气相中ZrO~+和CS_2、NbS~+和H_2O、Ir~+循环催化N_2O、H_2的反应动力学理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前,“过渡金属化学”一直是实验和理论研究中非常活跃的领域。在工业上,过渡金属氧化物在很多方面被用做多用途的催化剂,但对有些反应其活性太高得不到预期的产品。相反,过渡金属硫化物作为催化剂反应活性低、不容易中毒显示了很高的选择性。过渡金属硫化物在生物化学上也起到了特殊的作用,因为不同的金属硫化物在一些金属酶里面形成了活性中心。另外,在过渡金属离子参与的反应中经常涉及势能面交叉的两态反应,理论化学家们对这类反应也做了大量的理论研究。本文以分子轨道理论、过渡态理论和量子力学理论为基础,利用密度泛函理论DFT和耦合簇理论CCSD(T)详细研究了三个反应体系的反应机理。
     在第一个反应体系中,我们利用B3LYP/6-311+G*和CCSD(T)/ SDD+6-311+G*两种方法研究了过渡金属氧化物阳离子ZrO~+与小分子CS_2的反应机理.根据理论计算,我们提出了关于三种产物ZrS~+, ZrS_2~+和ZrOS~+可能的反应通道和反应机理。研究发现,生成ZrS~+, ZrS_2~+的反应都经历了同一个四元环过渡态的O/S交换反应步骤,即通过过渡态TS12形成中间体IM2。IM2除了能直接解离生成ZrS~+产物外,还存在一个分子重排反应而生成产物ZrS_2~+。提出的分子重排反应机理合理地解释了反应没有经过ZrS~+中间体而生成产物ZrS_2~+的实验现象。对于生成ZrOS~+的产物找到了两个平行的反应通道( Path A和B)。Path B是一个插入—消去的反应机理,此通道需要克服25.0 kJ/mol的反应能垒。Path A是一个硫原子的转移反应,但反应能垒很高(174.5 kJ/mol),只有在高能量反应条件下Path A才对生成产物ZrOS~+会有贡献。
     在第二个反应体系中,我们利用B3LYP/6-311++G**方法对NbS~+ ( 3∑-, 1Γ)和H_2O的反应进行了理论计算研究,我们发现反应是通过两种反应机理进行的:一个是氧硫交换反应:NbS~+中的S原子与H_2O中的O原子相互交换而得到产物NbO~+;另一个是脱H_2分子(伴随着解离出一个H原子而生成NbOSH+的副反应)而得到产物NbOS~+。对于脱H_2分子的过程,反应进行的最有利的途径是3NbS~+ ( 3∑- ) + H_2O→1NbOS~+-2 ( 1A’) + H_2。反应涉及两态,存在势能面交叉的现象。计算结果合理解释了实验上所观察到的现象。
     在第三个反应体系中,我们在CCSD(T)/ [ SDD + 6-311+G** // B3LYP / [ SDD+ TZVP ]理论水平上研究了过渡金属离子Ir~+循环催化反应N_2O + H_2→N_2 + H_2O((1)N_2O + Ir~+→IrO~+ + N_2 (2)IrO~+ + H_2→Ir~++ H_2O)。计算结果表明:整个反应经过了两步过程,第一步是Ir~+从N_2O中夺取O原子生成IrO~+和H_2的过程,是整个反应的速率决定步骤,需要克服一个42.8kJ/mol的能垒;第二步是生成的IrO~+和H_2还原生成Ir~+和H_2O的过程,此过程不需要能垒。这两步反应都是自旋允许的反应,不存在势能面交叉。两个反应都是放热的过程。
Nowadays, the transition-metal-ion chemistry has been an active area for both experimental and theoretical studies. In industry, transition-metal oxides are used as versatile catalysts in many applications, however, for some processes their reactivity is too high and non-specific product formation occurs. In contrast, transition-metal sulfides are less reactive and susceptible to poisoning and can show higher selectivity. Transition metal sulfides also play a particular role in biochemistry in that heterometallic sulfur complexes form the active sites in several metalloenzymes. Besides, theoretical approaches to gas-phase transition-metal chemistry which involve two-state reactivity along reaction path have also been studied by many chemists. In this paper, on the basis of the molecular orbital theory, the transition state theory as well as quantum chemistry theory, three systems choosed have been studied using DFT method and coupled cluster CCSD (T) methods.
     For the ~2△ground state of ZrO~+ with CS_2 system, the mechanisms for three products ZrS~+, ZrS_2~+ and ZrOS~+ have been studied by using B3LYP/6-311+G* and CCSD(T)/SDD+6-311+G* methods. It is found that both ZrS~+ and ZrS_2~+ formations involve the same O/S exchange process via a four-center transition state TS12 to form an intermediate IM2. Exception of that IM2 can dissociate into the ZrS~+ product, a favorable intramolecular rearrangement mechanism associated with the ZrS_2~+ formation has been identified, which explains why ZrS~+ was excluded as a precusor for the ZrS_2~+ formation and why the lower efficiency of the ZrS~+ formation was observed in experiment. For the formation of ZrOS~+, two parallel channels (path A and B) yielding their corresponding product isomer have been identified. Path B involving an insertion-elimination mechanism with a calculated barrier underestimated by ca. 25.0 kJ/mol should be attributed to the threshold of 114.8±12.5 kJ/mol assigned in the experiment. But path A is a S-shift reaction (the barrier is 174.5 kJ/mol )and should make some contributions to the formation of ZrOS~+ at elevated energy.
     For the NbS~+ (~3∑-, ~1Γ) with H_2O system, two possible reaction mechanisms have been studied by using B3LYP/6-311++G** method: the S/O exchange reaction which involves two hydrogen atoms migration from the O atom to the S atom (NbS~++H_2O→NbO~++H_2S) and the dehydrogenation reaction which involve the elimination of molecular hydrogen from the transition metal niobium center (NbS~++H_2O→NbOS~++H_2). According to the identified reaction mechanisms, a triplet–singlet surface crossing for the dehydrogenation is suggested. The triplet–single intersystem crossing is shown to play a crucial role for the reaction. The crossing point (CP) has been localized with the approach suggested by Yoshizawa et al. The spin-forbidden reaction 3NbS~+ (~3∑~- ) + H_2O→1NbOS~+-2 (1A’) + H_2 was found to be energetically much more favorable than the spin-allowed reaction ~3NbS~+ (~3∑~- ) + H_2O→~3NbO~+ (~3∑~- ) + H_2S. Besides, two possible H_2-elimination pathways and one possible H-elimination pathway have been identified on the two different surfaces. All theoretical results are in reasonable agreement with the experimental observations.
     The reaction mechanism of N_2O + H_2→N_2 + H_2O cyclically catalyzed by the late third-row transition metal cation Ir~+ has been investigated on quintet and triplet potential energy surfaces ( PES ) at the CCSD(T)/ [ SDD + 6-311+G** // B3LYP / [ SDD + TZVP ] level of theory. The calculated potential energy surfaces indicate that the activation energy of the first oxidation reaction step of Ir~+ by N_2O is 42.8kJ/mol, which is the rate-determining step. However, the second reduction reaction step of IrO~+ by H_2 on the two surfaces are both kinetically and thermochemically barrierless. The identified reaction mechanisms and the potential energy surfaces indicate that the crossings between the quintet and triplet surfaces are unlikely to occur. Furthermore, both steps of the reaction are exothermic. The experimental observations are well explained.
引文
[1]E. Schr(?)dinger, Quantisierung als eigenwertproblem [J]. Ann Physik. 1926,79: 361-367.
    [2]E. Schr(?)dinger,über das Verh(?)ltnis der Heisenberg-Born-Jordanschen Quantenmechanik zu der meinem [J]. Ann, Physik, 1926, 79: 489-496.
    [3]E. Schr(?)dinger, An undulatory theory of the mechanics of atoms and molecules [J].Ann, Physik, 1926, 80: 437-445.
    [4]E. Schr(?)dinger, The Present Situation in Quantum Mechanics: A Translation of Schr(?)dinger's 'Cat Paradox'Paper [J]. Ann, Physik, 1926, 81: 109-116.
    [5] M. Born, J. R. Oppenheimer, Three notes on the quantum theory of aperiodic effects [J]. Ann, Physik, 1927, 84: 457-463.
    [6] C. C. J. Roothan, New Developments in Molecular Orbital Theory [J]. Rev. Mod. Phys, 1951, 23: 69-72.
    [7] J. A. Pople, R. K. Nesbet, Self-Consistent Orbitals for Radicals [J]. J. Chem. Phys, 1954, 22: 571-572.
    [8]R. McWeeny, G. Dierksen, Self‐Consistent Perturbation Theory. II. Extension to Open Shells [J]. J. Chem. Phys. 1968, 49: 4852-4856.
    [9]I. N. Levine, Quantum Chemistry, 4th ed., Prentice-Hall, Inc., 1991.
    [10]W. J. Hehre, R. F. Stewart, J. A. Pople, Self-Consistent Molecular-Orbital Methods. I. Use of Gaussian Expansions of Slater-Type Atomic Orbitals [J]. J. Chem. Phys. 1969, 51: 2657-2664.
    [11]J. B. Collins, P. v. R. Schleyer, J. S. Binkley, J. A. Pople, A comparison of three basis sets. [J]. J. Chem. Phys. 1976,64: 5142-5149.
    [12]J. S. Binkley, J. A. Pople, W. J. Hehre, Self-Consistent Molecular Orbital Methods. 21. Small Split-Valence Basis Sets for First-Row Elements [J].J. Amer. Chem. Soc. 1980, 102: 939-943
    [13] M. S. Gordon, J. S. Binkley, J. A. Pople, W. J. Pietro, W. J. Hehre, Self-Consistent Molecular-Orbital Methods. 22: Small Split-Valence Basis Sets for Second-Row Elements [J]. J. Amer. Chem. Soc. 1982, 104: 2797-2801.
    [14] W. J. Pietro, M. M. Francl, W. J. Hehre, D. J. Defrees, J. A. Pople, J. S. Binkley [J] J. Amer. Chem. Soc. 1982, 104: 5039-5044.
    [15]K. D. Dobbs, W. J. Hehre, Molecular orbital theory of the properties of inorganic and organometallic compounds 4. Extended basis sets for third-and fourth-row, main-group elements [J]. J. Comp. Chem., 1986, 7: 359-378.
    [16]K. D. Dobbs, W. J. Hehre, Molecular orbital theory of the properties of inorganic and organometallic compounds 5. Extended basis sets for first-row transition metals [J]. J. Comp. Chem. 1987, 8: 861-879.
    [17]K. D. Dobbs, W. J. Hehre, Molecular orbital theory of the properties of inorganic and organometallic compounds. 6. Extended basis sets for second-row transition metals [J]. J. Comp. Chem. 1987, 8: 880-893
    [18]R. Ditchfield, W. J. Hehre, J. A. Pople, Self-Consistent Molecular-Orbital Methods. IX. An Extended Gaussian-Type Basis for Molecular-Orbital Studies of Organic Molecules [J]. J. Chem. Phys, 1971, 54: 724-728.
    [19] W. J. Hehre, R. Ditchfield, J. A. Pople, Self-Consistent Molecular Orbital Methods. XII. Further Extensions of Gaussian-Type Basis Sets for Use in Molecular Orbital Studies of Organic Molecules, [J]. J. Chem. Phys. 1972, 56: 2257-2261.
    [20] P. C. Hariharan, J. A. Pople, Accuracy of AHn equilibrium geometries by single determinant molecular orbital theory, [J]. Mol. Phys. 1974, 27: 209-214.
    [21]M. S. Gordon, The isomers of silacyclopropane, [J]. Chem. Phys. Lett. 1980, 76: 163-168
    [22]P. C. Hariharan, J. A. Pople, The influence of polarization functions on molecular orbital hydrogenation energies, [J]. Theo. Chim. Acta, 1973, 28: 213-222.
    [23]M. J. Frisch, J. A. Pople, J. S. Binkley, Self-Consistent Molecular Orbital Methods 25, Supplementary Functionsfor Gaussian Basis Sets, [J]. J. Chem. Phys., 1984, 80, 3265-3269.
    [24]T. Clark, J. Chandrasekhar, G. W. Spitznagel, P. v. R. Schleyer, Efficient diffuse function-augmented basis sets for anion calculations. III. The 3-21+G basis set for first-row elements, Li-F, [J]. J. Comp. Chem. 1983, 4: 294-301.
    [25]N. Goudbout, D.R. Salahub, J. Andzelm, E. Wimmer, Optimization of Gaussian-type basis sets for local spin density functional calculations. Part I. Boron through neon, optimization technique and validation, [J]. Can. J. Chem. 1992, 70: 560-571.
    [26] C.M?ller, M.S. Plesset, Note on an Approximation Treatment for Many-Electron Systems, [J]. Phys. Rev. 1934, 46: 618-622.
    [27] I.Shavitt, The Method of Configuration Interaction. In Methods of Electronic Structure Theory; Schaefer, H. F., III, Ed.; Modern; Theoretical Chemistry 3; Plenum Press: New York and London, 1977, 189.
    [28] R.J. Bartlett, Coupled-cluster approach to molecular structure and spectra: a step toward predictive quantum chemistry, [J]. J. Phys. Chem. 1989, 93: 1697-1708.
    [29] P. Hohenberg, W. Kohn, Inhomogeneous electron gas, [J]. Phys. Rev. B 1964, 136: 864-873
    [30] W. Koch, M. C. A. Holthausen, Chemist’s Guide to Density Functional Theory, [R] Wiley-VCH: Weinheim, 2000.
    [31] J.A. Pople, Nobel Lecture: Quantum chemical models, [J]. Rev. Mod. Phys. 1999, 71: 1267-1274.
    [32] W. Kohn, Nobel Lecture: Electronic structure of matter—wave functions and density functionals, [J]. Rev. Mod. Phys. 1999, 71, 1253-1266.
    [33] L.H. Thomas, On the capture of electrons by swiftly moving electrified particles, [J]. Proc. Cambridge Philos Soc. 1927, 3, 1-22.
    [34] E. Fermi, Eine statistische Methode zur Bestimmung einiger Eigenschaften des Atoms und ihre Anwendung auf die Theorie des periodischen Systems der Elemente, [J]. Z. Phys. 1928, 48, 73-82.
    [35]P.A.M. Dirac, On the Annihilation of Electrons and Protons,[J]. Proc. Cambridge Philos. Soc., 1930, 26: 361-376.
    [36] V. Weisza¨cker, C. F. Z. Phys. 1935, 96, 431.
    [37]P. Geerlings, F. D. Proft, W. Langenaeker?, Conceptual density functional theory [J]. Chem. Rev, 2003, 103: 1793-1873.
    [38]A. Frost, R. G. Pearson, Kinetics and Mechanism, 2nd. Ed., [M].Willy, New York, 1961ence,
    [39]H. B. Schlegel, Optimization of Equilibrium Geometries and Transition Structures, [J]. J. Comp. Chem. 1982, 3: 214-218.
    [40]H. B. Schlegel, in New Theoretical Concepts for Understanding Organic Reactions, [R], Ed. J. Bertran Kluwer Academic, The Netherlands, 1989 33.
    [41]J. B. Foresman, Solvent Effects. 5. Influence of Cavity Shape, Truncation of Electrostatics, and Electron Correlation on ab Initio Reaction Field Calculations, [J]. J. Phys. Chem., 1996, 100: 16098–16104.
    [42]H. B. Schlegel, Geometry Optimization on Potential Energy Surfaces, [R], in Modern Electronic Structure Theory, Ed. D. R. Yarkony World Scientific Publishing, Singapore, 1995.
    [43]S.Q. Niu, B. Michael Theoretical studies on reactions of transition-metal complexes [J]. Hall Chem. Rev. 2000, 100: 353-405.
    [44](a) Elschenbroich, C. Salzer, A. Organometallics; VCH Publishers: New York, 1989. (b) rabtree, R. H. The Organometallic Chemistry of the Transition Metals; John Wiley & Sons: New York, 1988. (c) Parshall, G. W. Homogeneous Catalysis; Wiley: New York, 1980. (d) Arndtsen, B. A.; Bergman, R. G.; Mobley, T. A.; Peterson, T. H. Acc. Chem. Res. 1995, 28, 154. (e) Cotton, F. A.; Wilkinson, G. Advanced Inorganic Chemistry; John Wiley: New York, 1988. (f) Crabtree, R. H. Chem. Rev. 1995,95: 987-996.
    [45]K. B., Boyd, D. B., Eds.; Reviews in Computational Chemistry [M]. Lipkowitz, VCH: New York, 1990-1999; Vols. 1-13.
    [46](a) Koga, K. Morokuma, K. Chem. Rev. 1991, 91, 823. (b)Musaev, D. G.; Morokuma, K. In Advances in Chemical Physics; Rice, S. A., Prigogine, I., Eds.; John Wiley & Sons: New York, 1996; Vol. XCV, p 61. (c) Siegbahn, P. E. M.; Blomberg, M. R. A. In Theoretical Aspects of Homogeneous Catalysts, Applications of Ab Initio Molecular Orbital Theory; van Leeuwen, P. W. N. M., van Lenthe, J. H., Morokuma, K., Eds.; Kluwer Academic Publishers: Hingham, MA, 1995. (d) Ziegler, T. Chem. Rev. 1991, 91, 651. (e) Salahub, D. R.; Castro, M.; Fournier, R.; Calaminici, P.; Godbout, N.; Goursot, A.; Jamorski, C.; Kobayashi, H.;Martinez, A.; Papai, I.; Proynov, E.; Russo, N.; Sirois, S.; Ushio, J.; Vela, A. In Theoretical and Computational Approaches to Interface Phenomena; Sellers H., Olab, J., Eds.; Plenum Press: New York, 1995; p 187. (f) Siegbahn, P. E. M. In Advances in Chemical Physics; Rice, S. A., Prigogine, I., Eds.; John Wiley & Sons: New York, 1996; Vol. XCIII, p 333. (g) Transition Metal Hydrides, Edited by Dedieu, A., VCH Publishers: 1992. (h) Theoretical Aspects of Homogeneous Catalysis, Applications of Ab Initio Molecular Orbital Theory; van Leeuwen, P. W. N. M., van Lenthe, J. H., Morokuma, K., Eds.; The Netherlands, 1994. (i) Yoshida, S.; Sakaki, S.; Kobayashi, H. Electronic Processes in Catalyst; VCH: New York, 1992
    [47]Hehre, W. J. Radom, L. Schleyer, P. v. R. Pople, J. A. Ab initio Molecular Orbital Theory [M] John Wiley & Sons: New York, 1986.
    [48]D. Hegarty M. A. Robb, Calculation of effective hamiltonians using quasi-degenerate Rayleigh-Schr?dinger perturbation theory (QD-RSPT) [J]. Mol. Phys. 1979, 38: 1795-1801.
    [49]R. H. E. Eade M. A. Robb, Direct minimization in mc scf theory, the quasi-newton method [J]. Chem. Phys. Lett. 1981, (83): 362-368.
    [50]J. A. Pople, M. Head-Gordon, K. Raghavachari, Quadratic configuration interaction. a general technique for determining electron correlation energies [J]. J. Chem. Phys. 1987, 87: 5968-5973.
    [51]马晓明,林国栋,张鸿斌.碳纳米管促进的Co - Mo -K硫化物基催化剂用于合成气制低碳混和醇[ J ].催化学报, 2006, 27 (11): 1019~1027
    [52]吕玲玲,小分子两态反应的量子化学计算[D],兰州:西北师范大学,2005
    [53] T.J.Lee, J.E. Rice, An efficient closed-shell singles and doubles coupled-cluster method [J]. Chem. Phys. Lett. 1988, 150: 406-415
    [54] T.J.Lee, A.P. Rendell, P.R. Taylor, Comparison of the quadratic configuration interaction and coupled-cluster approaches to electron correlation including the effect of triple excitations [J]. J. Chem. Phys. 1990, 94: 5463-5468.
    [55] B.C Garrett, D.G Truhlar; J.Am. Chem. Soc, 1979, 70:1593-1596
    [56] M. Bhadure and P. C. H. Mitchell, The effect of treatment with triethylaluminium on the hydrogenation and hydrodesulfurization activity of molybdenum, cobalt, and nickel sulfide catalysts [J]. J. Catal, 1982, 77: 132-140.
    [57] R.H. Schults, J.L. Elkind, P.B. Armentrout, Characterization of vanadium oxide-promoted Ru/Al2O3 catalyst by secondary ion mass spectrometry (SIMS) [J]. J. Am. Chem. Soc., 1988, 110: 411-423.
    [58] P.B. Armentrout, Annu. Electronic State-Specific Transition Metal ION Chemistry [J] Rev. Phys. Chem, 1990, 41: 313-317.
    [59]李玉敏,王立刚,王日杰等.对失活Co - Mo - K/Al2O3硫化物催化剂的剖析研究[J].化学工业与工程,2001,255-258
    [60]黄姗姗,范晨子,鲁安怀.铁镍硫化物及其在生命起源中的可能作用[ J ].矿物岩石地球化学通报,2006, 25: 388-390
    [61]胡大为,秦永宁,马智等.过渡金属硫化物催化剂上SO2的还原[ J ].催化学报, 2002, 23:425-428 [ 62 ]张钦辉,秦永宁.过渡金属硫化物催化剂上NH3还原SO2的反应[ J ].石油学报(石油加工) , 2003, 19 :14-16
    [63] T.S. Lewkebandara, C.H. Winter, CVD routes to titanium disulfide films [J]. Adv. Mater., 1994, 6: 237-239.
    [64] M.S. Whittingham, Chemistry of intercalation compounds: Metal guests in chalcogenide hosts [J]. Prog. Solid State Chem., 1978, 12: 41-99.
    [65] J. Cheon, J.E. Gozum, G.S. Girolami, Chemical Vapor Deposition of MoS2 and TiS2 Films From the Metal?Organic Precursors Mo(S-t-Bu)4 and Ti(S-t-Bu)4 [J]. Chem. Mater, 1997, 9: 1847-1853.
    [66] G. Nazri, D.M. MacArther, J.F. Ogara, Polyphosphazene electrolytes for lithium batteries [J]. Chem. Mater, 1989, 1: 370-375.
    [67] R.H. Friend, A.D. Yoffe, Electronic properties of intercalation complexes of the transition metal dichalcogenides, [J]. Adv. Phys, 1987, 36: 1-6.
    [68]H. Beinert, R.H. Sands, B. Biophys, Studies on succinic and DPNH dehydrogenase preparations by paramagnetic resonance (EPR) [J]. Res. Commun, 1960, 3: 41-45.
    [69] H. Beinert, Iron-sulfur proteins: ancient structures, still full of surprises [J]. JBIC, 2000, 5: 2-9
    [70] A. Müller, E. Krahn, Angew. On the Synthesis of the FeMo Cofactor of Nitrogenase: Gene-Controlled in Nature versus Laboratory-Produced by Man [J]. Chem. Int. Ed. Engl. 1995, 34: 1071-1078.
    [71] X.G. Xie, Z. Wang, S. Ye, Y.M. Zhou, Huai Cao, Theoretical study on the reaction of the ground state 1Σ+ of LaS+ with oxygen-transfer reagent: LaS++H2O→LaO++H2S in the gas phase [J]. Chem. Phys. Letts. 2002, 354(1-2): 134-139.
    [72] X.G. Xie, S. Ye, H. Cao, Y.M. Zhou, N.H. Shi, Theoretical study on the reaction of the ground state 1Σ+ of YS+ with oxygen-transfer reagent: YS++H2O→YO++H2S in the gas phase [J]. J. Mol. Struct. (THEOCHEM), 2002, 589/590, 37-42.
    [73] X.G. Xie, S. Ye, Y.M. Zhou, H. Cao, N.H. Shi, H. Cao, Theoretical study on the reaction of the ground state 1Σ+ of YS+ with oxygen-transfer reagent: YS++COS→YO++CS2 in the gas phase [J]. J. Mol. Struct. (THEOCHEM), 2002, 618(1-2): 127-132.
    [74] X.G. Xie, N.H. Shi, S. Ye, H. Cao, Theoretical study on the reaction of the 1Σ+ ground state of ScS+ with oxygen-transfer reagent: ScS++COS→ScO++CS2 in the gas phase [J]. Chem. Phys Letts. 2003, 368(1-2): 195-201.
    [75] X.G. Xie, N.H. Shi, S. Ye, H. Cao, Theoretical study on the reaction of the 1Σ+ ground state of LaS+ with oxygen-transfer reagent: LaS++COS→LaO++CS2 in the gas phase [J]. J. Mol. Struct. (THEOCHEM), 2003, 623(1-3): 297-302.
    [76] X.G. Xie, S. Ye, Y.M. Zhou, H. Cao, N.H. Shi, Theoretical study on the reaction of the ground state 2Δof TiS+ with oxygen-transfer reagent: TiS++H2O→TiO++H2S in the gas phase [J]. J. Mol. Struct. (THEOCHEM), 2003, 624(1-3): 17-22.
    [77] X.G. Xie, S. Ye, S.X. Liu, H. Cao, N.H Shi, Theoretical study of the reactions of the 1∑+ ground state of MS+ (M = Sc, Y, and La) with oxygen-transfer reagent MS+ + CO→ScO+ + CS in the gas phase [J]. Int. J. Quant. Chem, 2003, 92(6): 478-483. [78] Xiaoguang Xie, A. F. Jalbout, Huai Cao , Chem. Phys. Letts., 2004, 386(1-3), 111-117
    [79] X.G. Xie, Theoretical study on the reaction of the 1Σ+ ground state of YS+ with oxygen-transfer reagent: YS+ + CO2→YO+ + COS in the gas phase [J] Chem. Phys. 2004, 299: 33-38.
    [80] S. Niu, M.B. Hall, Theoretical studies on reactions of transition-metal complexes [J] Chem. Rev. 2000, 100: 353-362.
    [81] N. Russo, E. Sicilia J. Am. Theoretical study of ammonia and methane activation by first-row transition metal cations M+ (M= Ti, V, Cr) [J]. Chem. Soc. 2001, 123: 2588-2594.
    [82] A. Irigoras, J. E. Fowler and J. M. Ugalde, J. Am. Reactivity of Cr+ (6S, 4D), Mn+ (7S, 5S), and Fe+ (6D, 4F):Reaction of Cr+, Mn+, and Fe+ with Water [J]. Chem. Soc. 1999, 121: 8549-8555.
    [83] A.E. Read, L.A. Curtiss F.Weinhold, Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint [J]. Chem. Rev. 1988, 88: 899-906
    [84] G.E. Scuseria, A.C. Scheiner, T.J Lee, J.E. Rice, H.F. Schaefer, The closed‐shell coupled cluster single and double excitation (CCSD) model for the description of electron correlation. A comparison with configuration interaction (CISD) results [J]. J. Chem. Phys. 1987, 86: 2881-2887.
    [85] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, V. G. Zakrzewski, J. A. Montgomery, Jr., R. E. Stratmann, J. C. Burant, S. Dapprich, J. M. Millam, A. D. Daniels, K. N. Kudin, M. C. Strain, O. Farkas, J. Tomasi, V. Barone, M. Cossi, R. Cammi, B. Mennucci, C. Pomelli, C. Adamo, S. Clifford, J. Ochterski, G. A. Petersson, P. Y. Ayala, Q. Cui, K. Morokuma, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. Cioslowski, J. V. Ortiz, A. G. Baboul, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. Gomperts, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, J. L. Andres, C. Gonzalez, M. Head-Gordon, E. S. Replogle, and J. A. Pople, Gaussian, Inc., Pittsburgh PA, 1998.
    [86] I. Kretzschmar, D. Schr?der, H. Schwarz, C. Rue, P.B. Armentrout, Thermochemistry and reactivity of cationic scandium and titanium sulfide in the gas phase [J]. J. Phys. Chem. A. 2000, 104: 5046-5058.
    [87] D. Schr?der, Ilona Kretzschmar, and Helmut Schwarz, On the Structural Dichotomy of Cationic, Anionic, and Neutral FeS2 [J]. Inorg. Chem. 1999, 38: 3474-3480
    [88] Ilona. Kretzschmar, D. Schr?der, H. Schwarz, et al., Gas-phase thermochemistry of the early cationic transition-metalsulfides of the second row: YS+, ZrS+, and NbS+ [J]. Int. J. Mass Spectrometry , 2006 , 249: 263-278
    [89] P. J. Hay and W. R. Wadt, J. Chem. Phys. 1985, 82: 299-305
    [90]T. H. Dunning Jr. and P. J. Hay, in Methods of Electronic Structure [M][, Theory, Vol. 2, H. F. Schaefer III, ed., Plenum Press ,1977.
    [91] X.-G. Xie, N.-H. Shi, S. Ye, et al., Theoretical study on the reaction of the 1Σ+ ground state of ScS+ with oxygen-transfer reagent:ScS++COS→ScO++CS2 in the gas phase [J]. Chem. Phys.Letts. 2003, 368 :195-201
    [92] X.-G. Xie, S. Ye, Y.-M. Zhou, et al., Theoretical study on the reaction of the ground state 1Σ+ of YS+ with oxygen-transfer reagent: YS++COS→YO++CS2 [J]. J. Mol. Struct.(THEOCHEM) , 2002, 618:127-132
    [93] X.G. Xie, N.H. Shi, S. Ye, H. Cao, Theoretical study on the reaction of the 1Σ+ ground state of LaS+ with oxygen-transfer reagent: LaS++COS→LaO++CS2 in the gas phase [J]. J. Mol. Struct. (THEOCHEM), 2003, 623(1-3): 297-302.
    [94] X.G. Xie, A. F. Jalbout, H. Cao, Theoretical study on the reaction of the 1Σ+ ground state of ScS+ with oxygen-transfer reagent: ScS+ + CO2→ScO+ + COS in the gas phase [J] Chem. Phys. Letts., 2004, 386:111-117.
    [95] X.G. Xie, Theoretical study on the reaction of the 1Σ+ ground state of YS+ with oxygen-transfer reagent: YS+ + CO2→YO+ + COS in the gas phase [J] Chem. Phys. 2004, 299: 33-38.
    [96] X.G. Xie, S.L. Gao, J.L. Xu, Theoretical study on the reaction of VS+ (3Σ?, 1Γ) with COS in the gas phase [J]. J. Mol. Struct. (THEOCHEM) 2005, 715: 65-71
    [97]S.L. Gao, J.L. Xu, X.G. Xie, Theoretical study on the reaction of the 2Δground state of TiS+ with COS in the gas phase [J]. Chemical Physics 2005, 312: 187-192.
    [98] X.G. Xie, S.L.Gao, J.L. Xu, Theoretical study on the dehydrogenation reaction of H2S by ScS+ (1Σ+) [J], J. Mol. Struct. (THEOCHEM), 2005,724: 9-14
    [99] X.G. Xie, Z. Wang, S. Ye, Y.M. Zhou, Huai Cao, Theoretical study on the reaction of the ground state 1Σ+ ofLaS+ with oxygen-transfer reagent: LaS++H2O→LaO++H2S in the gas phase [J]. Chem. Phys. Letts. 2002, 354(1-2): 134-139.
    [100] K.Tanabe,in:J.R.Anderson,M.Boudart (Eds.),Catalysis,Science and Technology [M]. Springer, New York,1981.
    [101] E.I. Stiefel, K.Matsmoto (Eds ), Transition Metal Sulfur Chemistry [J]. ACS, Washinton, DC ,1996, 653-663
    [102] J.A. Rodriguez, M. Kuhn, J. Hrbek, J. Phys. Chem [J]. 1996, 100 , 15494
    [103] I. Kretzschmar, D. Schr?der, H. Schwarz, et al., Gas-phase thermochemistry of the early cationic transition-metal sulfides of the second row: YS+, ZrS+, and NbS+ [J] . Int. J. Mass Spectrometry 2006, 249: 263-278
    [104] M. J. Frisch, G. W. Trucks, H. B. Schlegel, et al., Gaussian03, Revision A.1 Gaussian Inc., Pittsburgh PA, 2003.
    [105] N. Russo, E. Sicilia J. Am. Chem. Soc [J]. 2001,123 , 2588
    [106] N. Goudbout, D. R. Salahub, J. Andzelm, E. Wimmer, Can. J. chem. 1992, 70: 560.
    [107]P. J. Hay and W. R. Wadt, J. Chem. Phys. 1985, 82, 299
    [108] A.E. Read, L.A. Curtiss and F. Weinhold, Chem. Rev. 1988, 88:899
    [109]X. G. Xie,N.H. Shi, S.Ye, H. Cao,Theoretical study on the reaction of 1∑ground state of ScS+ with oxygen-transfer reagent:ScS++COS→ScO+ +CS2 in the gas phase [J]. Chem. Phys.Letters, 2003,368:195-201
    [110]X. G. Xie,S.L. Gao, J.L. Xu, Theoretical study on the reaction of VS+ (3∑-,Γ1) with COS in the gas phase [J], J. Mol. Struct. (THEOCHEM), 2005, 715/1-3, 65-71
    [111] S.L.Gao, J.L. Xu, X. G. Xie, Theoretical study on the reaction of the 2Δground state of TiS+ with COS in the gas phase [J], Chem. Phys., 2005,312:187-192
    [112] S.L.Gao, J.L. Xu, X. G. Xie, Theoretical study on the reaction of the 2Δground state of TiS+ with CO2 in the gas phase [ J], J. Mol. Struct. (THEOCHEM), 2005, 717/1-3, 133-138.
    [113] X. G. Xie , A. F. Jalbout b, H.Cao,Theoretical study on the reaction of the 1∑+ground state of ScS+ with oxygen-transfer reagent: ScS++CO2→ScO++COS in the gas phase [J], Chemical Physics Letters,2004,386:111–117
    [114] E.I. Stiefel, K.Matsmoto (Eds.), Transition Metal Sulfur Chemistry [J], ACS Symposium Series 653, ACS, Washinton, DC, 1996.
    [115] J.Jonsson, O.Launila, B.Lindgren, Mon.Not.R.Astron.Soc.Short Commun [J]. 1992, 49, 258
    [116] Ajoy P. Raje, Shuh-Jeng Liaw, Ram Srinivasan, Burtron H. Davis, Applied Catalysis A: General [J] .1997, 150297.
    [117] J.A. Rodriguez, M. Kuhn, J. Hrbek, J. Phys. Chem. 1996, 100:15494
    [118] I. Kretzschmar, D. Schr?der, H. Schwarz, P. B. Armentrout, Advances in Metal and Semiconductor Clusters, 2001, Vol. 5, 347-395.
    [119] M. Bhadure , P. C. H. Mitchell, J. Catal , 1982, 77: 132.
    [120] I. Kretzschmar, D. Schr?der, H. Schwarz, et al.,Thermochemistry and Reactivity of Cationic Scandium and Titanium Sulfide in the Gas Phase, [J]. J. Phys. Chem. A, 2000, 104: 5046-5053
    [121]I. Kretzschmar, D. Schr?der, H. Schwarz, et al, Experimental and Theoretical Studies of Vanadium Sulfide Cation [J]. J. Phys. Chem. A, 1998, 102: 10060-10069.
    [122] I. Kretzschmar, D. Schr?der, H. Schwarz, et al., Structure, thermochemistry, and reactivity of MSn+ cations (M=V, Mo; n=1–3) in the gas phase [J]. Int. J. Mass Spectrometry, 2003, 228: 439-447.
    [123] Ilona. Kretzschmar, D. Schr?der, H. Schwarz, et al., Gas-phase thermochemistry of the early cationic transition-metalsulfides of the second row: YS+, ZrS+, and NbS+ [J]. Int. J. Mass Spectrometry , 2006 , 249: 263-278
    [124] M. J. Frisch, G. W. Trucks, H. B. Schlegel, et al., Gaussian03, Revision A.1 Gaussian Inc., Pittsburgh PA,2003
    [125] S. Niu, M. B. Hall, Chem. Rev. 2000, 100 , 353
    [126] N. Goudbout, D. R. Salahub, J. Andzelm , E. Wimmer, Can. J. Chem. 1992,70,560
    [127] I. Kretzschmar, D. Schr?der,, H. Schwarz, P.B. Armentrout, Advances in Metal and Semiconductor Clusters: Metal–Ligand Bonding and Metal-ion Solvation [R], vol. 5, Elsevier, New York, 2001.
    [128] K. Yoshizawa, Y. Shiota, T. Yamabe, J. Chem. Phys. 1999, 111, 538
    [129] S.W. Yu, T. H. Li, X. M. Yang et al., Theoretical study on the reaction of NbS+ (3∑_, 1T) with CO [J]. Chinese Chemical Letters 2009, 20: 755-758
    [130] S.W. Yu, Taohong Li, et al., Theoretical study on the reaction of NbS+ ((3∑_, 1T)) with COS in gas phase [J] J. Mol. Struct (THEOCHEM), 2009, 901: 249-257
    [131] M.H. Thiemens, W.C. Trogler, Science ,1991, 251, 932
    [132] L.E. Amand, B. Leckner, S. Andersson, Energ Fuel ,1991,5, 815
    [133] M. Shelef, Chem. Rev. 95 Prospects of hydrogen-fueled vehicles [J] .1995, 200:209-214
    [134]Y. Li, J.N. Armor, Appl. Catal. B: Environ. 1992,1, 21
    [135] V. Blagojevic, G. Orlova, D.K. Bohme, J. Am. Chem. Soc. , 2005,127 , 3545
    [136] M.M. Kappes, R.H. Staley, J. Am. Chem. Soc. 1981,103,1286
    [137] V. Baranov, G. Javahery, A.C. Hopkinson, D.K. Bohme, J. Am. Chem. Soc. 1995,117,12801
    [138] M. Bronstrup, D. Schroder, I. Kretzschmar, H. Schwarz, J.N. Harvey, J. Am. Chem. Soc. 2001,123,142.
    [139] V. Blagojevic, M.J.Y. Jarvis, E. Flaim, G.K. Koyanagi, V.V. Lavrov, D.K. Bohme, Angew. Chem. 2003,115, 5053
    [140] V.V. Lavrov, V. Blagojevic, G.K. Koyanagi, G. Orlova, D.K. Bohme, Gas-Phase Oxidation and Nitration of First-, Second-, and Third-Row Atomic Cations in Reactions with Nitrous Oxide: Periodicities in Reactivity [J].J. Phys. Chem. A , 2004, 108:5610-5624
    [141]F. Rondinelli, N. Russo, M. Toscano, Inorg. Chem. 2007,46, 7489
    [142]S. Chiodo, F. Rondinelli, N. Russo, M. Toscano, J. Chem. Theory Comput. 2008,4,316
    [143]G.K. Koyanagi, D.K. Bohme, J. Phys. Chem. A .2001,105, 8964
    [144]V. Blagojevic, A. Bozovic, G. Orlova, D.K. Bohme, Catalytic Oxidation of H2 by N2O in the Gas Phase: O-Atom Transport with Atomic Metal Cations [J].J. Phys. Chem. A 2008, 112:10141-10146
    [145] D. Schroder, S. Shaik, H. Schwarz, Acc. Chem. Res.,2000, 33,139
    [146] C.R. Rue, P.B. Armentrout, I. Kretzschmar, D. Schroder, J.N. Harvey, H. Schwara, J. Chem. Phys. 1999,110,7858
    [147]N. Jiang, D. Zhang, Chem. Phys. Lett. 2002,366, 253
    [148]H. Schwarz, Int. J. Mass Spectrom. 2004, 237 ,75
    [149] G.L. Dai, K.N. Fan, Theoretical study of the reaction of V+ with SCO in gas phase [J] J. Mol. Struct. (Theochem) 2006,330: 146-154
    [150] G.L. Dai, K.N. Fan, Theoretical study of the reaction of Ti+ with SCO in gas phase [J]. J. Mol. Struct. (Theochem) 2007, 806:261-268
    [151] A.D. Becke, J. Chem. Phys. 1993, 98, 1372
    [152] C. Lee, W. Yang, R.G. Parr, Phys. Rev. B ,1988,37, 785
    [153]S.W. Yu, Taohong Li, et al., Theoretical study on the reaction of NbS+ ((3∑_, 1T)) with COS in gas phase [J] J. Mol. Struct (THEOCHEM), 2009, 901: 249-257
    [154]T.H. Li, C.-M. Wang, S.-W. Yu, et al., A theoretical study on the gas phase reaction of Au+ with CH3F Chem. Phys. Lett (2008) 463: 334 -339
    [155]D.B. Hu, X.M.Yang, X.G. Xie. et al., Theoretical study on the reaction of the 2D ground state of ZrO+ with CS2in the gas phase [J].J. Mol. Struct. (THEOCHEM) ,2009,915:188-192
    [156] A. Schaefer, C. Huber, R. Ahlrichs, J. Chem. Phys. 1994, 100, 5829
    [157] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, V. G. Zakrzewski, J. A. Montgomery, Jr., R. E. Stratmann, J. C. Burant, S. Dapprich, J. M. Millam, A. D. Daniels, K. N. Kudin, M. C. Strain, O. Farkas, J. Tomasi, V. Barone, M. Cossi, R. Cammi, B. Mennucci, C. Pomelli, C. Adamo, S. Clifford, J. Ochterski, G. A. Petersson, P. Y. Ayala, Q. Cui, K. Morokuma, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. Cioslowski, J. V. Ortiz, A. G. Baboul, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. Gomperts, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, J. L. Andres, C. Gonzalez, M. Head-Gordon, E. S. Replogle, and J. A. Pople, Gaussian, Inc., Pittsburgh PA, 1998.
    [158] F.X. Li, X.G.Zhang, P.B. Armentrout , The most reactive third-row transition metal: Guided ion beam and theoretical studies of the activation of methane by Ir+ [J]. Int. J. Mass Spectrometry. , 2006, 255: 279-300
    [159] F-X Li, X.G. Zhang, P. B. Armentrout J. Phys. Chem. B, 2005, 109 , 8350
    [160] T.H. Li, C.M. Wang, S.W. Yu, et al., A computational study on the gas phase reaction of Os+ with N2O [ J]. Chinese Chemical Letters 2009, 20: 1010-1014

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700