麦蚜诱导信号化合物和物种多样性对麦长管蚜Macrosiphum avenae的生态效应
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文主要研究了施用麦蚜诱导信号化合物和物种多样性对麦田主要害虫—麦长管蚜Macrosiphum avenae及其优势天敌的生态效应。主要研究结果如下:
     1麦蚜诱导信号化合物对麦长管蚜及其主要天敌种群的影响
     通过2006年和2008年在田间使用麦蚜诱导信号化合物——水杨酸甲酯和6-甲基-5-庚烯-2-酮,明确了这2种信号化合物对麦长管蚜及其主要天敌—异色瓢虫Harmonia axyridis和燕麦蚜茧蜂Aphidius avenae种群的影响。结果表明,与对照区相比,麦蚜诱导信号化合物的处理虽然没有明显改变麦长管蚜的田间种群变动趋势,但显著降低了麦长管蚜的种群数量。在麦蚜诱导信号化合物处理区,燕麦蚜茧蜂、异色瓢虫等优势天敌的种群数量和僵蚜率都有所增加。因此,田间使用麦蚜诱导信号化合物对控制麦长管蚜的危害具有重要作用。
     2小麦间作大蒜或油菜对麦长管蚜及其主要天敌种群的影响
     通过2007年和2008在麦田中间作大蒜和油菜,研究了这2种间作作物对麦长管蚜及其主要天敌种群的影响。结果表明,在调查期内,麦-油(油菜)间作区和麦-蒜(大蒜)间作区中麦长管蚜的种群密度多显著低于单作田;麦-油间作区中异色瓢虫平均数量显著高于其它两类处理区。整个调查期间,麦-油间作区中僵蚜率显著高于单作区。僵蚜率平均数量的排列顺序为:麦-油间作区>麦-蒜间作区>单作区。表明麦-油间作和麦-蒜间作均能对麦田中麦长管蚜起到较好的控制作用。
     3不同抗性小麦品种和间作方式对麦长管蚜及其主要天敌的生态效应
     采用对麦长管蚜有不同抗性的3个冬小麦品种:KOK(高抗),JP1(中抗),红芒红(低感),研究了不同抗性小麦品种与不同间作方式对麦长管蚜及其自然天敌的影响。结果表明,不同抗性小麦品种没有改变小麦间作大蒜或油菜对麦长管蚜及其主要天敌种群变动趋势的影响。不同抗性小麦品种间红芒红上麦长管蚜、异色瓢虫和燕麦蚜茧蜂平均数量都是最高。不同间作方式间麦-油间作区中异色瓢虫平均数量显著高于其他两类处理区。相对于单作区,麦-蒜间作和麦-油间作都降低了麦长管蚜的平均数量。KOK或JP1间作油菜是田间应用较好的方式。
     4麦田间作油菜与施用水杨酸甲酯对麦长管蚜及其主要天敌种群的影响
     通过在麦田中间作油菜、施用水杨酸甲酯以及间作油菜与施用水杨酸甲酯共同作用,研究了这3种处理方式对麦长管蚜及其主要天敌种群动态的影响。结果表明,水杨酸甲酯处理的麦-油间作区的麦长管蚜的数量在4月25日至5月13日显著低于麦-油间作区,从4月25至5月1日显著高于水杨酸甲酯处理区,5月7—13日极显著低于水杨酸甲酯处理区。相对于麦-油间作区和水杨酸甲酯处理区,麦-油间作与水杨酸甲酯处理共同作用能显著增加异色瓢虫的种群数量。在整个调查期间,燕麦蚜茧蜂的日均发生量在水杨酸甲酯处理的麦-油间作区与麦-油间作区间无显著差异。在5月7—16日,水杨酸甲酯处理的麦-油间作区的僵蚜率显著高于麦-油间作区和水杨酸甲酯处理区。因此,相对于小麦间作油菜或施用水杨酸甲酯,两者共同作用对麦田中麦长管蚜能起到更好的控制作用。
This paper investigated the ecological effects of volatile semiochemicals induced by wheat aphid feeding and species diversity on Macrosiphum avenae and its natural enemies. The main results are as follows:
     1. Effects of volatile semiochemicals induced by wheat aphid feeding on population of M. avenae and its main natural enemies
     Two kinds of volatile semiochemicals, methyl salicylate and sulcatone were field-tested for the effects on the population of M. avenae and its natural enemies Harmonia axyridis and Aphidius avenae in winter wheat fields in 2006 and 2008. The trends of population dynamics of M. avenae in the volatile semiochemicals treated blocks were as the same as these in the control blocks, but the number of M. avenae was reduced significantly in volatile semiochemicals treated blocks. Mummy rate and the number of H. axyridis and A. avenae were increased in the volatile semiochemicals treated blocks. Above all, volatile semiochemicals had significantly efficiency to control M. avenae in winter wheat fields.
     2. Effects of wheat-oilseed rape or wheat-garlic intercropping on population of M. avenae and its main natural enemies
     In the study, we intercropped garlic and oilseed rape into wheat in 2007 and 2008 to examine ecological effects of this intercropping system on the population of M. avenae and its main natural enemies. The results showed that the densities of M. avenae were almost significantly lower in wheat-oilseed rape intercropping blocks and wheat-garlic intercropping blocks than wheat monocultures. Mean number of H. axyridis in wheat-oilseed rape intercropping blocks was higher than the other two blocks. The mummy rate in wheat-oilseed rape intercropping blocks was always higher than wheat monocultures. The order of mean number of mummy rate was: wheat-oilseed rape intercropping blocks > wheat-garlic intercropping blocks > wheat monocultures. It was suggested that wheat-oilseed rape or wheat-garlic intercropping could reduce the population densities of M. avenae in agroecosystem.
     3. Ecological effects of different resistant wheat cultivars and intercropping patterns on M. avenae and its main natural enemies in wheat fields
     The effects of different resistant wheat cultivars and different intercropping patterns on the densities of M. avenae and its natural enemies were evaluated. Three winter wheat cultivars with different resistant levels to M. avenae were used:‘KOK’(high resistance),‘JP1’(middle resistance) and‘Hongmanghong’(susceptible). The results showed that different resistant wheat cultivars did not change the the trends of population dynamics of M. avenae and its natural enemies caused by intercropping of wheat and oilseed rape or garlic. The mean numbers of M. avenae, Harmonia axyridis and Aphidius avenae on wheat cultivar‘Hongmanghong’were all highest. The mean number of H. axyridis in wheat-oilseed rape intercropping blocks was significantly higher than the other two blocks. Comparing with wheat monoculture blocks, wheat-garlic or wheat-oilseed rape intercropping could reduce the mean number of M. avenae. Wheat cultivar‘KOK’or‘JP1’intercropping with oilseed rape was a better mode.
     4. Effects of wheat-oilseed rape intercropping and the application of methyl salicylate on population of M. avenae and its main natural enemies
     In the study, we intercropped oilseed rape and applied methyl salicylate into wheat to examine ecological effects on the population dynamics of M. avenae and its main natural enemies. The results showed that the number of M. avenae apterae was significantly lower in the methyl salicylate treated wheat-oilseed rape intercropping blocks than wheat-oilseed rape intercropping blocks from April 25 to May 13, significantly higher from April 25 to May 1 and lower from May 1 to 13 than methyl salicylate treated blocks. The population number of H. axyridis in the methyl salicylate treated wheat-oilseed rape intercropping blocks was higher significantly than wheat-oilseed rape intercropping blocks and methyl salicylate treated blocks. No significant change was observed in the population number of A.avenae between the methyl salicylate treated wheat-oilseed rape intercropping blocks and wheat-oilseed rape intercropping blocks all the time. The mummy rate in the methyl salicylate treated wheat-oilseed rape intercropping blocks was significantly higher than wheat-oilseed rape intercropping blocks and methyl salicylate treated blocks from May 7 to 16. It was suggested that combined effects are better than single effects of wheat-oilseed rape intercropping or application of methyl salicylate.
引文
1.蔡晓明,孙晓玲,董文霞等.虫害诱导植物挥发物(HIPVs):从诱导到生态功能.生态学报, 2008, 28(8): 3969-3980
    2.郭中伟.农田生态系统中的生物多样性.科技导报, 1998, 4: 19-21
    3.侯茂林,盛承发.害虫研究与防治中的生态学尺度.应用生态学报, 1998, 9(2) : 213- 216
    4.刘德广,熊锦君,谭炳林,黄明度,张润杰.荔枝-牧草复合系统节肢动物群落多样性与稳定性分析.生态学报, 2001, 21(10): 1596-1601
    5.刘芳,娄永根,程家安.虫害诱导的植物挥发物:植物与植食性昆虫及其天敌相互作用的进化产物.昆虫知识, 2003, 40(6) : 481-486
    6.刘芳.挥发物在调节稻飞虱及其天敌种内种间关系中的作用.博士论文. 2001, 53-54
    7.刘勇,陈巨莲,倪汉祥.麦长管蚜和禾谷缢管蚜对小麦挥发物的触角电位反应.昆虫学报, 2003, 46(6): 679-683
    8.刘勇,陈巨莲,倪汉祥等.小麦不同抗性品种对麦蚜及燕麦蚜茧蜂的影响.植物保护学报, 2001c, 28(4) : 203-206
    9.刘勇,郭光喜,陈巨莲等.瓢虫和草蛉对小麦挥发物组分的行为及电生理反应.昆虫学报, 2005, 48(2): 161-165
    10.刘勇,胡萃,倪汉祥等.不同营养层次挥发物对燕麦蚜茧蜂寄生搜寻行为的影响.应用生态学报, 2001a, 12(4): 581-584
    11.刘勇,倪汉祥,孙京瑞等.麦蚜对不同抗性小麦挥发物的嗅觉反应及其变异.中国农业科学, 2001b, 34(4): 391-395
    12.刘雨芳,古德祥,张古忍.广东双季稻区杂草地和稻田中捕食性节肢动物的群落动态.昆虫学报, 2003, 46(5): 591-597
    13.娄永根,程家安.虫害诱导的植物挥发物:基本特征、生态学功能及释放机制.生态学报, 2000, 20(6): 1097-1106
    14.鲁玉杰,张孝羲.信息化合物对昆虫行为的影响.昆虫知识, 2001, 38(4): 262-266
    15.吕昭智,李进步,田卫东等.生物多样性在害虫控制中的生态功能与机理.干旱区研究, 2005, 22(3): 400-404
    16.吕昭智,田长彦.棉田间作红花对棉田天敌的影响.干旱区研究, 2000, 17(增): 117-119
    17.马向真,王万磊,鹿金秋等.小麦互益素对麦长管蚜及其天敌的影响.应用生态学报, 2008, 19(1): 173-177
    18.钦俊德,王琛柱.论昆虫与植物的相互作用和进化的关系.昆虫学报, 2001, 44(3): 360-365
    19.师光禄,赵莉蔺,刘素琪等.枣园害虫、捕食性和中性昆虫群落结构及动态研究.应用生态学报, 2006, 17(1): 80-86
    20.唐启义,冯明光.实用统计分析及其DPS数据处理系统.北京:科学出版社, 2002
    21.万方浩,陈常铭.综防区和化防区稻田害虫-天敌群落组成及多样性研究.生态学报, 1986, 6(2): 159-170
    22.王冬兰,刘贤进,张存政等.江苏地区麦蚜对吡虫啉敏感性监测.江苏农业科学, 2003 , (6): 64-65
    23.王万磊,刘勇,纪祥龙等.小麦间作大蒜或油菜对麦长管蚜及其主要天敌种群动态的影响.应用生态学报, 2008, 19(6): 1331-1336
    24.王晓军,陶岭梅,张青文等.长管蚜和禾谷缢管蚜对吡虫啉敏感性的比较研究.昆虫知识, 2004, 41(2): 155-157
    25.严善春,迟德富,迟德富.植物挥发性物质对昆虫作用的研究进展.应用生态学报, 2003, 14(2): 310-313
    26.尤民生,刘雨芳,侯有明.农田生物多样性与害虫综合治理.生态学报, 2004, 24(1): 117-122
    27.俞晓平,胡萃, Heong KL.非作物生境对农业害虫及其天敌的影响.中国生物防治, 1996, 12(3): 130-133
    28.张茂新,凌冰,庞雄飞.非嗜食植物中的昆虫产卵驱避物及其利用.昆虫天敌, 2003, 25(1): 28-36
    29.张润志,梁宏斌,田长彦等.利用棉田边缘苜蓿带控制棉蚜的生物学机理.科学通报, 1999, 44(20): 2175-2178
    30.张文庆,古德祥,张古忍.论短期农作物生境中节肢动物群落的重建Ⅰ.群落重建的概念和特性.生态学报, 2000, 20(6): 286-291
    31.赵志模,郭依泉.群落生态学原理与方法[M].重庆:科学技术文献出版社, 1990
    32.周强,徐涛,张古忍等.虫害诱导的水稻挥发物对褐飞虱的驱避作用.昆虫学报. 2003, 46(6): 739-744
    33.周琼,梁广文.植物挥发性物质在蚜虫寄生定位中的作用.昆虫知识, 2001, 38(5): 334-336
    34.朱麟,古德祥.昆虫对植物次生性物质的适应策略.生态学杂志, 2000, 19(3): 36-45
    35.庄西卿.稻田田埂昆虫群落与田埂杂草关系的研究.生态学报, 1989, 9(1): 35-40
    36. Andow DA. Vegetational diversity and arthropod population response. Annual Review of Entomology, 1991, 36: 561-586
    37. Baldwin IT. Jasmonate-induced responses are costly but benefit plants under attack in native populations. Proc Natl Acad Sci USA, 1998, 95: 8113-8118
    38. Bartlet E, Bliht MM, Hick AJ, Williams IH. The responses of the cabbage seed weevil (Ceutorhynchus assimilis) to the odour of oilseed rape (Brassica napus) and to some volatiles isothiocyanates. Entomologia Experimentalis et Applicata, 1993, 68: 295-302
    39. BaurR, FeenyP, StdlerE. Oviposition stimulants for the black wallowtail butterfly: identification of electrophysiologically active compounds in carrot volatiles. Journal of Chemical Ecology,1993, 19: 919-937
    40. Bengtsson M, Jaastad G, Knudsen G, Kobro S, B?ckman AC, Pettersson E, Witzgall P. Plant volatiles mediate to host and non-host plant in apple fruit moth Argyresthia conjugella. Entomologia Experimentalis et Applicata, 2006, 118: 77-85
    41. Bernasconi ML, Turlings TCJ, Ambrosetti L, Bassetti P, Dorn S. Herbivore-induced emissions of maize volatiles repel the corn leaf aphid, shape Rhopalosiphum maidis. Entomologia Experimentalis et Applicata,1998, 87: 133-142
    42. Boland W, Hopke J, Donatc J, Nueske J, Bublitz F. Jasmonic acid and coronation induce odor production in plants. Angew Chem Int Ed Engl. 1995, 34: 1600-1603
    43. Borden JH, Chong LJ, Gries R, Pierce HD. Potential for nonhost volatiles as repellents in integrated pest management of ambrosia beetles. Integrated Pest Management Reviews, 2001, 6: 221-236
    44. Bruin J, Sabelis MW, Dicke M. Do plants tap SOS signals from their infested neighbours? Tree, 1995, 10: 167-170
    45. Bukovinszky T, Gols R, Posthumus MA, Vet LEM, Van Lenteren JC. Variation In Plant Volatiles and Attraction Of The Parasitoid Diadegma semiclausum (Hellén). Journal of Chemical Ecology, 2005, 31(3): 461-480
    46. Butkewich SL, Prokopy RJ. Attraction of adult plum curculios (Coleoptera: Curculionidae) to host-tree odor and visual stimuli in the filed. J Ent Sci. 1997, 32: 1-6
    47. Cisch SJ, Andow DA, Altteri MA. Agroecosystem diversity and pest control: data tentative conclusion and new research directions. Environmental Entomology, 1983, 12: 625-629
    48. Clark M S, Gagge S H, Spence J R. Habitats and management assiciated with common ground beetles (Coleoptera:Carabidae) in a Michigan agricultural landscape. Environmental Entomology, 1997, 26(3): 519-527
    49. Coracini M, Bengtsson M, Liblikas I, Witzgall P. Attraction of codling moth males to apple volatiles. Entomologia Experimentalis et Applicata, 2004, 110: 1-10
    50. Dicke M, Gols R, Ludeking D. Jasmonic acid and herbivory differenttially induce carnivore-attracting plant volatiles in Lima bean plants. Journal of Chemical Ecology. 1999, 25: 1907-1922
    51. Dicke M, Van Loon JJA. Multitrophic effects of herbivore-induced plantvolatiles in an evolutionary context. Entomologia Experimentalis et Applicata. 2000, 237-249
    52. Dicke M. Are herbivore-induced plant volatiles reliable indicators of herbivore identity to foraging carnivorous arthropods. Entomologia Experimentalis et Applicata, 1999, 91(1): 131-142
    53. Feeny PP. Plant apparency and chemical defence. In: Wallace J, Mansell R, ed. Biochemical Interactions between Plants and Insects. Recent Advances in Phytochenistry, 1976, 10: 1-40
    54. Finch S, Collier RH. Host-plant selection by insects– A theory based on 'appropriate/inappropriate landings' by pest insects of cruciferous plants. Entomologia Experimentalis et Applicata, 2000, 96: 91- 102
    55. Finidori LV, Bagneres AG, Clement JL. Role of plant volatiles in the search for a host by parasitoid Diglyphus isaea (Hy menoptera: Eulophidae). Journal of Chemical Ecology. 1996, 22: 541~558
    56. Fowler C, Mooney P. Shattering Food, Politics and the Loss of Gene Diversity. University of Arizoon Press, Tucson, 1990
    57. Frere I, Fabry J, Hance T. Apparent competition or apparent mutualism? An analysis of the influence of rose bush strip management on aphid population in wheat field. Journal of Applied Entomology, 2007, 131: 275-283
    58. Fuentes-Contreras E, Niemeyer H M. Effect of wheat resistance, the parasitoid Aphidius rhopalosiphi, and the entomopathogenic fungus Pandora neoaphidis, on population dynamics of the cereal aphid Sitobion avenae. Entomologia Experimentalis et Applicata, 2000, 97: 109-114
    59. Glinwood RT, Pettersson J. Change in response of Rhopalosiphum padi spring migrants to the repellent winter host component methyl salicylate. Entomologia Experimentalis et Applicata, 2000, 94: 325-330
    60. Gnanvossou D, Hanna R, Dicke M, Yaninek SJ. Attraction of the predatory mites Typhlodromalus manihoti and Typhlodromalus aripo tocassava plants infested by cassava green mite. Entomologia Experimentalis et Applicata, 2001, 101: 291-298
    61. Haack L, Leclercq-Le Quillec F, Henry M, et al. Vector dynamics and BYD disease progress on barley and maize: Two contrasting cases and consequences for control. In: Henry M, McNab A, ed. Barley Yellow Dwarf Disease: Recent Advances and Future Strategies. Mexico: CIMMYT. 2002, 40-43
    62. Hartmann T. Diversity and variability of plant secondary metabolism: a mechanistic view. Entomologia Experimentalis et Applicata, 1996, 80: 177-188
    63. Heil M. Direct defense or ecological costs: responses of herbivorous beetles to volatiles released by wild Lima bean (Phaseolus lunatus). Journal of Chemical Ecology, 2004, 30: 1289-1295
    64. Irvin NA, Hoddle MS. Evaluation of floral resources for enhancement of fitness of Gonatocerus ashmeadi, an egg parasitoid of the glassy-winged sharpshooter, Homalodisca vitripennis. Biological Control, 2007, 40: 80-88
    65. Irvin NA, Scarratt SL, Wratten SD, et al. The effects of floral understoreys on parasitism of leafrollers (Lepidoptera: Tortricidae) on apples in New Zealand. Agricultural and Forest Entomology, 2006, 8: 25-34
    66. James DG, GrasswitzTR. Synthetic herbivore-induced plantvolatiles increase field captures of parasiticwasp. Biocontrol, 2005, 50: 871-880
    67. James DG, Price TS. Field-testing of methyl salicylate for recruitmentand retention ofbeneficial insects in grapes and hops. Journal of Chemical Ecology, 2004, 30, 1613-1628
    68. James DG. Field evaluation of herbivore-induced plant volatiles as attractants for beneficial insects: methyl salicylate and the green lacewing, Chrysopa nigricornis. Journal of Chemical Ecology, 2003, 29(7): 1601-1609
    69. James DG. Further field evaluation ofsynthetic herbivore-induced plantvolatiles as attractants forbeneficial insect. Journal of Chemical Ecology, 2005, 31, 481-495
    70. Jembere B, Ngi-Song AJ, Overholt W. Olfactory responses of Cotesia flavipes (Hymenoptera: Braconidae) to target and non-target Lepidoptera and their host plants. Biological Control, 2003, 28(3): 360-367
    71. Jetske G, Marcel D. The role of methyl salicylate in prey searching behavior of the predatory mite Phytoseiulus persimilis. Journal of Chemical Ecology, 2004, 30: 255-271
    72. Karban R, Baldwin IT. Induced Responses to Herbivory. Chicago: University of Chicago Press, 1997
    73. Kessler A, Baldwin IT. Defensive Function of herbivore-induced plant volatile emissions in nature. Science, 2001, 291: 2141-2144
    74. Kozár F, Brown M W, Lightner G. Spatial distribution of homopteran pests and beneficial insects in an orchard and its connection with ecological plant protection. Journal of Applied Entomology, 1994, 117: 519-529
    75. Landis DA, Wratten SD, Gurr GM. Habitat management to conserve natural enemies of arthropod pests in agriculture. Annual Review of Entomology, 2000, 45: 175- 201
    76. Langellotto GA, Denno RF. Responses of invertebrate natural enemies to complex-structured habitats: a meta-analytical synthesis. Oecologia, 2004, 139: 1-10
    77. Lavandero B, Wratten SD, Shishehbor P, et al. Enhancing the effectiveness of the parasitoid Diadegma semiclausum (Helen): movement after use of nectar in the field. Biological Control, 2005, 34: 152-158
    78. Lavandero BI, Wratten SD, Didham RK, et al. Increasing floral diversity for selective enhancement of biological control agents: a double-edged sward? Basic and Applied Ecology, 2006, 7: 236-243
    79. Leclercq-Le Quillec F, Tanguy S, Dedryver C-A. Aerial flow of barley yellow dwarf viruses and of their vectors in western France. Annals of Applied Biology, 1995, 126: 75-90
    80. Lou YG, Du MH, Turlings TCJ, et al. Exogenous application of jasmonic acid induces volatile emission in rice and enhances parasitism of Nilaparvata lugenseggs by the parasitoid Anagrus nilaparvatae. Journal of Chemical Ecology, 2005, 31(9): 1985-2002
    81. Lou YG, Ma B, Cheng JA. Attraction of the parasitoid Anagrus nilaparvatae to rice volatiles induced by the rice brown planthopper Nilaparvata lugens . Journal of Chemical Ecology, 2005, 31(10): 2357-2372
    82. Mithofer A, Wanner G, Boland W. Effects of feeding Spodoptera littoralis on lima bean leaves. II. Continuous me-chanical wounding resembling insect feeding is sufficient to elicit herbivore-related volatile emission. Plant Physiol, 2005, 137(3): 1160-1168
    83. Neveu, N, Grandgirard J, Nenon JP, Cortesero AM. Systemic release of herbivore-induced plant volatiles by turnips infested by concealed root-feeding larvae Delia radicum L. Journal of Chemical Ecology, 2002, 28: 1717-1732
    84. Ninkovic V, Ahmed E, Glinwood R, Pettersson J. Effects of two types of semiochemical on populatin development of the bird cherry oat aphid Rhopa losiphum padi in a barley crop. Agricultural and Forest Entomology, 2003, 5: 27-33
    85. Pare PW, Tumlinson JH. Denovo biosynthesis of volatiles induced by insect herbivory in cotton plants. Plant Physiol, 1997, 114: 1161-1167
    86. ParéPW, Tumlinson JH. Plant volatiles as a defense against insect herbivores. Plant Physiology, 1999, 121(2): 325-331
    87. Pettersson J, Pickett JA, Pye BJ. Winter host component reduces colonization by bird-cherry-oat aphid, Rhopa losiphum padi (L.) (Homoptera, aphiaidae), and other aphids in cereal fields. Journal of Chemical Ecology, 1994, 20: 2565~2575
    88. Pettersson J, Quiroz A, Fahad AE. Aphid antixenosis mediated byvolatiles in cereals. Acta Agric Scand, 1996, 46: 133~140
    89. Pettersson J, Quiroz A, Stephansson D, Niemeyer HM. Odour communication of Rhopalosiphum padi on grasses. Entomologia Experimentalis et Applicata, 1995, 76: 325~328
    90. Prinsloo G, Ninkovic V, Van der Linde TC, et al. Test of semiochemicals and a resistant wheat variety for Russian wheat aphid management in South Africa. Journal of Applied Entomology, 2007,131: 637-644
    91. Quiroz A, Niemeyer HM. Olfactometer-assed responses of aphid Rhopalosiphum padi to wheat and oat volatiles. Journal of Chemical Ecology, 1998, 24: 113~124
    92. Quiroz A, Pettersson J, Pickeet JA, Pickeet LJ, Niemeyer HM. Key compounds in a spacing pheromone in the bird cherry-oat aphid, Rhopalosiphum padi (L.) (Homoptera, aphiaidae). Journal of Chemical Ecology, 1997, 23: 2599~2607
    93. Risch SJ, Andow DA, Altteri MA. Agroecosystem diversity and pest control: data tentative conclusion and new research directions. Environmental Entomology, 1983, 12: 625-629
    94. Risch SJ. Insect herbivore abundance in tropical monocultures and polycultures: An experimental test of two hypothesis. Ecology, 1981, 62: 1325-1340
    95. Shelton AM, Badenes-Perez FR. Concepts and applications of trap cropping in pest management. Annual Review of Entomology, 2006, 51: 285-308
    96. Shimoda T, Ozawa R, Sano K, et al. The Involvement of Volatile Infochemicals from Spider Mites and from Food-Plants in Prey Location of the Generalist Predatory Mite Neoseiulus californicus. Journal of Chemical Ecology, 2005, 31(9): 2019-2032
    97. Smith MW, Arnold DC, Eikenbary RD, et al. Influence of ground cover on beneficial arthropods in pecan. Biological Control, 1996, 6: 164-176
    98. Stowe MK, Turlings TCJ, Loughrin JH et al. The chemistry of eavesdropping, alarm, and deceit. Proc. Natl. Acad. Sci.USA., 1995, 92: 23-28
    99. Tahvanainen JO and RootRB. The influence of vegetational diversity on the population ecology of a specialized herbivore, Phyllotreta cruciferac(Coleoptera: Chrysomelidae). Oecologia, 1972, 10: 321-346
    100.Tscharntke T, Thiessen S, Dolch R, et al. Herbivory, in-duced resistance, and interplant signal transfer in Alnus gluti-nosa. Biochemical Systematics and Ecology, 2001, 29(10): 1025-1047
    101.Turlings TCJ, Benrey B. Effects of plant metabolites on the behavior and development of parasitic wasps. Ecoscience, 1998, 5(3):321-333
    102.Tylianakis JM, Didham RK, Wratten SD. Improved witness of aphid parasitoids receiving resources subsidies. Ecology, 2004, 85: 658-666
    103.Van Emden HF, Wratten SD. Tri-trophic interactions involving plants in the biological control of aphids. In: Peters DC, Webster JA, Chlouber CS, ed. Proceedings of Aphid-Plant Interactions: Populations to Molecules. Stillwater: Oklahoma State University, 1990, 29-43
    104.Van Emden HF. Host-plant-aphidophaga interactions. Agriculture Ecosystems and Environment, 1995, 52: 3-11
    105.Van Lenteren JC. Sustainable and safe crop protection: a reality? In: Oomen PA, Forster R, Lewis GB. ed. Proceedings 50th International Symposium on Crop Protection. Belgium: Gent. 1998. 409-413
    106.Zehnder G, Gurr GM, Kühne S, et al. Arthropod pest management in organic crops. Annual Review of Entomology, 2007, 52: 57-80
    107.Zhu J, Park KC. Methyl Salicylate, a Soybean Aphid-Induced Plant Volatile Attractive to the Predator Coccinella septempunctata. Journal of Chemical Ecology, 2005, 31(8): 1733-1746
    108.Zhu-Salzman K, Salzman RA, Koiwa H, et al. Ethylene negatively regulates local expression of plant defense lectin genes. Physiologia Plantarum, 1998, 104(3): 365-372

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700