbirds,2006,29(1):9-37.
    [165]Wolff A, Dieuleveut T, Martin J, et al.. Landscape context and little bustard abundance in a fragmented steppe:implications for reserve management in mosaic landscapes[J]. Biological Conservation,2002,107(2):211-220.
    [166]Wood S N. Statistical inference for noisy nonlinear ecological dynamic systems[J]. Nature, 2010,466(7310):1102-1104.
    [167]World Commission On Dams. Dams and Development:A New Framework for Decision-making:the Report of the World Commission on Dams, November 2000[M]. London:Earthscan,2000.
    [168]World Resources Institute. Ecosystem services and human well-being:wetlands and water synthesis. Millennium Ecosystem Assessment (MEA)[M]. Washington, D.C., USA.,2005.
    [169]Wu G, De Leeuw J, Skidmore A K, et al. Comparison of MODIS and Landsat TM5 images for mapping tempo--spatial dynamics of Secchi disk depths in Poyang Lake National Nature Reserve, China[J]. International Journal of Remote Sensing,2008,29(8): 2183-2198.
    [170]Wu G, de Leeuw J, Skidmore A K, et al. Will the Three Gorges Dam affect the underwater light climate of Vallisneria spiralis L. and food habitat of Siberian crane in Poyang Lake?[J]. Hydrobiologia,2009,623(1):213-222.
    [171]Wu Z, Shehbaz Raven I A, Bartholomew B. Flora of China[M]. Beijing:Science Press, 1994.
    [172]Xiao K, Yu D, Wu Z. Differential effects of water depth and sediment type on clonal growth of the submersed macrophyte Vallisneria natans[J]. Hydrobiologia,2007,589(1):265-272.
    [173]Xiong B, Li W. Winter buds of Vallisneria in banghu and zhonghuchi, Two lakes in Poyang Lake Nature sanctuary[J]. Acta Hydrobiologica Sinica,2002,26(1):24-29.
    [174]Yang Z, Wang H, Saito Y, et al.. Dam impacts on the Changjiang (Yangtze) River sediment discharge to the sea:The past 55 years and after the Three Gorges Dam[J]. Water Resources Research,2006,42(4):W4407.
    [175]Young T P, Petersen D A, Clary J J. The ecology of restoration:historical links, emerging issues and unexplored realms[J]. Ecology Letters,2005,8(6):662-673.
    [176]Yuan L, Li S, Li W, et al. Effects of Water Depth on Growth and Reproductive Strategy of Vallisneria spinulosa. Yan[J]. Journal of Jiangxi Normal University (Natural Sciences Edition),2007,2:12.
    [177]Zar J H. Biostatistical Analysis,4th Impression[M]. Delhi:Dorling Kindersley (India),2009.
    [178]Zhang Q, Li L, Wang Y, et al. Has the Three-Gorges Dam made the Poyang Lake wetlands wetter and drier?[J]. Geophysical Research Letters,2012,39(20).
    [179]Zhang Y, Cao L, Barter M, et al.. Changing distribution and abundance of Swan Goose Anser cygnoides in the Yangtze River floodplain:the likely loss of a very important wintering site[J]. Bird Conservation International,2010:36-48.
    [180]Zhu Q, Liu G, Wu J. Monitoring Annual Report of Poyang Lake National Nature Reserve 2010[M]. Shanghai:Fudan University Press,2012:100-108.
    [181]谢平,陈宜瑜.淡水生态系统中生物多样性面临的威胁[J].科学对社会的影响,1995,(04):15-24.
    [182]赵士洞,赖鹏飞.生态系统与人类福祉:湿地与水综合报告[Z].北京:中国环境科学出版社,2005.
    [183]陈克林.中国湿地百科全书[M].北京:北京科学技术出版社,2009.
    [184]陈宜瑜,吕宪国.湿地功能与湿地科学的研究方向[J].湿地科学,2003,(01):7-11.
    [185]崔保山,刘兴土.湿地恢复研究综述[J].地球科学进展,1999,(4):45-51.
    [186]崔心红,钟扬,李伟,等.特大洪水对鄱阳湖水生植物三个优势种的影响[J].水生生物学报,2000,(04):322-325.
    [187]窦鸿身,姜加虎.洞庭湖[M].合肥:中国科学技术大学出版社,2000.
    [188]关蕾,刘平,雷光春.国际重要湿地生态特征描述及其监测指标研究[J].中南林业调查规划,2011,(02):1-9.
    [189]何春光,宋榆钧,郎惠卿,等.白鹤迁徙动态及其停歇地环境条件研究[J].生物多样性,2002,(3):286-290.
    [190]黄锡畴.试论沼泽的分布和发育规律[J].地理科学,1982,2(3):191-201.
    [191]李凤山,刘观华,吴建东.鄱阳湖湿地和水鸟的生态研究[M].北京:科学普及出版社,2011:4-5.
    [192]刘晓强,朱成伟,赵玉海,等.沈阳獾子洞湿地白鹤及其停歇地生境调查[J].野生动物,2008,(4):184-186.
    [193]刘信中,叶居新.江西湿地[M].北京:中国林业出版社,2000.
    [194]马敬能,何芬奇,菲利普斯.中国鸟类野外手册[M].长沙:湖南教育出版社,2000.
    [195]孙志勇,黄晓凤.鄱阳湖越冬白鹤觅食地特征分析[J].动物学杂志,2010,(6).
    [196]王磊,邹红菲,李晓民,等.图牧吉自然保护区白鹤秋季觅食地生境初步研究[J].野生动物,2009,(1):20-22.
    [197]王利民.恢复长江生命网络[J].森林与人类,2004,(07):14-15.
    [198]王利民,王丁.长江流域的渔业与湿地保护[J].人民长江,2004,(05):37-39.
    [199]袁龙义,江林枝.不同盐度对苦草、刺苦草和水车前种子萌发的影响研究[J].安徽农学通报,2008,(17).
    [200]张德兵,何素萍,胡国祥,等.三峡水库蓄水后长江中游干流来水量变化分析[J].人民长江,2013,(1):1-3.
    [201]中国国家标准化管理委员会.湿地分类[S],2009.
    [202]中华人民共和国国际湿地公约履约办公室.湿地保护管理手册[M].北京:中国林业出版社,2013.
    [203]周福璋,丁文宁,王子玉.发现大群白鹤在中国越冬[J].动物学报,1981,(2):179.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700